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FULLY NONPARAMETRIC ESTIMATION
OF SCALAR DIFFUSION MODELS

By Federico M. Bandi and Peter C. B. Phillips
1

We propose a functional estimation procedure for homogeneous stochastic differential
equations based on a discrete sample of observations and with minimal requirements on
the data generating process. We show how to identify the drift and diffusion function
in situations where one or the other function is considered a nuisance parameter. The
asymptotic behavior of the estimators is examined as the observation frequency increases
and as the time span lengthens. We prove almost sure consistency and weak convergence
to mixtures of normal laws, where the mixing variates depend on the chronological local
time of the underlying diffusion process, that is the random time spent by the process in
the vicinity of a generic spatial point. The estimation method and asymptotic results apply
to both stationary and nonstationary recurrent processes.

Keywords: Diffusion, drift, local time, martingale, nonparametric estimation, semi-
martingale, stochastic differential equation.

1� introduction

Many popular models in economics and finance, like those for pricing
derivative securities, involve diffusion processes formulated in continuous-time
as solutions to stochastic differential equations. These processes have been used
to model options prices, the term structure of interest rates, and exchange rates,
inter alia. A recent introduction to some of these applications is given in Bax-
ter and Rennie (1996). Stochastic differential equations have also been used to
model macroeconomic aggregates like consumption and investment, and systems
of such equations have been employed for many years to model economic activ-
ity at the national level, as described in Bergstrom (1988). In all these applica-
tions, statistical estimation involves the use of discrete data. It is then necessary
to identify and estimate with discretely sampled observations the parameters and
functionals of a process whose evolution is defined continuously in time.
The stochastic differential equation that defines a diffusion process, like Xt in

(2.1) below, involves two components. These components denote the (infinites-
imal) conditional drift, ����, and the (infinitesimal) conditional variation, �2���,
of the process in the vicinity of each spatial level visited by Xt . The most general
approach to estimating stochastic differential equations is to avoid any functional
form specification for the drift and the diffusion term. In some cases, attention

1 We are grateful to the co-editor and three anonymous referees for useful comments. Bandi thanks
Mediocredito Centrale and the Sloan Foundation for Fellowship support. Phillips thanks the NSF
for support under Grant Nos. SBR 97-30295 and SES SES-00-92509.
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may focus on one of the functions and it is then of interest to estimate it in the
context of the other function being treated as a nuisance parameter.
A substantial simplification to the estimation problem is obtained by the com-

monly made assumption of stationarity. Indeed, under stationarity and provided
suitable regularity conditions are met, the marginal density of the process is fully
characterized by the two functions of interest (see Karatzas and Shreve (1991)
and Karlin and Taylor (1981), for example). This fact justifies some estimation
methods that have appeared recently in the literature, which exploit the restric-
tions imposed on the drift and diffusion function by virtue of the existence of a
time-invariant distribution function of the process of interest (see, in particular,
Aït-Sahalia (1996a, b) and Jiang and Knight (1997)). Notwithstanding the advan-
tages of assuming stationarity, it would appear that, for many of the empirical
applications mentioned in the first paragraph at least, it would be more appro-
priate to allow for martingale and other possible forms of nonstationary behavior
in the process. In such cases, it becomes necessary to achieve identification with-
out resorting to cross-restrictions delivered from the existence of a time-invariant
marginal data density. In consequence, estimation and inference must be per-
formed when such restrictions cannot be imposed, namely when the process is
nonstationary. Of course, there may also be interest in testing either local or
more general martingale behavior in the process.
The aim of the present paper is to construct a nonparametric estimation

method for scalar diffusion models without imposing a stationarity assumption.
Recurrence, which is a substantially milder assumption than stationarity, is our
identifying condition. Specifically, we require the continuous trajectory of the
process to visit any level in its range an infinite number of times over time.
Our approach is a refined sample analog method, which builds local estimates
of the drift and diffusion components from the local behavior of the process
at each spatial point that the process visits. We assume that the process is dis-
cretely sampled, but we explore the limit theory of the proposed estimators as
the sample frequency increases (i.e., as the interval between observations tends
to zero, as in Florens-Zmirou (1993), Jacod (1997), and Jiang and Knight (1997),
among others) and also as the time span of observation lengthens. In technical
terms this amounts to both infill and long span asymptotics. As clarified below,
the twofold limit theory allows us to avoid the well-known aliasing problem (i.e.,
different continuous-time processes may be indistinguishable when sampled at
discrete points in time) and be very general about the dynamic features of the
underlying diffusion process (Phillips (1973) and Hansen and Sargent (1983) are
early references on the aliasing phenomenon in the econometric literature on
the identification of continuous-time Markov systems).
We give conditions for almost sure convergence of the proposed sample analog

estimators to the theoretical functions and provide a limit distribution theory for
the general case. The asymptotic distributions of the estimates are mixed normal
and the mixture variates can be expressed in terms of the chronological local
time of the underlying diffusion, i.e., a random quantity that measures in real
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time units the amount of time that the process spends in the local neighborhood
of each spatial point in its admissible range.
Our results also enable us to comment on the fixed time span situation. We

confirm earlier findings that the diffusion term can be consistently estimated over
a fixed time span (as in Florens-Zmirou (1993) and Jacod (1997), for example)
and discuss the difference between this case and the long span situation. We also
confirm that, in general, the drift term cannot be identified nonparametrically
on a fixed interval without cross-restrictions (as in Jiang and Knight (1997), for
instance), no matter how frequently the data are sampled (see Merton (1980)
and Bandi (2002, Theorem 2.1), among others). Despite this limitation, by letting
the time span increase to infinity, the theoretical drift term can be recovered
in the limit, provided the process continues to repeat itself, that is provided
the process is recurrent, as implied by our assumptions (see Section 2). Geman
(1979) utilized the same property but assumed the availability of a continuous
record of observations. To our knowledge, our drift estimator is the first fully
nonparametric estimator that permits identification of the drift function by use
of discretely sampled data, without relying on cross-restrictions based on the
existence of a time-invariant marginal distribution function for the process of
interest. It is therefore robust against deviations from stationarity in the wide
class of recurrent processes.
Not surprisingly, both the nonparametric theory on the estimation of condi-

tional expectations in the stationary discrete time framework (see Pagan and
Ullah (1999), for example, and the references therein) and the recent functional
theory on the identification of conditional first moments in the unit root liter-
ature (Phillips and Park (1998)) are reflected in the general results given here.
These results can in turn be specialized to various forms of recurrent behavior
and, in consequence, cover both the stationary case and the Brownian motion
(unit root, that is) case in the existing nonparametric literature, without being
limited to them.
Our work is presented as follows. Section 2 lays out the model and objects of

interest. Section 3 gives some useful theoretical preliminaries. Section 4 contains
a description of the methodology. Section 5 presents the main results and Section
6 concludes. The Appendix provides proofs and technicalities.

2� the model, assumptions, and objects of interest

The model we consider is the autonomous stochastic differential equation

dXt = ��Xt�dt+��Xt�dBt�(2.1)

with initial condition X0 = �X, where �Bt � t ≥ 0	 is a standard Brownian motion
defined on the filtered probability space �
��B� ��B

t �t≥0�P�. The initial condition
�X ∈ L2 and is taken to be independent of �B

�. We define the left-continuous
filtration

��t �= ���X�∨ �B
t = ���X�Bs�0≤ s ≤ t�� 0≤ t <��(2.2)
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and the collection of null sets

ℵ �= {
N ⊆
�∃G ∈��� with N ⊆G and P�G�= 0

}
�(2.3)

We create the augmented filtration

�̃X
t �= ����t ∪ℵ�� 0≤ t <��(2.4)

The following conditions will be used in the study of (2.1). In what follows, the
symbol � denotes the admissible range of the process Xt .

Assumption 1:

(i) ��·� and ��·� are time-homogeneous, �-measurable functions on �= �l�u�
with −� ≤ l < u ≤ �, where � is the �-field generated by Borel sets on �. Both
functions are at least twice continuously differentiable. They satisfy local Lipschitz
and growth conditions. Thus, for every compact subset J of the range � of the
process, there exist constants CJ

1 and CJ
2 such that, for all x and y in J ,

���x�−��y��+ ���x�−��y�� ≤ CJ
1 �x−y��(2.5)

and

���x��+ ���x�� ≤ CJ
2 �1+�x�	�(2.6)

(ii) �2�·� > 0 on �.
(iii) We define S���, the natural scale function, as

S���=
∫ �

c
exp

{∫ y

c

[
−2��x�
�2�x�

]
dx

}
dy�(2.7)

where c is a generic fixed number belonging to �. We require S��� to satisfy

lim
�→l

S���=−��(2.8)

and

lim
�→u

S���=��(2.9)

Condition (i) is sufficient for pathwise uniqueness of the solution to (2.1)
(Karatzas and Shreve (1991, Theorem 5.2.5, p. 287)). Conditions (i) and (ii)
assure the existence of a unique strong solution up to an explosion time (Karatzas
and Shreve (1991, Theorem 5.5.15, p. 341, and Corollary 5.3.23, p. 310)). Con-
dition (iii) guarantees that the exit time from � = �l�u� is infinite (Karatzas
and Shreve (1991, Proposition 5.5.22, p. 345)), but does not imply existence of a
stationary probability measure for Xt . The same condition is necessary and suf-
ficient for recurrence, meaning that, for each c ∈�, there exists a sequence of
times �ti	 increasing to infinity such that Xti

= c for each i, almost surely.
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Remark 1: Global Lipschitz and growth conditions are typically assumed to
guarantee existence and uniqueness of a strong solution to (2.1) (see Karatzas
and Shreve (1991, Theorem 5.2.9, p. 289), for example). We do not impose these
conditions here because, as Aït-Sahalia (1996a, b) points out, they fail to be
satisfied for interesting models in economics and finance.

Thus, under Assumption 1, the stochastic differential equation has a unique
strong solution Xt that is adapted to �̃X

t and recurrent. Further, Xt satisfies

Xt = �X+
∫ t

0
��Xs�ds+

∫ t

0
��Xs�dBs a.s.,(2.10)

with
∫ t

0 EX2
s � ds <�.

The objects of econometric interest are the drift and diffusion terms in (2.1).
These functions have the following definitions:

ExXt −x�= t��x�+o�t��(2.11)

Ex�Xt −x�2�= t�2�x�+o�t��(2.12)

where x is a generic initial condition and Ex is the expectation operator asso-
ciated with the process started at x. Loosely speaking, (2.11) and (2.12) can be
interpreted as representing the instantaneous conditional mean and the instan-
taneous conditional variance of the process when Xt = x. More precisely, (2.11)
describes the conditional expected rate of change of the process for infinitesimal
time changes, whereas (2.12) gives the conditional rate of change of volatility at x.

