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We propose a new multistage procedure for a real-time brain-machine/computer interface (BCI). The developed system allows a
BCI user to navigate a small car (or any other object) on the computer screen in real time, in any of the four directions, and to stop
it if necessary. Extensive experiments with five young healthy subjects confirmed the high performance of the proposed online BCI
system. The modular structure, high speed, and the optimal frequency band characteristics of the BCI platform are features which
allow an extension to a substantially higher number of commands in the near future.
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1. INTRODUCTION

A brain-computer interface (BCI), or a brain-machine inter-
face (BMI), is a system that acquires and analyzes brain sig-
nals to create a high-bandwidth communication channel in
real time between the human brain and the computer or ma-
chine [1–5]. In other words, brain-computer interfaces (BCI)
are systems that use brain activity (as reflected by electric,
magnetic, or metabolic signals) to control external devices
such as computers, switches, wheelchairs, or neuroprosthetic
extensions [6–12]. While BCI research hopes to create new
communication channels for disabled or elderly persons us-
ing their brain signals [1, 2], recent efforts have been focused
on developing potential applications in rehabilitation, mul-
timedia communication, and relaxation (such as immersive
virtual reality control) [13, 14]. Today, BCI research is an
interdisciplinary endeavor involving neuroscience, engineer-
ing, signal processing, and clinical rehabilitation, and lies at
the intersection of several emerging technologies such as ma-
chine learning (ML) and artificial intelligence (AI). BCI is
considered as a new frontier in science and technology, espe-
cially in multimedia communication [1–18].

The various BCI systems use different methods to extract
the user’s intentions from her/his brain-electrical activity, for
example:

(i) measuring the brain activity over the primary motor
cortex that results from imaginary limbs and tongue
movements [3, 5],

(ii) detecting the presence of EEG periodic waveforms,
called steady-state visual evoked potentials (SSVEP),
elicited by multiple flashing light sources (e.g., LEDs
or phase-reversing checkerboards) [6–18],

(iii) identifying characteristic event-related potentials
(ERP) in EEG that follow an event noticed by the
user (or his/her intention), for example, P300 peak
waveforms after a flash of a character the user focused
attention on [1–3].

In the first approach, the usually exploited features of the
brain signals are their temporal/spatial changes and/or the
spectral characteristics of the SMR (sensorimotor rhythm)
oscillations, or the mu-rhythm (8–12 Hz), and the beta
rhythm (18–25 Hz). These oscillations typically decrease
during movement or when preparing for movement (event-
related desynchronization, ERD) and increase after move-
ment and in relaxation (event-related synchronization, ERS).
ERD and ERS help identify those EEG features associated
with the task of motor imagery EEG classification [3, 5].

While the first example (i) relies on imaginary actions
to activate the corresponding parts of the motor cortex, the
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second (ii) and third (iii) examples involve actual selective
stimulation in order to increase the information transfer bit
rates [3].

Steady-state visual evoked potentials are the elicited ex-
ogenous responses of the brain under visual stimulations at
specific frequencies. Repetitive stimulation evokes responses
of constant amplitude and frequency. Each potential overlaps
another so that no individual response can be related to any
particular stimulus cycle. It is presumed therefore that the
brain has achieved a steady state of excitability [19].

Applications of SSVEP on BCI were proposed by Mid-
dendorf et al. [6] and applied later by other groups [7–
18, 20]. Previously cited BCI systems, except the approach
done by Materka and Byczuk [10], have in common that they
are based on spectrum techniques for feature extraction in-
stead of time domain techniques. And all of them use sources
of the stimuli (flickering patterns, LED. . . ) in a fixed spatial
position.

Comparing to previous SSVEP BCI, our system is based
mainly on the temporal domain combining of a blind source
separation (BSS) algorithm for artifact rejection and tuned
microbatch filtering to estimate the features to be used with
a classifier, in our case a fuzzy neural network classifier.

Also, in our design, the sources of stimulus are moving
(adding extra complexity), and we have shown that it is pos-
sible to perform also a robust BCI for moving flickering tar-
gets.

In general, the SSVEP-BCI paradigm has the following
potential advantages and perspectives.

(1) It offers the possibility of high performance (informa-
tion rate) with minimal training time and low requirements
from the subject.

