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Abstract 

Variation in human brains creates difficulty in implementing electroencephalography (EEG) into 

universal brain-machine interfaces (BMI). Conventional EEG systems typically suffer from 

motion artifacts, extensive preparation time, and bulky equipment, while existing EEG 

classification methods require training on a per-subject or per-session basis. Here, we introduce a 

fully portable, wireless, flexible scalp electronic system, incorporating a set of dry electrodes and 

flexible membrane circuit. Time domain analysis using convolutional neural networks allows for 

an accurate, real-time classification of steady-state visually evoked potentials on the occipital lobe. 

Simultaneous comparison of EEG signals with two commercial systems captures the improved 

performance of the flexible electronics with significant reduction of noise and electromagnetic 

interference. The two-channel scalp electronic system achieves a high information transfer rate 

(122.1 ± 3.53 bits per minute) with six human subjects, allowing for a wireless, real-time, universal 

EEG classification for an electronic wheelchair, motorized vehicle, and keyboard-less 

presentation.  
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Introduction 

Compared to other methods for electrophysiological monitoring of the brain, modern 

electroencephalography (EEG) systems provide non-invasive monitoring of brain electrical 

activity with fine temporal resolution, ease of use, and relatively low cost. Thus, EEG-based brain-

machine interfaces (BMI) have been widely used for rehabilitation through control of prosthetic 

systems or substitutive control1-4. BMIs can restore freedom of movement and improve quality of 

life for chronic stroke survivors with locked-in syndrome (LIS) or persons with amyotrophic lateral 

sclerosis (ALS) or other severe motor disability5-8. The capture and classification of steady-state 

visually evoked potentials (SSVEP) is one potential strategy for therapeutic BMI9-12. For this type 

of interface, the subject is requested to focus on flickering stimuli (computer screens or external 

light sources), while an EEG system captures brain electrical activity from specific locations on 

the scalp13-15. These stimuli elicit frequency-dependent brain activity, and therefore arrays of 

stimuli may be used as an interface for subjects to gaze between for control over some target16-19. 

Conventional EEG setups for SSVEP acquisition use a hair-cap or crown-like setup, with many 

metal electrodes up to 256 channels20-22. These systems are bulky and heavy, with uncomfortable, 

rigid metal scalp electrodes. These electrodes are often coupled with conductive gels or pastes to 

adequately capture the signal. Variance in scalp hair thickness and density cause variations in 

impedance between electrode locations23. Gel-based electrodes take considerable time to set up 

and require regular maintenance24, 25. Additionally, water-based gels evaporate over time, causing 

decay in skin-electrode contact impedance15. Recent research in EEG design displays a trend 

toward wearable and wireless EEG26. These are preferable for day-to-day mobile EEG monitoring, 

with short setup times and excellent long-term performance provided adequate skin preparation 

with optimal amplifier, shielding, and electrode configurations25, 27. New systems featuring dry 

electrodes perform as well as, if not better than, conventional systems, establishing strong 

groundwork toward a transition to dry electrode-based electrophysiological systems15, 27, 28. There 

is also an argument for the use of lightweight sensors and shorter leads in order to prevent dragging 

or movement artifacts that may occur with massy cap EEG systems29. However, the available 

mobile EEG systems30-33 are still quite bulky and use rigid electronic and structural components 

with a large number of electrodes, which are not comfortable for daily use and real-world 

applications. Here, we introduce the first example of a fully portable, wireless, flexible, skin-like 

hybrid scalp electronics (referred to as ‘SKINTRONICS’) that includes a low-profile, flexible 

circuit, an ultrathin aerosol-jet printed skin electrode, and three flexible conductive polymer 

electrodes for mounting on the hairy scalp (occipital lobe). The primary novelty is in the 

development of a fully integrated packaging of high-resolution EEG monitoring sensors and 

circuits within a miniaturized skin-conformal system. This soft electronic system is capable of 

improved EEG performance for idle, seated subjects due to its simplicity of design and 

compactness, isolated from motion artifacts caused by long wires and electrode movements, 

typically found from other EEG systems. SKINTRONICS offers maximal comfort and minimal 

setup time, requiring only two channels on the occipital lobe to measure SSVEP with competitive 

information transfer rates. We demonstrate a new capability to train deep convolutional neural 

networks (CNN) offline and integrate them into wireless mobile devices for a real-time, universal 