3� local time preliminaries

In what follows we introduce some preliminary results regarding the local or
sojourn time of a continuous semimartingale (SMG). These results will be useful
in the development of our analysis (Revuz and Yor (1998) is a standard refer-
ence).

Definition 1 (Continuous SMG): A continuous SMG is a continuous pro-
cess Mt that can be written as Mt = LMt +At , where LMt is a continuous local
martingale and At is a continuous adapted process of finite variation.

Stochastic differential equations like (2.1) are known to have solutions that are
SMGs since �X+ ∫ t

0 ��Xs�ds is a continuous adapted process of finite variation
and

∫ t

0 ��Xs�dBs is a continuous local martingale. Hence, our theory comes
within the ambit of SMG analysis.
The local time of a continuous SMG Mt is defined as follows:

Lemma 1 (The Tanaka Formula): For any real number a, there exists a nonde-
creasing continuous process LM��� a� called the local time of Mt at a, such that

�Mt −a� = �M0−a�+
∫ t

0
sgn�Ms −a�dMs +LM�t�a��(3.1)
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�Mt −a�+ = �M0−a�++
∫ t

0
1�Ms>a	 dMs +

1
2
LM�t�a��(3.2)

�Mt −a�− = �M0−a�−−
∫ t

0
1�Ms≤a	 dMs +

1
2
LM�t�a��(3.3)

where 1 is the indicator function. In particular, �Mt −a�� �Mt −a�+, and �Mt −a�−

are SMGs.

Lemma 2 (Continuity of SMG Local Time): For any continuous SMG Mt,
there exists a version of the local time such that the map �t� a� �→ LM�t�a� is a.s.
continuous in t and càdlàg in a.

Lemma 3 (The Occupation Time Formula): Let Mt be a continuous SMG
with quadratic variation process M�t and let La be the local time at a. Then,∫ t

0
f �Ms� s�dM�s =

∫ �

−�
da

∫ t

0
f �a� s�dLM�s�a�(3.4)

for every positive Borel measurable function f . If f is homogeneous, then the expres-
sion simplifies to∫ t

0
f �Ms�dM�s =

∫ �

−�
f �a�LM�t�a�da�(3.5)

Lemma 4: If Mt is a continuous SMG then, almost surely,

LM�t�a�= lim
�→0

1
�

∫ t

0
1a�a+��Ms�dM�s ∀a� t�(3.6)

If Mt is a continuous local martingale then, almost surely,

LM�t�a�= lim
�→0

1
2�

∫ t

0
1�a−��a+��Ms�dM�s ∀a� t�(3.7)

The process LM�t�a� is called the local time of Mt at the point a over the time
interval 0� t�. It is measured in units of the quadratic variation process and gives
the amount of time that the process spends in the vicinity of a. The “chrono-
logical local time” (terminology from Phillips and Park (1998)) is a standardized
version of the conventional local time that is defined in terms of pure time units.
It can be easily derived in the Brownian motion case. From (3.7), the local time
of a standard Brownian motion Wt is

LW�t�a�= lim
�→0

1
2�

∫ t

0
1��Ws−a�<�� ds a.s. ∀a� t�(3.8)

Now, consider the Brownian motion Bt = �Wt with local variance �2. We can
write, as in Phillips and Park (1998),

LB�t� a�= lim
�→0

1
2�

∫ t

0
1��Bs−a�<���

2 ds = �LW

(
t�

a

�

)
a.s. ∀a� t�(3.9)
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Since the quadratic variation of Brownian motion is deterministic, the chrono-
logical local time can be obtained as a scaled version of the conventional sojourn
time as

�LB�t� a�= lim
�→0

1
2�

∫ t

0
1��Bs−a�<�� ds = �−2LB�t� a� a.s. ∀a� t�(3.10)

Equation (3.10) clarifies the sense in which �LB�t� a� measures the amount of
time (out of t) that the process spends in the neighborhood of a generic spatial
point a.
It turns out that a similar expression can be defined for more general processes

such as those driven by stochastic differential equations like (2.1). In this case,
the measure dX�s is random and equal to �2�Xs�ds. Hence, given the limit
operation, a natural way to define the chronological local time is by

�LX�t�a�=
1

�2�a�
lim
�→0

1
�

∫ t

0
1a�a+��Xs��

2�Xs�ds(3.11)

= 1
�2�a�

LX�t� a� a.s. ∀a� t�

This is the notion of local time that we will use extensively in what follows.
It appears in other recent work on the nonparametric treatment of diffusion
processes (see, e.g., Bosq (1998, p. 146) and Florens-Zmirou (1993)), where it is
sometimes referred to simply as “local time.”
Lemma 5 and 6 below contain additional results that will be used in the devel-

opment of our limit theory. Lemma 5 generalizes to diffusion processes the limit
theory for Brownian local time (see Revuz and Yor (1998, Exercises 2.11 and
2.12, Chapter 13)).

Lemma 5 (Limit Theory for the Local Time of a Diffusion): Let Xt satisfy
the properties in Section 2.2 Let r and a > 0 be fixed real numbers and treat
�LX�t� r+�a/���−LX�t� r�	 as a double indexed stochastic process in �t� a�. Then,
as �→�

1
2

√
�

{
LX

(
t� r+ a

�

)
−LX�t� r�

}
⇒��LX�t� r�� a��(3.12)

where ��t� a� is a standard Brownian sheet independent of Xt . If a < 0, then

1
2

√
�

{
LX

(
t� r+ a

�

)
−LX�t� r�

}
⇒��LX�t� r��−a��(3.13)

Finally, Lemma 6 specializes to scalar diffusion processes a result that has
wider applicability in the theory of occupation times for recurrent Markov pro-
cesses (see, e.g., Azèma, Kaplan-Duflo, and Revuz (1967) and Revuz and Yor
(1998, Theorem 3.12, Chapter 10)).

2 Lemma 5 also applies to transient solutions to (2.1).
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Lemma 6: Let Xt satisfy the properties in Section 2. Then, for any Borel mea-
surable pair of functions f ��� and g��� that are integrable with respect to the speed
measure s�dx� = 2dx/S ′�x��2�x� of Xt, where S ′�x� is the first derivative of the
natural scale function, the ratio of the functionals

∫ T

0 f �Xs�ds and
∫ T

0 g�Xs�ds is
such that

P

[
lim
T→�

∫ T

0 f �Xs�ds∫ T

0 g�Xs�ds
=

∫ �
−� f �x�s�dx�∫ �
−� g�x�s�dx�

]
= 1�(3.14)

provided
∫ �
−� g�x�s�dx� > 0.

We now turn to the estimation method.

4� econometric estimation

Assume the process Xt is observed at �t = t1� t2� � � � � tn	 in the time inter-
val 0�T �. Further assume that the observations are equispaced. Then, �Xt =
X�n�T

�X2�n�T
�X3�n�T

� � � � �Xn�n�T
	 are n observations on the process Xt at �t1 =

�n�T � t2 = 2�n�T � t3 = 3�n�T � � � � � tn = n�n�T 	, where �nT = T /n.
We want the number of sampled points �n� to increase as the time span �T �

lengthens. We also want the frequency of observation to increase with n. Thus,
we will explore the limit theory of the proposed estimators as n→�, T →�,
and �n�T = T /n→ 0. We will also comment on the fixed T case where T = �T .

We propose the following estimators for (2.11) and (2.12):

�̂�n�T ��x�(4.1)

�=
∑n

i=1K
(

Xi�n�T
−x

hn�T

)(
1

mn�T �i�n�T ��n�T

∑mn�T �i�n�T �−1
j=0 Xt�i�n�T �j+�n�T

−Xt�i�n�T �j
�
)

∑n
i=1K

(
Xi�n�T

−x

hn�T

)

�=
∑n

i=1K
(

Xi�n�T
−x

hn�T

)
�̃n�T �Xi�n�T

�∑n
i=1K

(
Xi�n�T

−x

hn�T

)(4.2)

�̂2
�n�T ��x�(4.3)

�=
∑n

i=1K
(

Xi�n�T
−x

hn�T

)(
1

mn�T �i�n�T ��n�T

∑mn�T �i�n�T �−1
j=0 Xt�i�n�T �j+�n�T

−Xt�i�n�T �j
�2

)
∑n

i=1K
(

Xi�n�T
−x

hn�T

)

�=
∑n

i=1K
(

Xi�n�T
−x

hn�T

)
�̃2
n�T �Xi�n�T

�∑n
i=1K

(
Xi�n�T

−x

hn�T

) �(4.4)
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where K��� is a standard kernel function whose properties are specified below.
In the above formulae, �t�i�n�T �j	 is a sequence of random times defined in the
following manner:

t�i�n�T �0 = inf�t ≥ 0 � �Xt −Xi�n�T
� ≤ �n�T 	�(4.5)

and

t�i�n�T �j+1 = inf
{
t ≥ t�i�n�T �j +�n�T � �Xt −Xi�n�T

� ≤ �n�T

}
�(4.6)

The number mn�T �i�n�T �≤ n counts the stopping times associated with the value
Xi�n�T

and is defined as

mn�T �i�n�T �=
n∑

j=1

1�Xj�n�T
−Xi�n�T

�≤�n�T �
� ∀ i ≤ n�(4.7)

where 1A denotes the indicator of the set A. The quantity �n�T is a bandwidth-
like parameter that is taken to depend on the time span and on the sample size.
The function K�·� that appears in (4.2) and (4.4) is assumed to satisfy the

following condition.