(2) The carefully designed SSVEP-BCI system can be rel-
atively robust in respect to noise and artifacts. Artifacts may
cause performance degradation; however they can be re-
moved or reduced using advanced signal processing tech-
niques like BSS. Also, blink movement and electrocardio-
graphic artifacts are confined to much lower frequencies and
do not make serious problem to accurate feature extraction.

(3) SSVEP-BCI systems are relatively easy to extend to
more commands.

(4) Usually BCI systems have higher information transfer
rates.

(5) Short training phase is required and application al-
most does not require special training.

However, SSVEP-BCI may have also some disadvantages.

(1) The flickering visual stimuli may cause some fatigue
or tiredness if subjects use it for a long time. This fatigue is
caused from the stimulation, while other BCI systems as P300
can cause fatigue due to the required concentration, while
SSVEP does not.

(2) The flickering stimuli at some frequencies, patterns,
colors, and so forth may not be appropriate for subjects with
photosensitive neurological disorders

(3) SSVEP-based BCIs depend on muscular control of
gaze direction for their operation, whereas other kinds of BCI
systems do not depend on the brain’s normal output path-
ways of peripheral nerves and muscles. Due to this reason,

Figure 1: Four small checkerboards flickering at different but fixed
frequencies move along with a navigated car. The subject is able to
control the direction of movement of the car by focusing her/his
attention on a specific checkerboard. Two sets of flickering frequen-
cies were used: (i) low-frequency range {UP: 5 Hz, LEFT: 6 Hz,
DOWN: 7 Hz, RIGHT: 8 Hz}, and (ii) medium-frequency range
{UP: 12 Hz, LEFT: 13.3 Hz, DOWN: 15 Hz, RIGHT: 17 Hz}.

this paradigm may not work for some seriously disable pa-
tients. In other words, evoked potentials, especially SSVEP,
require stable control of the eye muscles so that such an ap-
proach may not be applicable to all users.

In this paper, we present a BCI platform based on the
SSVEP paradigm. Although the SSVEP paradigm has been
exploited in a number of studies [4, 6–18, 20], our design of
experiments and signal preprocessing and classification tools
are innovative, moreover they are suitable for real-time ap-
plications with visual neurofeedback.

2. BCI SYSTEM BASED ON SSVEP PARADIGM:
DESIGN AND IMPLEMENTATION

2.1. Stimulator design

In this paper, we present a new BCI system with a visual
stimulation unit designed as a smart multiple choice table
in the form of an array of four small checkerboard images
flickering with different frequencies and moving along with
the controlled object (see Figure 1). When a BCI user focuses
his/her attention or gazes on a specific flickering image, a cor-
responding periodic component (SSVEP) can be observed
in the EEG signals notably over the occipital (visual) cortex
[19].

When a BCI user focuses his/her attention or gaze on
a specific flickering image, its corresponding weak quasi-
periodic component (SSVEP) is elicited mainly over the oc-
cipital (visual) cortex [19]. In addition, they are buried in
a large noise, and therefore it is a challenge to extract them
reliably in real time. For this purpose, we developed and ap-
plied multistage online (real-time) signal processing tools de-
scribed in detail below.

2.2. Analysis system overview

The signal analysis unit of our BCI system consists (see
Figure 2) of a data acquisition module, an enhanced signal
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Figure 2: Conceptual scheme of the proposed real-time BCI system. The system consists of a BSS (blind source separation) module for
automatic rejection of artifacts and noise, a bank of (narrow band-pass) filters to enhance the first harmonics of the SSVEP responses, a
Feature Extraction block with S-G (Sawitzky-Golay) smoothing and energy normalization, and ANFIS (adaptive network fuzzy inference
system) for a final classification.

preprocessing unit including online blind source separa-
tion (BSS) for artifact rejection and noise reduction, a bank
of narrow band-pass filters, a multiple-feature extraction
system with Savitzky-Golay (S-G) smoothing, energy nor-
malization and an adaptive-network fuzzy inference system
(ANFIS) [21].

To perform all signal processing tasks in real time, the
analysis unit was implemented in LabVIEW� and C/C++,
while the stimulation unit was based on speed-optimized
matlab code.

A general platform overview of our BCI system is shown
in Figure 3.