EEG classification. Additionally, optimization of the system setup and classification model 

enables a highly competitive information transfer rate34 (122.1 ± 3.53 bits per minute) using only 

two channels, far fewer than most other systems achieving similar values. Applications for this 

system, including a powered wheelchair interface designed for subjects with LIS or other motor 

disability is demonstrated. With ever-improving mobile processing power, the combination of 
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many-channel SKINTRONICS with integrated universal BMI, demonstrates possible implications 

for the use in portable EEG-based neuroprosthetics, real-time diagnosis of neurological disorders, 

or neuro-assisted learning (classroom support). 

 

Results  

Device architecture and skin integration of a scalp electronic system 

Figure 1 shows an overview of the wireless, portable scalp electronics for SSVEP-based BMI. 

The photo in Fig. 1a captures the design concept of the flexible electronics that minimize the 

contact area (only 2 channels) on the scalp for a comfortable, dry EEG recording. The fully 

flexible, wearable system enables real-time long-range wireless data acquisition and accurate 

classification of SSVEP with a high information transfer rate from only two recording channels. 

Due to extreme mechanical compliance and small form factor, SKINTRONICS exhibits 

significant reduction of noise and electromagnetic interference, compared to the existing portable 

EEG systems with rigid electronic components33, 35-37. Additionally, the use of conformal 

electronic components allows for easy wearability on the back of the neck or other bare skin 

locations. This soft system allows for a long-term wear versus other rigid devices with heavy 

plastic enclosures that have to be clipped-on or worn in other uncomfortable manner. Overall, the 

integrated electronics on the scalp, in conjunction with a deep-learning algorithm, demonstrates 

the feasibility for real-time, highly accurate in vivo BMI via SSVEP data from two channels. Fig. 

1b shows the optimal electrode locations as determined by a deep CNN analysis of 32-channel 

EEG recording of SSVEP data (details in Methods; Fig. S1 and Section S1). The electrode 

positions in Fig. 1b (O1, Oz, and O2) were determined in preliminary tests to have consistently 

high SNR across all tested subjects. The deep CNN analysis is used to isolate the best electrodes 

from a larger cluster of electrodes, as it does not require prior knowledge of the signal type. This 

method is useful when the signal’s features are difficult to decompose by conventional methods 

(e.g. power-spectrum analysis). The miniaturized, multi-channel flexible electronic system (Fig. 

1c), encapsulated in a soft elastomeric membrane, was fabricated by using the combination of 

microfabrication techniques38, material transfer printing38, and hard-soft component integration39 

(details in Methods; Fig. S2 and S3). This manufacturing process allows a skin-conformal, 

unobtrusive, and comfortable EEG device. The EEG recording setup for two channels (O1 – Oz 

and O2 – Oz) incorporates an aerosol jet-printed skin-like electrode (Fig. 1d) and elastomeric hair 

electrodes (Fig. 1e). The highly conformal membrane electrode is placed at the right mastoid to 

serve as driven ground. We utilize a set of dry, flexible elastomeric electrodes (Cognionics) that 

make intimate contact to the hairy region, resulting in long-term EEG recording40. With adequate 

skin preparation, conformal contact provided by these electrodes allow for superior skin 

impedance (less than 20 kΩ), and therefore lower noise in signal recording and transmission. In 
addition, there are only three scalp electrodes, effectively secured by using a single headband, 

which allows the electrode to splay its legs, separating and moving hair, to make effective contact 

with the scalp as demonstrated in Fig. 1e. A flow chart in Fig. 1f summarizes a high-level overview 

of data collection, processing, wireless transfer, and machine control (details of the EEG circuit in 

Fig. S4).  