Assumption 2: The kernel K��� is a continuously differentiable, symmetric and
nonnegative function whose derivative K ′ is absolutely integrable and for which∫ �

−�
K�s�ds = 1�

∫ �

−�
K2�s�ds <�� sup

s

K�s� < C3�(4.8)

and ∫ �

−�
s2K�s�ds <��(4.9)

The method hinges on the simultaneous operation of infill and long span
asymptotics. The intuition underlying the construction of (4.2) and (4.4) is fairly
clear. By using observations over a lengthening time span as well as of increas-
ing frequency we aim to “reconstruct” as well as possible the path of the process
in terms of the key objects of interest, namely the drift and diffusion function,
which vary over the path. The idea is twofold.
First, the use of local averaging and stopping times in the algorithm is designed

to replicate as well as possible the instantaneous features of the actual func-
tions. Notice, in fact, that the components �̃2

n�T �Xi�n�T
� and �̃n�T �Xi�n�T

� in (4.2)
and (4.4) are defined as empirical analogs to the true functions for all i’s. Pro-
vided suitable conditions on the spatial bandwidth �n�T are satisfied, such compo-
nents are expected to be consistent for �2�Xi�n�T

� and ��Xi�n�T
� as the random

quantity mn�T �i�n�T � goes to infinity. Given appropriate choice of the smoothing
sequence, divergence of mn�T �i�n�T � to infinity occurs with probability one when
the process Xt is recurrent, as it is under Condition (iii) in Assumption 1. In this
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case, the process almost surely visits any point in its admissible range an infinite
number of times over time, i.e., Px�Xt hits z at a sequence of times increasing
to �	= 1�∀x�z (here, as before, x represents a possible initialization of Xt).

Second, we apply standard nonparametric smoothing to recover the two func-
tions of interest from the crude estimates �̃2

n�T �Xi�n�T
� and �̃n�T �Xi�n�T

� calcu-
lated at the sample points.

5� main results

5�1� Some Preliminary Theory

We start with the following preliminary result. Throughout, we assume that
Assumptions 1 and 2 hold.

Theorem 1 (Almost Sure Convergence to the Chronological Local Time):
Given n → �, T fixed �=�T �, and hn��T → 0 �as n → �� in such a way that
�1/hn��T ���n��T log�1/�n��T ��1/2 = o�1�, the quantity

�n��T
hn��T

n∑
i=1

K

(Xi�n��T −x

hn��T

)
converges to �LX��T �x� with probability one.

Remark 2: Theorem 1 is general enough to be applicable to transient pro-
cesses. The following Corollary illustrates the difference between the two cases
when we let T go to infinity.

Corollary 1: If T →� with n but T /n=�n�T → 0 and hn�T → 0 �as n�T →
�� in such a way that

�LX�T �x�

hn�T

��n�T log�1/�n�T ��
1/2 = oa�s��1��

then

�n�T

hn�T

n∑
i=1

K

(
Xi�n�T

−x

hn�T

)
a�s�−→�LX�sup�t � Xt = x	�x��(5.1)

Further, if the process is recurrent, then �LX�sup�t � Xt = x	�x�=� with probabil-
ity one.

5�2� Functional Estimation of the Drift

We now develop the asymptotic theory for the drift estimator (4.2).

Theorem 2 (Almost Sure Convergence to the Drift Term): Given n → �,
T →�, �n�T → 0 and hn�T → 0 (as n�T →�) such that

�LX�T �x�

hn�T

��n�T log�1/�n�T ��
1/2 = oa�s��1��
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and provided �n�T → 0 (as n�T →�) such that

�LX�T �x�

�n�T

��n�T log�1/�n�T ��
1/2 = oa�s��1�

and �n�T
�LX�T �x�

a�s�−→ �, the estimator (4.2) converges to the true function with
probability one.

Theorem 3 (The Limiting Distribution of the Drift Estimator): Given n →
�, T →�, �n�T → 0, hn�T → 0 (as n�T →�) such that

�LX�T �x�

hn�T

��n�T log�1/�n�T ��
1/2 = oa�s��1��

and provided �n�T → 0 (as n�T →�) such that

�LX�T �x�

�n�T

��n�T log�1/�n�T ��
1/2 = oa�s��1��

�n�T
�LX�T �x�

a�s�−→� and �5
n�T

�LX�T �x� = oa�s��1�, then the asymptotic distribution
of the drift function estimator is of the form√

�n�T
�̂LX�T �x�

{
�̂�n�T ��x�−��x�

} ⇒N
(
0�K ind

2 �2�x�
)
�(5.2)

where K ind
2 = 1

4

∫ �
−� 12��a�≤1	 da = 1

2 if hn�T = o��n�T �. If hn�T = O��n�T � with
hn�T /�n�T → �> 0, then√

�n�T
�̂LX�T �x�

{
�̂�n�T ��x�−��x�

} ⇒N

(
0�

1
2
���

2�x�

)
�(5.3)

where �� = 1
2

∫ �
−�

∫ �z+1�/�
�z−1�/�

∫ �z+1�/�
�z−1�/� K�a�K�e�dzdade.

Under the same conditions, but provided �5
n�T

�LX�T �x� = Oa�s��1�, the limiting
distribution of the drift estimator displays an asymptotic bias term whose form is

���x�= �2
n�TK

ind
1

[
�′�x�

s′�x�
s�x�

+ 1
2
�′′�x�

]
�(5.4)

where K ind
1 = 1

2

∫ �
−� a21��a�≤1	 da= 1

3 , if hn�T = o��n�T �, and

� ���
� �x�= �2

n�T

(
K1�

2+K ind
1

)[
�′�x�

s′�x�
s�x�

+ 1
2
�′′�x�

]
�(5.5)

with K1 =
∫ �
−� a2K�a�da, if hn�T =O��n�T � with hn�T /�n�T →�> 0. The function

s�x� in (5.4) and (5.5) is the speed function of the process Xt, namely s�x� =
2/S ′�x��2�x�.
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Remark 3 (The Fixed T Case): If we fix the time span T , the drift function
cannot be identified. In particular, the drift estimator would diverge at a speed
equal to √

�n�T (see Theorem 2.1 in Bandi (2002) for an alternative treatment).
However, if we do not constrain the time span to be fixed, by virtue of recur-
rence, there are repeated visits to every level over time and this opens up the
possibility of recovering the true function by using a single trajectory of the pro-
cess over a long time, through a combination of infill and long span asymptotics.
Since the local dynamics of the underlying continuous process reflect more of
the features of the diffusion function than those of the drift, only the diffusion
function estimator can be meaningfully defined over a fixed time span of obser-
vations, as we will see in the sequel (see, also, Geman (1979), among others).

Remark 4 (The Rate of Convergence): The normalizations in (5.2) and (5.3)
are random because of the presence of the local time factor �̂LX�T �x�. In gen-
eral, therefore, the rate of convergence will be path-dependent. The precise rate
of convergence in (5.2) and (5.3) will depend on the asymptotic divergence char-
acteristics of the chronological local time of the underlying diffusion process. We
consider the two cases for which closed-form expressions for the rates of conver-
gence exist, namely Brownian motion and the wide class of stationary processes.
First, assume Xt is a Brownian motion (����= 0 and ����= � , that is). Then,

�LX�T �x�=�LB�T �x�= T 1/2 1
�
LW

(
1�

a

T 1/2�

)
=Oa�s��T

1/2��(5.6)

In this case, the convergence rate (to zero) of �̂�n�T ��x� is
√
�n�T T

1/2, the asymp-
totic distribution is mixed normal, and the limiting variance depends inversely
on the local time of the underlying standard Brownian motion at the origin and
time 1. Now consider the class of stationary processes. For any strictly stationary
real ergodic process, it is possible to show that

�LX�T �x�

T

a�s�−→ f �x��(5.7)

where f �x� is the time-invariant stationary distribution function of the process
at x (see, e.g., Bosq (1998, Theorem 6.3, p. 150)). As expected, for stationary
processes the rate of convergence is faster than in the Brownian motion case,
i.e.,

√
�n�T T , the asymptotic distribution is normal, and the (nonrandom) limiting

variance depends inversely on the marginal distribution function of Xt at x.

Remark 5 (Single Smoothing): We can simplify (4.2) above and write the
estimator as a weighted average of differences with weights based on simple
kernels. Consider

�̄�n�T ��x�=
1

�n�T

∑n−1
i=1 K

(Xi�n�T
−x

gn�T

)
�X�i+1��n�T

−Xi�n�T
�∑n

i=1K
(Xi�n�T

−x

gn�T

) �(5.8)
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The limit theory in this paper allows us to show that �̄�n�T ��x� is consistent almost
surely for the unknown drift function provided the window width gn�T is such that

�LX�T �x�

gn�T
��n�T log�1/�n�T ��

1/2 = oa�s��1�

and gn�T�LX�T �x�
a�s�−→ � as n�T → � with T /n → 0. Furthermore, if

g5
n�T

�LX�T �x�= oa�s��1�, then√
gn�T �̂LX�T �x�

{
�̄�n�T ��x�−��x�

} ⇒N�0�K2�
2�x���(5.9)

where K2 =
∫ �
−�K2�s�ds. Additionally, if g5

n�T
�LX�T �x�=Oa�s��1�, then√

gn�T �̂LX�T �x�
{
�̄�n�T ��x�−��x�−���x�

} ⇒N�0�K2�
2�x���(5.10)

where

���x�= g2
n�TK1

[
�′�x�

s′�x�
s�x�

+ 1
2
�′′�x�

]
�(5.11)

s�x� is the speed function of the process at the generic level x, and K1 =∫ �
−� s2K�s�ds.
It is noted that (5.8) behaves asymptotically like (4.2) in the case where

hn�T = o��n�T � and (4.2) is originated from a smooth kernel convoluted with
another smooth kernel rather than with an indicator function as in our original
formulation. In other words, single-smoothing is the same as double-smoothing
asymptotically if hn�T /�n�T →�= 0. If hn�T /�n�T →�≥ 0, then double-smoothing
offers additional flexibility over its simple counterpart. In fact, the parameter
�� (which affects the asymptotic variance) is a decreasing function of the con-
stant �, whereas the parameter K� = K1�

2 +K ind
1 (which affects the asymp-

totic bias) is an increasing function of the same constant. For some processes
and some levels x, appropriate choice of the smoothing sequences (and, con-
sequently, appropriate choice of �) can improve the limiting trade-off between
bias and variance delivering an asymptotic mean-squared error that is minimized
at values � that are strictly larger than 0 (as would be the case in the single-
smoothing case). Notice that if hn�T /�n�T → � = 0 and �5

n�T
�LX�T �x� = oa�s��1�

(which implies undersmoothing with respect to the optimal bandwidth, i.e.,
�5
n�T

�LX�T �x�=Oa�s��1�), then the asymptotic bias of our double-smoothed esti-
mator is zero, while the limiting variance is 1

2�
2�x�. These are the same limiting

bias and variance of the single-smoothed estimator originated using an indicator
kernel. If hn�T /�n�T → � > 0 and �5

n�T
�LX�T �x� = oa�s��1�, then the limiting bias

remains zero but the limiting variance becomes 1
2���

2�x� which is strictly smaller
than 1

2�
2�x�. In other words, for suboptimal bandwidth choices, which are usu-

ally implemented to eliminate the bias term and center the limiting distribution
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around zero, double-smoothing guarantees a smaller asymptotic mean-squared
error than single-smoothing for any processes and any level x.
The finite sample benefits of convoluted kernels for drift estimation are dis-

cussed in a recent simulation study by Bandi and Nguyen (2000).