The system is currently able to use EEG input both from
the Biosemi (active-electrodes) and from the Neuroscan
commercial EEG devices and is fully adaptive, accounting for
the well-known large intersubject variability in the brain re-
sponses. We used only six EEG channels sampled at 256 Hz.
After a very short training, two modes of operation were pos-
sible: experimental assessment mode using comparison of
command requests and responses in which the success rate
and the transfer rates were determined, and a free-roaming
mode for overall command and control estimation. By ap-
plying BSS and a bank of subband filters, we showed that is
possible to decompose and discriminate in real time at least
four SSVEP waveforms with very high reliability.

In this study, we applied a set of five electrodes placed
over the occipital area {CPZ, PZ, POZ, P1, P2} and one elec-
trode placed over the frontal cortex {FZ}, as illustrated in
Figure 4 (left).

2.3. Artifact rejection by blind source separation

A second-order blind source separation (BSS) algorithm was
applied to enhance the signal and to attenuate artifacts [22].
It was characterized by a continuous working system in mi-
crobatch mode with sliding time window of four seconds and
with a discrete time shifts of 120 milliseconds. This means
that the system was able to refresh the incoming data ev-
ery 120 milliseconds and to take into account the EEG sig-
nals from the last 4 seconds. The presence of artifacts, espe-
cially eye movement-related artifacts, can decrease the per-
formance of the system substantially. In the case of SSVEP

stimulation and analysis, their very specific response fre-
quencies (corresponding to the observed pattern flicker fre-
quencies) could be erroneously detected in the presence of
artifacts if online BSS is not applied.

For the BSS procedure, we applied a modified and im-
proved real-time AMUSE algorithm with time sliding win-
dows, since such an algorithm allows a very fast (few mil-
liseconds) and reliable estimate of the independent compo-
nents with automatic ranking (sorting) according to their
increasing frequency contents and/or decreased linear pre-
dictability. The implemented BSS-AMUSE algorithm can be
considered as consisting of two consecutive PCA (principal
component analysis) blocks. First, PCA is applied to the in-
put data; and then a second PCA (SVD) is applied to the
time-delayed covariance matrix (in our case, the delay is set
to one sample or four milliseconds) of the output from the
previous stage. In the first step standard or robust prewhiten-
ing (sphering) is applied as a linear transformation [22]

z(t) = Qx(t), (1)

where Q = R−1/2
x of the standard covariance matrix

Rx = E
{

x(t)xT(t)
}

(2)

and x(t) is a vector of observed data for time instant t.
Next, SVD is applied to a time-delayed covariance matrix of
prewhitened data:

Rz = E
{

z(t)zT(t − 1)
}
= USV

T , (3)

where S is a diagonal matrix with decreasing singular values
and U, V are matrices of eigenvectors. Then, an unmixing
(separating) matrix is estimated as

W = Â−1 = UTQ. (4)

The estimated independent components are obtained as

Y = WX, (5)

where X = [x(1), x(2), . . ., x(N)].
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Figure 3: Our BCI platform consists of two PC computers. One for EEG data acquisition, stimuli generation, and a second machine for
online processing of data in microbatch mode.
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Figure 4: Electrode configuration. Five electrodes placed over the
occipital area {CPZ, PZ, POZ, P1, P2} and one over the frontal cor-
tex {FZ}.

The AMUSE BSS algorithm allowed us to automatically
rank the EEG components. The undesired components cor-
responding to artifacts were removed and the rest of the use-
ful (significant) components were projected back to scalp
level using the pseudo inverse of W, see Figure 5

X̂ = W+X. (6)

Sensor
signals

Demixing
system

BSS/ICA

Hard
switches

0 or 1

Inverse
system

Reconstructed
sensors
signals

x1

x2

xm

.

.

.

y1

y2

yn

.

.

.

W W+

x̂1

x̂2

x̂m

.

.

.

Expert

decision

Figure 5: Enhancement of EEG via BSS. First, the raw EEG data
(sensor signals) is decomposed and ranked as independent or spa-
tially decorrelated components; in the next step, only the useful
components are projected back to the scalp level, while undesir-
able components containing artifacts and noise are removed from
the signal. The main advantage of our approach is that we do not
need any expert decision to select significant components, since
the AMUSE algorithm automatically ranks the components as il-
lustrated in Figure 6.