5�3� Functional Estimation of the Diffusion

We now turn to the asymptotic theory for the diffusion estimator (4.4).

Theorem 4 (Almost Sure Convergence to the Diffusion Term): Given n →
�, T →�, �n�T → 0, and hn�T → 0 (as n�T →�) such that

�LX�T �x�

hn�T

��n�T log�1/�n�T ��
1/2 = oa�s��1��

and provided �nT → 0 (as n�T →�) such that

�LX�T �x�

�n�T

��n�T log�1/�n�T ��
1/2 = oa�s��1��

the estimator (4.4) converges to the true function with probability one.

Theorem 5 (The Limiting Distribution of the Diffusion Estimator): Assume
n→�, T →�, �n�T → 0, and hn�T → 0 (as n�T →�) such that

�LX�T �x�

hn�T

��n�T log�1/�n�T ��
1/2 = oa�s��1��

Also, assume �n�T → 0 (as n�T →�) such that

�LX�T �x�

�n�T

��n�T log�1/�n�T ��
1/2 = oa�s��1� and

�5
n�T

�LX�T �x�

�n�T

= oa�s��1��

Then, the asymptotic distribution of the diffusion function estimator is of the form√√√√�n�T
�̂LX�T �x�

�n�T

{
�̂2
�n�T ��x�−�2�x�

} ⇒N
(
0�4K ind

2 �4�x�
)
�(5.12)

where K ind
2 = 1

4

∫ �
−� 12��a�≤1	da = 1

2 if hn�T = o��n�T �. If hn�T = O��n�T � with
hn�T /�n�T → �> 0, then√√√√�n�T

�̂LX�T �x�

�n�T

{
�̂2
�n�T ��x�−�2�x�

} ⇒N�0�2���
4�x���(5.13)

where �� = 1
2

∫ �
−�

∫ �z+1�/�
�z−1�/�

∫ �z+1�/�
�z−1�/� K�a�K�e�dzdade.
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Under the same conditions, but provided

�5
n�T

�LX�T �x�

�n�T

=Oa�s��1��

the limiting distribution of the diffusion estimator displays an asymptotic bias term
whose form is

��2�x�= �2
n�TK

ind
1

[
��2�x��′

s′�x�
s�x�

+ 1
2
��2�x��′′

]
�(5.14)

with K ind
1 = 1

2

∫ �
−� a21��a�≤1	 da= 1

3 , if hn�T = o��n�T �, and

�
���

�2 �x�= �2
n�T

(
K1�

2+K ind
1

)[
��2�x��′

s′�x�
s�x�

+ 1
2
��2�x��′′

]
�(5.15)

with K1 =
∫ �
−� a2K�a�da, if hn�T =O��n�T � with hn�T /�n�T →�> 0. The function

s�x� in (5.14) and (5.15) is the speed function of the process Xt, namely s�x� =
2/S ′�x��2�x�.

Next, we consider the fixed T �=�T � case.

Theorem 6 (The Limiting Distribution of the Diffusion Estimator for a Fixed
Time Span): Given n→�, T = �T , and hn��T → 0 (as n→�) such that

1
hn��T

��n��T log�1/�n��T ��
1/2 = o�1��

and provided �n��T → 0 (as n→�) such that

1
�n��T

��n��T log�1/�n��T ��
1/2 = o�1��

the estimator (4.4) converges to the true function with probability one.
If hn��T = o��n��T � and n�4

n��T = o�1�, then the asymptotic distribution of the diffu-
sion function estimator is driven by a “martingale effect” and has the form

√
�n��T n

{
�̂2
�n��T �

�x�−�2�x�
}
⇒MN

(
0�

2�4�x�

�LX��T �x�/�T
)
�(5.16)

where MN indicates a mixed normal distribution.
If hn��T = o��n��T � and n�4

n��T →�, then the asymptotic distribution of the diffusion
function estimator is driven by a “bias effect” and has the form

1

�3/2
n��T

{
�̂2
�n��T �

�x�−�2�x�
} ⇒MN

(
0�16�ind �� ′�x��2

�LX��T �x�

)
�(5.17)

where �ind = 2
∫ �
0

∫ �
0 ab� 1

21��a�≤1	��
1
21��b�≤1	�min�a�b�dadb.
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If hn��T =O��n��T � with hn��T /�n��T →�> 0 and n�4
n��T = o�1�, then the asymptotic

distribution of the diffusion function estimator is driven by a “martingale effect” and
is of the form√

�n��T n
{
�̂2
�n��T �

�x�−�2�x�
} ⇒MN

(
0�

2���4�x�

�LX��T �x�/�T
)
�(5.18)

where �� = 1
2

∫ �
−�

∫ �z+1�/�
�z−1�/�

∫ �z+1�/�
�z−1�/� K�a�K�e�dzdade.

If hn��T =O��n��T � with hn��T /�n��T → � > 0 and n�4
n��T →�, then the asymptotic

distribution of the diffusion function estimator is driven by a “bias effect” and is of
the form

1

�3/2
n��T

{
�̂2
�n��T �

�x�−�2�x�
} ⇒MN

(
0�16��ind�K����

�� ′�x��2

�LX��T �x�

)
�(5.19)

where �ind�K��� is a positive function of � such that �ind�K���→ �ind as �→ 0.3

Remark 6: The statement of Theorem 6 uses the terms “bias effect” and
“martingale effect” to refer to the principal terms that govern the asymptotic
distribution. These effects are revealed in the proof of the theorem. The essen-
tial factor determining the magnitude of the two effects is the relation of the
observation rate of the process, �n��T that is, to the spatial bandwidth parameter,
namely �n��T . If �n��T is small relative to �n��T , so that n�4

n��T →�, then the bias
effect dominates the asymptotics. If the spatial bandwidth �n��T is small relative
to the observation interval and n�4

n��T = o�1�, then the bias effect is eliminated
asymptotically and the martingale effect governs the limit theory.

Remark 7: When T is fixed as in Theorem 6 above, the admissible band-
width conditions can be written as a function of the number of observations. The
variance term dominates if (approximately)

�n��T ∝ n−k1 with k1 ∈
(
1
4
�
1
2

)
(5.20)

and

hn��T ∝ n−k2 with k2 ∈
(
0�

1
2

)
�(5.21)

On the other hand, if (approximately)

�n��T ∝ n−k1 with k1 ∈
(
0�

1
4

)
(5.22)

and

hn��T ∝ n−k2 with k2 ∈
(
0�

1
2

)
�(5.23)

then the bias term drives the limiting distribution.
3 See the proof of Theorem 6.
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Remark 8 (The Rate of Convergence): The diffusion function estimator
converges at a faster rate than the drift estimator, namely√√√√�n�T

�̂LX�T �x�

�n�T

versus
√
�n�T

�̂LX�T �x��

when T →�. Using the results in Remark 4 above, in the Brownian motion and
stationary case the normalizations in (5.12) and (5.13) are√

�n�T T
1
2

�n�T

=
√
n�n�T

T 1/2
and

√
�n�T T

�n�T

= √
n�n�T �

respectively.

Remark 9 (Single Smoothing): Coherently with the drift case, we can con-
sider a simpler version of our infinitesimal volatility estimator based on single
smoothing. Define

�̄2
�n�T ��x�=

1
�n�T

∑n−1
i=1 K

(
Xi�n�T

−x

gn�T

)
�X�i+1��n�T

−Xi�n�T
�2

∑n
i=1K

(
Xi�n�T

−x

gn�T

) �(5.24)

Following our derivations in the convoluted case, we can prove that (5.24) is
consistent almost surely for the unknown function �2��� provided the window
width gn�T is such that

�LX�T �x�

gn�T
��n�T log�1/�n�T ��

1/2 = oa�s��1�

as n�T →� with
T

n
→ 0�

Furthermore, if

g5
n�T

�LX�T �x�

�n�T

= oa�s��1��

then √√√√gn�T �̂LX�T �x�

�n�T

{
�̄2
�n�T ��x�−�2�x�

} ⇒N�0�4K2�
4�x���(5.25)

where K2 =
∫ �
−�K2�s�ds. Additionally, if

g5
n�T

�LX�T �x�

�n�T

=Oa�s��1��
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then √√√√gn�T �̂LX�T �x�

�n�T

{
�̄2
�n�T ��x�−�2�x�−��2�x�

} ⇒N�0�4K2�
4�x���(5.26)

where

��2�x�= g2
n�TK1

[
��2�x��′

s′�x�
s�x�

+ 1
2
��2�x��′′

]
�(5.27)

s�x� is the speed function of the process at the generic level x, and K1 =∫ �
−� s2K�s�ds.
As in the case of drift estimation (see Remark 5 above), double-smoothing

can reduce the asymptotic mean-squared error of the diffusion estimator for
some processes and some levels x, thus offering increased flexibility over its
simple counterpart. Contrary to drift estimation, the finite sample performance
of alternative diffusion estimators based on simple and convoluted kernels is
quite similar (see Bandi and Nguyen (2000)).

5�4� Relation to Florens-Zmirou �1993�

There is an important similarity between (5.16) and the limiting distribution
obtained in Florens-Zmirou (1993). It is useful to recall her results before com-
menting further.