The six EEG channels were high-pass-filtered with a cutoff

frequency of 2 Hz before the AMUSE algorithm was applied.
The rejection of the first and the last components had two

implications: (1) the EEG signal was enhanced as some oscil-
lations were removed which were due to ocular and other
artifacts but included frequencies similar to the target flicker
responses. Without this procedure, the performance of the
system would have deteriorated substantially since blinking
could not be avoided by the experimental subjects; (2) at the
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Figure 6: Illustration of the online preprocessing module—artifact rejection: actual EEG data (left), estimated automatically ranked inde-
pendent components—the first and the last components were rejected as artifacts (center), back-projected (enhanced) EEG signals (right)
which serve as the input for the bank of band-pass filters. (Four seconds window.)

same time, we ensured that the control of the car in our BCI
system was strictly due to the SSVEP responses elicited by the
cortex, and not simply due to eye movements.

2.4. Bank of band-pass filters and features extractions

We designed a bank of third-order elliptic IIR (infinite im-
pulse response) filters with bandwidth 0.5 Hz and with center
frequencies corresponding to the flickering frequencies of the
checkerboards. The fundamental frequencies of the SSVEP
responses were detected by estimating the power of the out-
put signals of the filters. We should mention here that using
another type of filters could also be appropriate under the
assumption that the overlap of the bandwidths of the sub-
bands would be small enough. As we were interested only in
the power of signals, their phase had no relevance in this case.

Four-time series representing the fluctuations of the en-
ergies over time were obtained and subsequently smoothed
by means of a Savitzky-Golay(S-G) filter [23].

Instead of smoothing each time series’ power contents in
each subband with a standard moving average (MA) filter,
we propose using a Savitzky-Golay filter with a second-order
polynomial smoothing. The main advantage of this approach
is that it tends to preserve fundamental features such as rel-
ative maxima, minima, and width of the peaks, which are
usually distorted by other filtering methods, like MA. The S-
G smoother approximates the time series within the moving
average window not by a constant (estimate of which is the
average, as in MA), but by a polynomial of higher order. In
other words, this method essentially performs a local poly-
nomial regression (of degree M = 2) on a distribution, of at
least k = nR+nL+1 points, to determine the smoothed value
for each point.

The general mathematical expression of the Savitzky-
Golay smoothing filter can be described as follows:

y[n] =
nR∑

k=−nL

cnx[n + k], (7)

cn =
M∑

m=0

[(
ATA

)−1]
0,mn

m, (8)

where

Ai j = i j , i = −nL, . . . ,nR, j = 0, . . . ,M. (9)

The signal is smoothed by nL points before, and by nR points
after each considered time point—according to (7), where
the weighting coefficients cn are obtained by means of (8). If
the filter is casual, then nR = 0. We set nR > 0 to enhance the
smoothing, although it introduced a small delay. For online
purposes, nR ≪ nL. A moving average filter MA is a S-G
filter with M = 0.

In Figure 7, it is shown as an example that the perfor-
mance of the S-G filter is compared with a moving average
filter for a simulated signal with added noise.

The S-G was applied separately for each band-pass filter
and electrode.

After S-G filtering, we performed also a standard normal-
ization of the smoothed energy as follows:

E j =

∑M
i=1 ei j∑N

j=1

∑M
i=1 ei j

, i = 1 · · ·M, j = 1 · · ·N , (10)
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Figure 7: Simulated data was used in this example to show a com-
parison of (a) moving average smoothing (nR = 30, nL = 5) versus
(b) an S-G filter (nR = 30, nL = 5, order 2). MA is not able to track
short time changes having high time response. S-G moving aver-
age has similar no-noise cancellation but better track of changes.
In BCI, it is important to find a good balance between enhanced
smoothing and, at the same time, to be able to follow fast changes
in the signal.

where M is the number of the electrodes, N is the number of
the band-pass filters, and ei j is the estimated energy of elec-
trode i and band-pass filter j,

M∑

j=1

E j = 1. (11)

As the stimulation frequencies are close to each other, there
is no need of compensation for each frequency. In case of
using more frequencies, it is better to send to the classifier
normalized values, although this is not the case in this paper.

Therefore, E j was the relative energy per band and these
energy values were used as input parameters for the ANFIS
classifier, see Figure 8.

2.5. ANFIS classifier

One of the most complicated problems with the BCI sys-
tems is the classification of very noisy EEG signals. For this
purpose, we have applied an adaptive, subject-specific classi-
fier to recognize different SSVEPs.