Theorem 7 (Florens-Zmirou (1993)): Assume we observe Xt at �t =
t1� t2� � � � � tn	 in the time interval 0��T �, where �T can be normalized to 1. Also, the
data is equispaced. Consequently, �Xt =X�n

�X2�n
�X3�n

� � � � �Xn�n
	 are n obser-

vations at points �t1 = �n� t2 = 2�n� � � � � tn = �n	, where �n = 1/n. The estimator

�̂2
�n�1��x�=

1
�n

∑n−1
i=1 1��Xi/n−x�≤hn	

X�i+1�/n−Xi/n�
2∑n

i=1 1��Xi/n−x�≤hn	

L2→ �2�x��(5.28)

provided the sequence hn is such that nhn →� and nh4
n → 0. Further, if nh3

n → 0,
then √

hnn
{
�̂2
�n�1��x�−�2�x�

} ⇒MN

(
0�

2�4�x�

�LX�1� x�

)
�(5.29)

It is not surprising that the limiting distribution in Florens-Zmirou (1993)
resembles the limiting distribution of the estimator proposed here for choices of
�n��T and hn��T that make the bias term negligible (and provided hn��T = o��n��T �).
Note, in fact, that in the fixed T case the estimator that we suggest here can be
interpreted as a convoluted version of the Florens-Zmirou’s estimator. In par-
ticular, it can be written as a weighted average of estimates obtained using the
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Florens-Zmirou’s method. In effect, �̃2
n��T �Xi�n��T � can be rearranged as follows

∀ i ≤ n:

�̃2
n��T �Xi�n��T �=

1
mn��T �i�n��T ��n��T

mn��T �i�n��T �−1∑
j=0

Xt�i�n��T �j+�n��T −Xt�i�n��T �j �
2(5.30)

= 1
�n��T

∑n−1
j=1 1��Xj�

n��T −Xi�
n��T �≤�n��T 	X�j+1��n��T −Xj�n��T �

2∑n
j=11��Xj�

n��T −Xi�
n��T �≤�n��T 	

�(5.31)

It is easy to prove that when nh4
n → � the Florens-Zmirou’s estimator is still

consistent but, in the same manner as our own limit theory, the bias term drives
the asymptotic distribution, namely

1

h3/2
n

{
�̂2
�n�1��x�−�2�x�

} ⇒MN

(
0�16�ind �� ′�x��2

��LX�1� x��

)
�(5.32)

where �ind = 2
∫ �
0

∫ �
0 ab� 1

21��a�≤1	��
1
21��b�≤1	�min�a�b�dadb.

Of course, the similarity between our approach to diffusion function estima-
tion and the approach in Florens-Zmirou is even more striking when considering
sample analogues to the unknown diffusion function based on single smooth-
ing, as in Remark 9 above, for a fixed time span �T . Nonetheless, our limit the-
ory presents important differences over the results in Florens-Zmirou. First, we
extend her analysis to general smooth kernels (as in (5.24)). Second, we provide
a proof of convergence with probability one and related conditions on the rele-
vant bandwidth(s). Third, based on different bandwidth choices, we describe the
potential limiting trade-off between bias (5.17) and variance (5.16) in the asymp-
totic distribution.

5�5� Remarks on the Stationary Case

When stationarity holds, our general theory reflects existing results in the esti-
mation of conditional first moments for discrete-time series (see, e.g., Härdle
(1990) and Pagan and Ullah (1999) for a more recent discussion).

Corollary 2 (c.f. Theorem 3): AssumeXt is stationary. Furthermore, assume
n → �, T → �, �n�T → 0, hn�T → 0 (as n�T → �) such that �T /hn�T �
��n�T log�1/�n�T ��

1/2 = o�1�, and �n�T → 0 (as n�T → �) such that
�T /�n�T ���n�T log�1/�n�T ��

1/2 = o�1� and �n�T T → �. Then, �̂�n�T ��x�
a�s�−→ ��x�.

Additionally, the asymptotic distribution of the drift function estimator is of the form√
�n�T T ��̂�n�T ��x�−��x�−���x�	⇒N

(
0�

1
2
�2�x�

f �x�

)
�(5.33)

if hn�T = o��n�T � and �n�T =O�T −1/5�, where

���x�= �2
n�T

1
3

[
�′�x�

f ′�x�
f �x�

+ 1
2
�′′�x�

]
�(5.34)

and f �x� is the stationary distribution function of the process at x.
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Equivalently, in the diffusion case we obtain the following result.

Corollary 3 (c.f. Theorem 5): AssumeXt is stationary. Furthermore, assume
n → ��T → ���n�T → 0�hn�T → 0 (as n�T → �) such that �T /hn�T �
��n�T log�1/�n�T ��

1/2 = o�1� and �n�T → 0 (as n�T → �) such that �T /�n�T �

��n�T log�1/�n�T ��
1/2 = o�1�. Then, �̂2

�n�T ��x�
a�s�−→ �2�x�. Additionally, the asymp-

totic distribution of the diffusion function estimator is of the form

√
�n�T n

{
�̂2
�n�T ��x�−�2�x�−��2�x�

} ⇒N

(
0�

2�4�x�

f �x�

)
�(5.35)

if hn�T = o��n�T � and �n�T =O�n−1/5�, where

��2�x�= �2
n�T

1
3

[
��2�x��′

f ′�x�
f �x�

+ 1
2
��2�x��′′

]
�(5.36)

and f �x� is the stationary distribution function of the process at x.

Interestingly, Corollaries 2 and 3 apply to the strictly stationary case as well as
to the case where the process is not initialized at the stationary distribution, while
being endowed with a time-invariant stationary distribution (to which the process
converges, eventually). The latter situation is known as positive-recurrence and
is such that the speed measure of the process (as defined in Lemma 6) is finite,
i.e., s��� < �. In this case the normalized speed measure coincides with the
stationary distribution of Xt (see Pollack and Siegmund (1985), for instance).
Specifically,

lim
t→�Px�Xt < z�= s��l� z��

s���
∀x�z ∈��(5.37)

5�6� Some Observations on the Implementation

The estimators presented and discussed in this paper are sample analogues to
the true theoretical functions. They are written as weighted averages based on
convoluted smoothing functions. As shown in Remark 5 and 9 above, our asymp-
totic results readily apply to weighted averages based on simple kernels. In this
case, by virtue of the generality of our set-up, only straightforward modifications
to the theory outlined in the convoluted case are needed.
In both the simple and the convoluted case, practical implementation of our

methodology requires the choice of the kernel and relevant bandwidth(s) along
with an appropriate specification for the local time factor estimator ��̂LX�T �x�,
that is) that drives the rates of convergence of the functional estimates.
We start with local time. Theorem 1 provides us with an easy way to estimate

it consistently for every sample path using kernels. Note that in applications
it is often conventional to normalize T to 1. This implies that the admissible
bandwidth hn��T is (approximately) proportional to n−k with k ∈ �0� 1

2 �. Since the
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rate of convergence of the estimated local time to the true process is 1/
√
hn��T

(see Bandi (2002)), it is sometimes convenient to set hltime
n��T equal to cltimen

− 1
2 ,

where cltime is a constant of proportionality that might be chosen using automated
methods for bandwidth selection in density estimation (see Härdle (1990) and
Pagan and Ullah (1999), among others). From a practical standpoint, functional
estimation of the local time factor is analogous to functional estimation of a
marginal density function. What changes with respect to the standard case that
assumes stationarity is the broader interpretation of the proposed estimator (see
Bandi (2002) for additional discussions in the diffusion case). We now turn to
the functions of interest.
In the convoluted case two window widths (i.e., hn�T and �n�T ) need to be cho-

sen. In light of the asymptotic role played by the local time factor in the additional
smoothing (see the proof of Theorem 3, for example), it is natural to choose
hn�T equal to hltime

n��T both in the drift and in the diffusion case. The choice of the
leading (provided hn�T = o��n�T �) bandwidth �n�T is more unusual. Consider the
diffusion case and normalize T to 1. Remark 6 above illustrates the relationship
between the rate of convergence of the leading bandwidth �n��T and the limiting
trade-off between bias and variance effects for a fixed time span T . Based on the
limit theory and Remark 7 it is convenient to set �diff

n��T equal to cdiff �1/ log�n��n− 1
4 .

We undersmooth slightly with respect to the optimal rate to eliminate the influ-
ence of the bias term from the asymptotic distribution. The constant cdiff can
be found using standard automated criteria (such as cross-validation) under the
constraint that hn�T ≤ �

diff

n��T . Given that the drift cannot be identified consistently
over a fixed span of data, the admissible condition that the leading drift band-
width ought to satisfy cannot be expressed in closed-form as a function of the
number of observations. Nonetheless, since the feasible drift bandwidth generally
vanishes at a slower pace than the feasible diffusion bandwidth, a simple rule-of-
thumb can be applied: we can set �drift

n��T = cdrift�1/ log�n��n− 1
4 and choose cdrift using

automated methods under the constraint that �drift
n��T > �

diff
n��T . More rigorously, one

could recognize the role played by local time in the functional estimation of the
drift (Theorem 3) and set �drift

n�T �x�= cdrift�1/ log�n���̂LX�T �x�−
1
5 . Again, we under-

smooth slightly with respect to the optimal case ��
drift
n�T �x�∝ �̂Lx�T �x�−

1
5 � in order

to achieve a close-to-optimal rate, eliminate the influence of the bias term from
the limiting distribution, and center it around zero. This choice is level-specific
and implies less smoothing in areas that are often visited. In other words, in our
set-up there is explicit scope for local adaptation of the leading drift bandwidth
to the number of visits to the point at which estimation is performed. Since
the diffusion function is estimable over a fixed span of time, the need for level-
dependent bandwidth choices appears to be less compelling than in the drift case.
Nonetheless, standard arguments in favor of level-specific choices leading to bias
reduction (see Pagan and Ullah (1999), among others) can still be made in our
framework, even in the diffusion case.
In light of the limiting results in Remarks 5 and 9 above, it is noted that band-

width choice in the simple case entails the same procedures as in the convoluted





scalar diffusion models 263

that might not possess a time-invariant density. Such development is to be con-
sidered of primary importance mainly in light of the relevance of multifactor
continuous-time models of the diffusion type in the pricing and hedging of deriva-
tive securities.
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APPENDIX: Proofs

Proof of Lemma 1: See Revuz and Yor (1998, Theorem 1.2, Chapter 6, p. 213).

Proof of Lemma 2: See Revuz and Yor (1998, Theorem 1.7, Chapter 6, p. 215).

Proof of Lemma 3: See Revuz and Yor (1998, Exercise 1.15, Chapter 6, p. 222) and Revuz
and Yor (1998, Corollary 1.6, Chapter 6, p. 215).

Proof of Lemma 4: See Revuz and Yor (1998, Corollary 1.9, Chapter 6, p. 218).

Proof of Lemma 5: The first part of the result is stated in Yor (1978). We prove the result
in the second case (a < 0, that is). Start by considering a simple application of the Tanaka formula
(Lemma 1), namely

X+
t =X+

0 +
∫ t

0
1�Xs>0� dXs +

1
2
LX�t�0��

�Xt −a�+ = �X0−a�+ +
∫ t

0
1�Xs>a� dXs +

1
2
LX�t�a��

Subtract the second expression from the first expression, giving

X+
t − �Xt −a�+ =X+

0 − �X0−a�+ −
∫ t

0
1�a<Xs≤0� dXs +

1
2
�LX�t�0�−LX�t�a���

Equivalently, we can write

X+
t − �Xt −a/��+ =X+

0 − �X0−a/��+ −
∫ t

0
1�a/�<Xs≤0� dXs +

1
2
�LX�t�0�−LX�t�a/����

where � is a positive number. Now, multiply through by
√
�. This gives

√
��X+

t − �Xt −a/��+�

=√
��X+

0 − �X0−a/��+�−√
�

∫ t

0
1�a/�<Xs≤0� dXs +

1
2

√
��LX�t�0�−LX�t�a/����

Apparently,

√
��X+

t − �Xt −a/��+�+√
��X+

0 − �X0−a/��+� ≤ 2
�a�√
�
�
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Hence, the asymptotic distribution of 1
2

√
��LX�t�0�−LX�t�a/��� is driven by the term

√
�

∫ t

0
1�a/�<Xs≤0� dXs�

as �→�. Further,

√
�

∫ t

0
1�a/�<Xs≤0� dXs =

√
�

∫ t

0
1�a/�<Xs≤0���Xs�ds+

√
�

∫ t

0
1�a/�<Xs≤0���Xs�dBs�(7.1)

Now, notice that
√
�

∫ t

0 1�a/�<Xs≤0���Xs�ds
a�s�−→ 0 as �→�. In fact, by the occupation time formula

(Lemma 3), we can write

√
�

∫ t

0
1�a/�<Xs≤0���Xs�ds =

√
�

∫ �

−�
1�a/�<b≤0�

��b�

� 2�b�
LX�t� b�db�

and, setting �b = c, this becomes

1√
�

∫ �

−�
1�a<c≤0�

��c/��

� 2�c/��
LX�t� c/��dc�

Next, note that the map �t� a� → LX�t�a� is continuous in t and càdlàg in a with probability one
(from Lemma 2) since the solution to (2.1) is a continuous SMG. In addition,

La
t −La−

t = 2
∫ t

0
1�Xs=a� dVs = 0�

where Vt is the finite variation component of Xt . Hence, there exists a bicontinuous modification of
the family of local times and the map �t� a�→ LX�t�a� can be taken to be continuous in both time
and space. Thus, using continuity and dominated convergence, we obtain∫ �

−�
1�a<c≤0�

��c/��

� 2�c/��
LX�t� c/��dc

a�s�−→−a
��0�
� 2�0�

LX�t�0��

as �→�. In consequence,

√
�

∫ t

0
1�a/�<Xs≤0���Xs�ds

a�s�−−→
�→�

0�

as stated earlier. This, in turn, implies that the asymptotic behavior of (7.1) is determined by

√
�

∫ t

0
1�a/�<Xs≤0���Xs�dBs�

Now define

M�
t �=√

�
∫ t

0
1�a/�<Xs≤0���Xs�dBs�

The random object M�
t is a continuous martingale with quadratic variation process �M��t � t ≥ 0	

given by

�
∫ t

0
1�a/�<Xs≤0��

2�Xs�ds�

Again, by the occupation time formula, the continuity properties of local time and dominated con-
vergence, we obtain

M��t
a�s�−→−aLX�t�0��
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Setting

T �
t = inf�s � M��s > t	�

B̃t =M�

T�t
is a Brownian motion and M�

t = B̃M��t
. In fact, B̃t is the so-called Dambis, Dubins-Schwarz

Brownian motion of M�
t (see, e.g., Revuz and Yor (1998, Theorem 1.6, Chapter 5, p. 173, and, for

an asymptotic version, Theorem 2.3, Chapter 13, p. 496)). It follows that

M�
t �= √

�
∫ t

0
1�a<�Xs≤0���Xs�dBs

d−−−→
�→�

B̃−aLX�t�0�

d= √−aB̃LX�t�0�

d= ��LX�t�0��−a��

where LX�t�0�= lim�→0�1/��
∫ t

0 10� ��
2�Xs�ds a.s. and ��·� ·� is a standard Brownian sheet. So far,

we have proved convergence of the marginals of a generic family �� of probability measures to
corresponding marginal limit distributions. It is easy to verify the compactness of ��. The proof
follows standard arguments and is omitted here for brevity (see Billingsley (1968)). Weak convergence
then follows. In particular, as �→�, the process (indexed by �t� a� ∈�+ ×�−)(

Xt� LX�t� a��

√
�

2

{
LX

(
t�

a

�

)
−LX�t�0�

})
converges weakly to

�Xt� LX�t� a�� ��LX�t�0��−a���

where ���s� c�� �s� c� ∈�2
+� is a standard Brownian sheet independent of Xt . (For the independence

property, see Revuz and Yor (1998, Exercises 2.11 and 2.12, Chapter 13, p. 501).) Then, a simple
generalization of the previous finding to the spatial location x �= 0 gives

1
2

√
�

{
LX

(
t� x+ a

�

)
−LX�t�x�

}
d−→��LX�t� x��−a��

as �→�. Q.E.D.

Proof of Lemma 6: Immediate given the Ratio-limit Theorem (see Azema, Kaplan-Duflo, and
Revuz (1967) for the original treatment and Revuz and Yor (1998, Theorem 3.12, Chapter 10, p. 408)
for additional comments) and the observation that the unique (up to multiplication by a constant)
invariant measure of a recurrent diffusion is equal to the speed measure (Karatzas and Shreve (1991,
Exercise 5.40, Chapter 5, p. 352, and Remark 6.19, Chapter 5, p. 362), for instance). Q.E.D.

Proof of Theorem 1: See Florens-Zmirou (1993) for the case involving a discontinuous kernel
function. The derivation in the case of a continuous kernel (as implied by Assumption 2), follows the
line of the proof of Theorem 2 below and is omitted here for brevity. Q.E.D.

Proof of Corollary 1: If n�T →� and T /n= �n�T → 0, then

�n�T

hn�T

n∑
i=1

K

(
Xi�n�T

−x

hn�T

)
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converges to �LX��� x� provided hn�T → 0 (as n�T →�) in such a way that

�LX�T �x�

hn�T

��n�T log�1/�n�T ��
1/2 = oa�s��1��

But �LX��� x� = �LX�sup�t � Xt = x	�x� a.s. (Revuz and Yor (1998, Proposition 1.3, Remark 2,
Chapter 6, p. 214)). If the process is recurrent, then �LX�sup�t � Xt = x	�x� = � with probability
one. Q.E.D.

Proof of Theorem 2: We start by considering the expression

�n�T
hn�T

∑n
i=1K

(Xi�n�T
−x

hn�T

)(
�̃n�T

(
Xi�n�T

)−�
(
Xi�n�T

))
�n�T
hn�T

∑n
i=1K

(Xi�n�T
−x

hn�T

)(7.2)

+
�n�T
hn�T

∑n
i=1K

(Xi�n�T
−x

hn�T

)
�

(
Xi�n�T

)
�n�T
hn�T

∑n
i=1K

(Xi�n�T
−x

hn�T

) �(7.3)

First, we examine (7.3). We want to prove that

�n�T
hn�T

∑n
i=1K

(Xi�n�T
−x

hn�T

)
�

(
Xi�n�T

)
�n�T
hn�T

∑n
i=1K

(Xi�n�T
−x

hn�T

)

=
∫ T

0
1

hn�T
K

(
Xs−x

hn�T

)
��Xs�ds+Oa�s�

( �LX�T �x�

hn�T
��n�T log�1/�n�T ��

1/2
)

∫ T

0
1

hn�T
K

(
Xs−x

hn�T

)
ds+Oa�s�

( �LX�T �x�

hn�T
��n�T log�1/�n�T ��

1/2
) �

We begin with the numerator and look at the quantity

�n�T

hn�T

n∑
i=1

K

(
Xi�n�T

−x

hn�T

)
�

(
Xi�n�T

)− ∫ T

0

1
hn�T

K

(
Xs −x

hn�T

)
��Xs�ds�(7.4)

Given the properties of K��� (from Assumption 2) and the properties of ���� (from Assumption 1),
(7.4) is seen to be bounded as follows:

1
hn�T

∣∣∣∣∣n−1∑
i=0

∫ �i+1�T /n

iT /n

[
K

(
Xi�n�T

−x

hn�T

)
�

(
Xi�n�T

)−K

(
Xs −x

hn�T

)
��Xs�

]
ds

∣∣∣∣∣
+

∣∣∣∣∣�n�T

hn�T

K

(
X0−x

hn�T

)
��X0�

∣∣∣∣∣+
∣∣∣∣∣�n�T

hn�T

K

(
Xn�n�T

−x

hn�T

)
��Xn�n�T

�

∣∣∣∣∣
≤ 1

hn�T

∣∣∣∣∣n−1∑
i=0

∫ �i+1��n�T

i�n�T

[
K

(
Xs −x

hn�T

)
�

(
Xi�n�T

)−K

(
Xi�n�T

−x

hn�T

)
�

(
Xi�n�T

)]
ds

∣∣∣∣∣
+ 1

hn�T

∣∣∣∣∣n−1∑
i=0

∫ �i+1��n�T

i�n�T

[
K

(
Xs −x

hn�T

)
��Xs�−K

(
Xs −x

hn�T

)
�

(
Xi�n�T

)]
ds

∣∣∣∣∣
+C3Oa�s�

(
�n�T

hn�T

)