The standard adaptive network based fuzzy inference sys-
tem (ANFIS) architecture network was used. This system
consists of a fuzzy inference system (FIS) whose membership

function parameters are tuned (adjusted) using a back prop-
agation algorithm alone in combination with a least-squares
type of method (Jang, 1993) [21]. Using a hybrid learning
procedure, the ANFIS can learn an input-output mapping
based on some a priori knowledge (in the form of if-then
fuzzy rules).

The applied ANFIS has four inputs consisted in a
Sugeno-type FIS with two membership functions (general-
ized bell function) per input and output as a constant mem-
bership function [21]

f (x | a, b, c) =
1

(
1 + |x − c|/a

)2b
. (12)

Four features of EEG signals were used as input patterns
(normalized energy values) for the ANFIS system, corre-
sponding to each checkerboard.

3. OPERATING MODES

To overcome the problem of the intersubject variability, some
short-term preparatory activities were necessary for the BCI
system before the final real-time practical evaluations or
applications could be initiated. For this purpose, our BCI sys-
tem was implemented to work in three separate modes.

(i) Training mode.
(ii) Evaluation (testing) mode.

(iii) Free racing (unsupervised) mode.

The training—and if necessary the evaluation modes, al-
lowed us to find the optimal parameters for each specific sub-
ject. In this way, these parameters could be used later in the
free racing (unsupervised) mode.

3.1. Training mode

In order to train the classifier, the computer requested the
subject to fix their attention on each checkerboard {UP,
LEFT, RIGHT, LEFT} during time intervals of six-seconds
duration each, using voice-message requests. These requests
to execute specific directions were presented in random or-
der.

A fifth, additional, request required no stimulus and in-
volved removing all checkerboard patterns from the screen
during the six-seconds interval to measure the control non-
SSVEP responses.

The corresponding values of the normalized energies
were extracted for each command in the time interval be-
tween three and six seconds after each command request.
In this time interval, it was considered that the subject was
reaching a stable steady state for each corresponding event.

During the training mode, the neurofeedback was dis-
connected and the car was fixed in the center of the screen to
facilitate the subject to focus her/his attention to each flick-
ering checkerboard.

3.2. Evaluation mode

After the training, we asked the subject first to move the car
as their own in order to confirm that he or she had the full
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Table 1: Experimental results for occipital configuration (mean val-
ues).

Subject #1 #2 #3 #4 #5

LF (5–8 Hz)

Success (%) 100 77.5 94.8 92.3 100

Delay Time [s] 3.6 ± 0.4 3.8 ± 1.7 3.3 ± 1 3.3 ± 1.1 4.8 ± 1

MF (12–17 Hz)

Success (%) 100 100 100 100 82.3

Delay Time [s] 3.6 ± 0.3 3.9 ± 0.8 3.2 ± 0.4 3.1 ± 1.1 3.7 ± 1.3

ability to control the car in any direction. Then, to evalu-
ate the BCI performance for this subject, including time re-
sponses and percentage of success (see results bellow), the
computer generated in random order requests for movement
in each direction using voice messages, similarly to the train-
ing mode. The subject was asked to move the car in one of
the four directions at intervals of nine seconds in 32 trials
(eight trials per direction). It was assumed that the subject
successfully performed a task if she/he moved the car prop-
erly in a time window between one second and up to a maxi-
mum of six seconds after the onset of the voice-request com-
mand. During the evaluation mode, the neurofeedback was
fully enabled and the car was able to move freely, responding
to the subject’s commands.

3.3. Free race (unsupervised) mode

In this mode, the user could move the car freely within the
racing course (Figure 1), and we asked all the subjects to
complete at least one lap to evaluate their overall control of
the car by performing this task without any external voice
commands. This typically took from each subject between 90
to 150 seconds to achieve this complex goal, also depending
on the flicker frequency range.

4. EXPERIMENTAL SETTING AND RESULTS

We tested our SSVEP-based BCI system with five subjects
(two females and three males) and for two different ranges of
flicker frequencies: low-frequency (LF) range—5, 6, 7, 8 Hz
and medium-frequency (MF) range—12, 13.3, 15, 17 Hz.

The subjects sat on a chair approximately 90 cm from the
center of a 21-inch cathode-ray tube (CRT) monitor screen
using a refresh rate of 120 Hz.

Six electrodes were used: five placed over the occipital
cortex {CPZ, PZ, POZ, P1, P2} and one over the frontal cor-
tex {Fz}, see Figure 2.