≤ 1
hn�T

n−1∑
i=0

∫ �i+1��n�T

i�n�T

∣∣∣∣∣K ′
(
X̃is −x

hn�T

)∣∣∣∣∣
∣∣∣∣∣
(
Xs −Xi�n�T

hn�T

)∣∣∣∣∣��(
Xi�n�T

)�ds(7.5)
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+ 1
hn�T

∣∣∣∣n−1∑
i=0

∫ �i+1��n�T

i�n�T

K

(
Xs −x

hn�T

)
���Xs�−�

(
Xi�n�T

)
�ds

∣∣∣∣(7.6)

+C3Oa�s�

(
�n�T

hn�T

)
�

where C3 is a suitable constant (from Assumption 2) and X̃is in (7.5) is a value on the line segment
connecting Xs to Xi�n�T

. Now define

�n�T =max
i≤n

sup
i�n�T ≤s≤�i+1��n�T

∣∣XS −Xi�n�T

∣∣�(7.7)

By the Levy’s modulus of continuity of diffusions (see, e.g., Karatzas and Shreve (1991, Theorem 9.25,
Chapter 2, p. 114)),

P

([
lim sup

�n�T →0

�n�T

��n�T log�1/�n�T ��
1/2

= C4

])
= 1�(7.8)

where C4 is a suitable constant. In turn, (7.8) implies that

�n�T =Oa�s�

(
��n�T log�1/�n�T ��

1/2
)
�

Hence, if hn�T is such that 1
hn�T

��n�T log�1/�n�T ��
1/2 = o�1�, then

�n�T

hn�T

= oa�s��1�(7.9)

as n�T →�. In view of (7.9) we have

K ′
(
X̃is −x

hn�T

)
=K ′

(
Xs −x

hn�T

+oa�s��1�
)
�(7.10)

uniformly over i = 1� � � � � n. It follows from (7.7) and (7.10) that (7.5) is bounded by(
�n�T

hn�T

)
1

hn�T

∫ T

0

∣∣∣∣K ′
(
Xs −x

hn�T

+oa�s��1�
)∣∣∣∣���Xs +oa�s��1���ds

=
(
�n�T

hn�T

)
1

hn�T

∫ �

−�

∣∣∣∣K ′
(
p−x

hn�T

+oa�s��1�
)∣∣∣∣���p���LX�T �p�dp

=
(
�n�T

hn�T

)∫ �

−�
�K ′�q+oa�s��1������qhn�T +x���LX�T �qhn�T +x�dq

≤ C5

(
�n�T

hn�T

)
Oa�s���LX�T �x���

for some suitable constant C5, by virtue of the absolute integrability of K ′, the continuity of �LX�t� ·�
(see the proof of Lemma 5) and ��·� (from Assumption 1), and the occupation time formula. Employ-
ing similar methods we can prove that (7.6) is bounded by

C6��n�T �Oa�s���LX�T �x���

In consequence, the formula for the numerator of (7.3) holds. As for the denominator of (7.3), we
can show the stated result using the same steps as for (7.5) above. Next, it is easy to prove that∫ T

0
1

hn�T
K

(
Xs−x

hn�T

)
��Xs�ds+Oa�s�

( �LX�T �x�

hn�T
��n�T log�1/�n�T ��

1/2
)

∫ T

0
1

hn�T
K

(
Xs−x

hn�T

)
ds+Oa�s�

( �LX�T �x�

hn�T
��n�T log�1/�n�T ��

1/2
)

= ��x�s�x�+oa�s��1�
s�x�+oa�s��1�

+oa�s��1�
a�s�−→ ��x��
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where s�·� is the speed function of the process, by virtue of Lemma 6, the continuity of so���� and
dominated convergence as hn�T → 0, with n�T →�, so that

�LX�T �x�

hn�T

��n�T log�1/�n�T ��
1/2 = oa�s��1��

We now turn to the analysis of (7.2). It is sufficient to show that

�̃n�T

(
Xi�n�T

) = �
(
Xi�n�T

)+oa�s��1�(7.11)

for a fixed Xi�n�T
, in order to verify the stated result. To do so, using the Lipschitz property of ����

from Assumption 1, we bound

1
mn�T �i�n�T �

mn�T �i�n�T �−1∑
j=0

[
Xt�i�n�T �j+�n�T

−Xt�i�n�T �j

]
�n�T

−�
(
Xi�n�T

)
as follows:

1
mn�T �i�n�T �

mn�T �i�n�T �−1∑
j=0

[
Xt�i�n�T �j+�n�T

−Xt�i�n�T �j

]
�n�T

−�
(
Xi�n�T

)

= 1
mn�T �i�n�T ��n�T

mn�T �i�n�T �−1∑
j=0

∫ t�i�n�T �j+�n�T

t�i�n�T �j

(
��Xs�−�

(
Xi�n�T

))
ds

+ 1
mn�T �i�n�T ��n�T

mn�T �i�n�T �−1∑
j=0

∫ t�i�n�T �j+�n�T

t�i�n�T �j

��Xs�dBs

= C7Oa�s���n�T �+
1

mn�T �i�n�T ��n�T

mn�T �i�n�T �−1∑
j=0

∫ t�i�n�T �j+�n�T

t�i�n�T �j

��Xs�dBs�(7.12)

where �n�T has its usual meaning. Now, define the stochastic integral yt�i�n�T �j+�n�T
=∫ t�i�n�T �j+�n�T

t�i�n�T �j
��Xs�dBs , which is measurable with respect to �̃X

t�i�n�T �j+�n�T
. Further, notice that

E
(
yt�i�n�T �j+�n�T

) = 0�

and, by the Ito isometry (see, e.g., Øksendal (1995)),

�t�i�n�T �j+�n�T
= var

(
yt�i�n�T �j

+�n�T

) = E
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t�i�n�T �j

� 2�Xs�ds

)
<��

for all j ≤mn�T . Hence, �yt�i�n�T �j+�n�T
� �̃X

t�i�n�T �j+�n�T
� is a martingale difference array with zero mean

and finite variance �t�i�n�T �j+�n�T
. Invoking a strong law of large numbers for martingale differences

(see Hall and Heyde (1980, Theorem 2.19, p. 36), for instance), we have

1
mn�T �i�n�T �

mn�T �i�n�T �−1∑
j=0

yt�i�n�T �j+�n�T

a�s�−→ 0 with n�T →��
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as mn�T

a�s�−→�, by recurrence (as implied by Assumption 1, Condition (iii)). We now explore the rate
of convergence. Write

1
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=
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�

First, analyze the numerator of this expression. Consider

U
Xi�n�T
n�T �r�= √

�n�T

(
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For any fixed Xi�n�T
, U

Xi�n�T
n�T �r� can be embedded in a continuous martingale whose quadratic

variation process U
Xi�n�T
n�T �r is[

U
Xi�n�T
n�T

]
r
= 1

4�n�T

nr�−1∑
j=1

1��Xj�n�T
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� 2�Xs�ds

= 1
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∫ rT

0
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= 1
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= 1
2
� 2

(
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)�LX

(
rT �Xi�n�T
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using standard methods (see the proof of Lemma 5), by virtue of (3.11). Now, as in Theorem 3.4 in
Phillips and Ploberger (1996), expanding the probability space as needed, we have(

U
Xi�n�T
n�T �1�

)2/[
U

Xi�n�T
n�T

]
1
=Oa�s��1��

and then it follows that

√�LX�T �Xi�n�T
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( 1
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This result implies that the bound (7.12) becomes

C7Oa�s���n�T �+Oa�s�

(√
1

�LX�T �Xi�n�T
��n�T

)
a�s�−→ 0�

In fact, �n�T
�LX�T �Xi�n�T

�
a�s�−→� as n�T →� since, by assumption, we control the spatial bandwidth

�n�T to ensure that this property holds. Q.E.D.
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Proof of Theorem 3: Write the estimation error in two components as follows:
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−x
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)
︸ ︷︷ ︸

term B

= term V + term B�

Roughly speaking, this is a decomposition into a bias term, B, and a second effect, V . We start with
the bias term B. Combining the two fractions constituting B, we obtain
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As in the proof of Theorem 2, using Lemma 6, we find that
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for a fixed hn�T . Neglecting the smaller order terms, we can write

1
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∫ �
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(
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1
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∫ �
−�K�u����x+uhn�T �−��x��s�x+uhn�T �du∫ �
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1
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s′�x�
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]
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(
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)
�

where K1 =
∫
u2K�u�du<�, by the second order properties of the kernel K��� (from Assumption 2)

and the differentiability properties of ���� and ���� (from Assumption 1). Now consider the term V ,
viz.,
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The numerator can be written as
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hn�T
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(
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Using the occupation time formula, it is immediate to prove that V num
2 = Oa�s���n�T /�n�T �. As for

V num
1 , write
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These two elements comprise an additional bias effect, An�T , and a variance effect, Bn�T �1�. First,
examine √

�n�T Bn�T �r�, viz.,
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The term Bn�T �r� can be embedded in a time changed Brownian motion with increasing process that
is given by the limit of the discretized quadratic variation process Bn�T �r defined as
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(See, Knight (1971), for instance.) Now, notice that

Bn�T �r =
(

1
hn�T

)2 ∫ Tr�

0
ds

∫ Tr�

0
duK

(
Xs −x

hn�T

)
K

(
Xu−x

hn�T

)

×
1

4�n�T

∫ T

0 db1��Xb−Xs �≤�n�T 	1��Xb−Xu �≤�n�T 	�
2�Xb +oa�s��1��(

1
2�n�T

∫ T

0 1��b−s�≤�n�T 	 db
)(

1
2�n�T

∫ T

0 1��b−u�≤�n�T 	 db
) +oa�s��1�

=
(

1
hn�T

)2 ∫ �

−�
ds

∫ �

−�
duK

(
s−x

hn�T

)
K

(
u−x

hn�T

)

×
1

4�n�T

∫ �
−� db1��b−s�≤�n�T 	1��b−u�≤�n�T 	�

2�b��LX�T �b��LX�rT � s��LX�rT �u�(
1

2�n�T

∫ �
−� 1��b−s�≤�n�T 	

�L�T �b�db
)(

1
2�n�T

∫ �
−� 1��b−u�≤�n�T 	

�L�T �b�db
)
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Now, if hn�T = o��n�T �, then
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By earlier arguments (see, e.g., the proof of Lemma 5), the above results imply that
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provided hn�T = o��n�T �. If hn�T =O��n�T � and hn�T /�n�T → �> 0, then
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Next, examine the additional bias term, An�T that is. We have
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for a fixed hn�T . Neglecting the order term and letting �a−x�/hn�T = c we can write
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Hence, if hn�T = o��n�T �, then
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2 s′′�x���n�T a�2+o