The performance of the BCI system was measured during
the evaluation mode, as described in the previous section.

The results are shown in Table 1 (subject-specific results)
and Table 2 (mean results). The data obtained in this study
indicated that the performance for the medium-frequency
range flicker was slightly higher when compared to the low-
frequency range flicker responses, in terms of controllability
of the car and execution-time delay.

Table 2: Experimental results for occipital configuration (mean val-
ues and mean bit rate).

Flicker range LF MF

(Frequency) (5–8 Hz) (12–17 Hz)

Success rate 93% 96.5%

Execution delay 3.7± 1.0 s 3.5± 0.8 s

Bit rate 26 bits/min 30 bits/min

Only one of the subjects was more comfortable with,
and felt that his car control was better when using the low-
frequency range flicker.

The subjects performed the BCI experiments just a sin-
gle time for each frequency range (LF, MF), including classi-
fier training and evaluation (results) modes. After the exper-
iment, each subject was asked to demonstrate her/his overall
control of the car for each frequency range by completing a
full lap as quickly as possible in free racing mode.

5. CONCLUSION AND DISCUSSIONS

Although the SSVEP paradigm is well known in the BCI
community since the studies performed by several re-
search groups [6–18, 20], especially Shangkai Gao group at
Tshinghua University [8–10, 18] and NASA research group
of Trejo et al. [7], we believe that our system offers several
novel points for improved usability and efficiency, such as
the integrated moving checkerboard patterns to maximize
selective attention and to minimize eye movements in respect
to the controlled target, as well as an online BSS module to
reduce automatically artifacts and noise, improved feature
selection algorithm with efficient smoothing and filtering
and an adaptive fuzzy neural network classifier ANFIS. All of
our EEG signal processing modules and algorithms are care-
fully optimized to work online in real time. This proposed
method and BCI platform could be easily extended for vari-
ous BCI paradigms, as well as for other types of brain anal-
ysis in which real-time processing and dynamic visualization
of features are crucial.

Paradigms based on steady-state visual and other evoked
potentials are among the most reliable modes of commu-
nication for implementation of a fast noninvasive EEG-BCI
system that can discriminate in near real time a very high
number of unique commands or symbols. The capability of
a BCI system to issue more commands in a more reliable
way has significant advantages such as allowing better control
of semiautonomous remote navigation devices in hazardous
environments, or navigating precisely a cursor on a computer
screen (or the realization of a virtual joystick). However, in
our experimental design, we have incorporated a number of
original elements and ideas as compared to the typical SSVEP
paradigm. In addition to our new dynamic visual stimula-
tion approach, we have developed and implemented novel
and efficient real-time signal preprocessing tools and feature
extraction algorithms. Although using our dynamic pattern
movement design may require some eye movement control
by the subjects, as well as sustained short-term attention, the
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Figure 8: Normalized multiband signals Ej during evaluation mode: (a) a good example case with one of the subjects, and (b) a suboptimal
example in another subject, where ANFIS was essential in enhancing the final performance of the system.

control of the object (car) could be easily changed to static
for completely disabled subjects. According to our tests and
to previous reports Müeller and Hillyard [24] and Kelly et al.
[9], eye movement could be avoided altogether in SSVEP
(possibly at some performance cost) so that selective atten-
tion (with a fixed gaze between the flicker patterns) could be
used for flicker response gating/enhancement corresponding
to the requested commands.

The ability of our SSVEP-BCI system to operate not only
in the medium-frequency range flicker, but also in the low-
frequency range, shows its advantages in comparison to the
traditionally used FFT-based methods, which usually require
the usage of the higher harmonics when the visual stimula-
tion is in the low-frequency range. In contrast, our algorithm
estimates the normalized energy of each flickering frequency
directly by using a dedicated tuned filter, allowing us to dis-
criminate easily between a stimulation-driven frequency and
its higher harmonics. In multiple-command BCI experimen-
tal designs, the flickering pattern frequencies could be set to
be very close and limited by the minimal overlapping band-
pass filters of the applied filters under the physiological con-
straints of discerning between cortical responses to two close
stimulation frequencies.

In summary, we successfully demonstrated the applica-
tion of a fast online BSS algorithm for automatic rejection of
artifacts and noise reduction, a bank of band-pass filters with
nonstationary smoothing, and an adaptive fuzzy classifier.
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