)
da∫�−� 1��a�≤1	s�x+�n�T a�da
s�x+hn�T c�dc∫ �

−�K�c�s�x+hn�T c�dc

−
∫ �
−�K�c�

∫�−� 1��a�≤1	
(
�′�x�hn�T c+ 1

2 �′′�x��hn�T c�2+o
)
s�x+�n�T a�da∫�−� 1��a�≤1	s�x+�n�T a�da

s�x+hn�T c�dc∫ �
−�K�c�s�x+hn�T c�dc

= �2n�T K
ind
1

[
1
2
�′′�x�+�′�x�

s′�x�
s�x�

]
+o

(
�2n�T

)
�
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1 = 1
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We can use the transformation g = a−�c and write (7.15) as
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(7.17)
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Now, notice that (7.17) can be represented as
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Next, write (7.16) as
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To conclude, when hn�T =O��n�T � with �hn�T /�n�T �→ �≥ 0, then
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�(7.18)

In consequence, defining the estimation error decomposition E as
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from (7.13), if hn�T = o��n�T �, �5
n�T

�LX�T �x� = oa�s��1�, and �n�T
�LX�T �x�

a�s�−→ �. If hn�T = o��n�T �,
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with K ind
1 = 1

2

∫ �
−� a21��a�≤1	 da= 1

3 . If hn�T =O��n�T � with hn�T /�n�T → �> 0, �5
n�T

�LX�T �x�= oa�s��1�,
and �n�T
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from (7.14), where �� = 1
2

∫ �
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∫ �z+1�/�
�z−1�/�
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� Q�E�D�

Proof of Theorem 4: The proof follows that of Theorem 2 and is omitted here for
brevity. Q.E.D.

Proof of Theorem 5: See the proof of Theorem 3. Q.E.D.
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Proof of Theorem 6: Fix T = �T . We write the estimation error as follows:
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∑n
i=1K

(Xi�
n��T −x

h
n��T

)
� 2

(
Xi�

n��T
)

�
n��T

h
n��T

∑n
i=1K

(Xi�
n��T −x

h
n��T

)
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= term V + term B�

As earlier in the drift case (see the proof of Theorem 3), we have a bias term, B, and a second effect,
V . We start with the bias term B. Using Lemma 3 and the symmetry of K�·� from Assumption 2,
the numerator of B�Bnum say, is seen to be distributed as

∫ �
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�

By Lemma 5 the first term has the following limiting form as a functional of a Brownian sheet ��·� ·�:
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where �⊕ and �⊗ are independent Brownian sheets (see Revuz and Yor (1998, Theorem 2.3,
Chapter 13, p. 496), for instance). It follows that,∫ �

0
cK�c��⊕�1� c�dc

d=
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In consequence,
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Next, consider the numerator of the term V which, by an application of Itô’s Lemma, can be
expressed as

V = V num
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2 �

where V num
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1(7.20)

= �n��T
hn��T

n∑
i=1

K

(
Xi�

n��T −x

hn��T

) ∑n−1
j=1 1��Xj�

n��T −Xi�
n��T �≤�

n��T 	
n
�T

[∫ �j+1��
n��T

j�
n��T

��2�Xs�−�2
(
Xi�

n��T
)
�ds

]
∑n

j=11��Xj�
n��T −Xi�

n��T �≤�
n��T 	︸ ︷︷ ︸

�A
n��T �

+ �n��T
hn��T

n∑
i=1

K

(
Xi�

n��T −x

hn��T

) ∑n−1
j=1 1��Xj�

n��T −Xi�
n��T �≤�

n��T 	
n
�T

[∫ �j+1��
n��T

j�
n��T

2�Xs−Xj�
n��T ���Xs�dBs

]
∑n

j=11��Xj�
n��T −Xi�

n��T �≤�
n��T 	︸ ︷︷ ︸

�B
n��T �1��

+ �n��T
hn��T

n∑
i=1

K

(
Xi�

n��T −x

hn��T

) ∑n−1
j=1 1��Xj�

n��T −Xi�
n��T �≤�

n��T 	
n
�T

[∫ �j+1��
n��T

j�
n��T

2�Xs−Xj�
n��T ���Xs�ds

]
∑n

j=11��Xj�
n��T −Xi�

n��T �≤�
n��T 	︸ ︷︷ ︸

�C
n��T �

=An��T +Bn��T �1�+Cn��T �

These three terms comprise an additional bias effect, An��T , a martingale effect, Bn��T �1�, and a resid-
ual effect, Cn��T . As we shall see, depending on the bandwidth choices, either An��T (eventually in
conjunction with B) or Bn��T �1� may dominate the asymptotic distribution. Using embedding argu-
ments as in the proof of Theorem 3, we can show that
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if hn��T = o��n��T �, and
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if hn��T =O��n��T � and hn��T /�n��T → �> 0. Next, examine An��T . If hn��T = o��n��T �, then
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By virtue of Lemma 5, and proceeding as earlier, we find that
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with �ind = 2
∫ �
0

∫ �
0 dadb� 1
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1
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Only the first and the third term can affect the asymptotic distribution of An��T . Write the first term
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As for the third term, write∫ �
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Then,
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Then, defining the overall estimation error E as
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from (7.23), where �ind = 2
∫ �
0

∫ �
0 � 1

2 1��a�≤1	a��
1
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but when hn��T =O��n��T � with hn��T /�n��T → �> 0, we have
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Q.E.D.

Proof of Corollary 2: Immediate after noticing that under strict stationarity (or positive
recurrence)

�̂LX�T �x�

T

a�s�−→ f �x��

�LX�T �x�=Oa�s��T ��

and
s′�x�
s�x�

= s′�x�/s���

s�x�/s���
= f ′�x�

f �x�
�

where f �x� is the time invariant distribution function of the process at x. Q.E.D.

Proof of Corollary 3: See the proof of Corollary 2. Q.E.D.

REFERENCES

Aït-Sahalia, Y. (1996a): “Nonparametric Pricing of Interest Rate Derivative Securities,” Econo-
metrica, 64, 527–560.

(1996b): “Testing Continuous-Time Models of the Spot Interest Rate,” Review of Financial
Studies, 2, 385–426.

Azema, J., M. Kaplan-Duflo, and D. Revuz (1967): “Mesure Invariante sur les Classes Récur-
rentes des Processus de Markov,” Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete,
8, 157–181.

Bandi, F. M. (2002): “Short-Term Interest Rate Dynamics: A Spatial Approach,” Journal of Financial
Economics, 65, 73–110.

Bandi, F. M., and T. Nguyen (2000): “Fully Nonparametric Estimators for Diffusions: a Small
Sample Analysis,” Unpublished Manuscript, University of Chicago.



scalar diffusion models 283

Baxter, M., and A. Rennie (1996): Financial Calculus. An Introduction to Derivative Pricing.
Cambridge, U.K.: Cambridge University Press.

Bergstrom, A. R. (1988): “A History of Continuous Time Econometric Models,” Econometric
Theory, 4, 365–383.

Billingsley, P. (1968): Convergence of Probability Measures. New York: Wiley.
Bosq, D. (1998): Nonparametric Statistics for Stochastic Processes. New York: Springer-Verlag.
Brugière, P. (1993): “Théorèm de Limite Centrale pour un Estimateur Non Paramétrique de la

Variance d’un Processus de Diffusion Multidimensionnelle,” Annales de l’Institute Henri Poincaré,
29, 357–389.

Florens-Zmirou, D. (1993): “On Estimating the Diffusion Coefficient from Discrete Observa-
tions,” Journal of Applied Probability, 30, 790–804.

Geman, S. A. (1979): “On a Common Sense Estimator for the Drift of a Diffusion,” Unpublished
Manuscript, Brown University.

Hall, P., and C. C. Heyde (1980): Martingale Limit Theory and its Application. New York: Aca-
demic Press.

Hansen, L. P., and T. J. Sargent (1983): “The Dimensionality of the Aliasing Problem in Models
with Rational Spectral Densities,” Econometrica, 50, 377–387.

Härdle, W. (1990): Applied Nonparametric Regression. Cambridge: Cambridge University Press.
Jacod, J. (1997): “Nonparametric Kernel Estimation of the Diffusion Coefficient of a Diffusion,”

Prépublication N. 405 du Laboratoire de Probabilités de l’Université Paris VI.
Jiang, G. J., and J. Knight (1997): “A Nonparametric Approach to the Estimation of Diffusion

Processes, with an Application to a Short-Term Interest Rate Model,” Econometric Theory, 13,
615–645.

Karatzas, I., and S. E. Shreve (1991): Brownian Motion and Stochastic Calculus. New York:
Springer-Verlag.

Karlin, S., and H. M. Taylor (1981): A Second Course in Stochastic Processes. New York: Aca-
demic Press.

Knight, F. B. (1971): A Reduction of Continuous Square Integrable Martingales to Brownian Motion.
Berlin: Springer-Verlag.

Merton, R. C. (1980): “On Estimating the Expected Return on the Market: An Exploratory Inves-
tigation,” Journal of Financial Economics, 8, 323–361.

Øksendal, B. (1995): Stochastic Differential Equations. Berlin: Springer-Verlag.
Pagan, A., and A. Ullah (1999): Nonparametric Statistics. Cambridge, U.K.: Cambridge University

Press.
Phillips, P. C. B. (1973): “The Problem of Identification in Finite Parameter Continuous-Time

Models,” Journal of Econometrics, 4, 351–362.
Phillips, P. C. B., and J. Park (1998): Nonstationary Density Estimation and Kernel Autoregres-

sion,” Cowles Foundation Discussion Paper, No. 1181, Yale University.
Phillips, P. C. B., and W. Ploberger (1996): “An Asymptotic Theory of Bayesian Inference for

Time Series,” Econometrica, 64, 381–413.
Pollack, M., and D. Siegmund (1985): “A Diffusion Process and its Applications to Detecting a

Change in the Drift of Brownian Motion,” Biometrika, 72, 267–280.
Revuz, D., and M. Yor (1998): Continuous Martingales and Brownian Motion. New York: Springer-
Verlag.

Yor, M. (1978): “Temps Locaux,” Astérisque, 52–53, 17–35.