 

Quantitative study of system mechanics and reliability 

To build a portable, wearable scalp electronics, intimate skin integration is critical while allowing 

the wearer to conduct everyday activity. The device must also maintain its ability to acquire high-

fidelity EEG along with wireless transmission of data while under bending. In this work, we 
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subject the electronics to 180° bending up to 1.3 mm in radius of curvature, well beyond the 

expected bending during skin deformation on the back of the neck. Similar mechanical tests are 

performed on the hair electrode and skin-like electrode to ensure long-term mechanical stability 

on the skin application. Computational finite element analysis (FEA) was used to design the 

electronic circuit and wearable electrode, which provided an optimal design to endure continuous 

mechanical deformation. Afterwards, a set of experiments demonstrated the mechanical reliability 

of the SKINTRONICS (Fig. 2), including microscope investigation, resistance measurement, and 

received signal strength indication (RSSI). Details of the computational and experimental study 

procedures appear in Methods. The flexible electronic circuit shows great mechanical stability 

upon cyclic bending along the vertical axis for the first location (Figs. 2a-d) and second location 

(Figs. 2e-h). Details of the bending points are summarized in Fig. S5a. With a complete folding 

of the device at the bending radius of 1.3 mm (Fig. 2a), the device shows no adverse effects, as 

supported by the FEA result (Fig. 2b) with negligible change in the maximum principal strain (< 

0.1 %). The change of electrical resistance of the interconnects in Fig. 2a is measured during the 

cyclic loading and unloading process (Fig. 2c), which also shows consistent resistance with the 

maximum change of 0.06 Ω. Additionally, the RSSI measurement monitors the wireless signal 
quality under 180° bending up to 15 meters (Fig. 2d), showing that the device maintains 

connectivity at distances over 10 meters. Details of the mechanical bending configuration are 

shown in Fig. S5b. Another location of the electronics shows 180° bending with the radius of 1.6 

mm (Fig. 2e). The corresponding FEA in Fig. 2f shows similar results to the first location, and the 

interconnects are intact after bending. Fig. 2g shows the resistance measurements at this location 

where the maximum change in resistance is 0.09 Ω, indicating the stability of the interconnects 
during cyclic bending. The RSSI investigation (Fig. 2h) validates the device’s functionality with 
distances up to 15 meters. The resistance measurements at each location after 100 bending cycles 

are shown in Fig. S5c, showing a slight increase in resistance, from 1.19 to 1.51 Ω at location 1, 
and from 1.08 to 1.38Ω at location 2. Furthermore, recorded SSVEP data (stimulus at 15.2 Hz) 
compares the effect of cyclic bending of the electronics (Fig. 2i), which shows negligible change 

in the signal quality. The elastomeric hair-based electrodes underwent cyclic compression testing 

while monitoring resistance from the connector to a single leg of the electrode. The method is 

briefly described in Section S4, with the setup shown in Fig. S6. A maximum compression of 2 

mm, followed by release over a 6-second period (Fig. 2j), was repeated for 1000 cycles, simulating 

the maximum compression exhibited during EEG recording. During a single cycle of compression, 

the peak change in resistance was only 4.1 kΩ (Fig. 2k). Even with 1,000 cycles, the uncompressed 

resistance changed a total of 4.46 kΩ (less than 10% of the initial resistance; Fig. S7). The 
conductive elastomeric electrodes showed excellent resilience to mechanical stress and were still 

capable of measuring EEG after the test was completed. These results are supported by a prior 

study that evaluated the robustness of these electrodes in a high-density multi-channel system41. 

For EEG recording, a skin-like silver electrode undergoes multi-modal bending and stretching on 

the skin (mastoid), considering the ultrathin epidermis on that area with time-dynamics movements 

with the ear. For bending tests, a setup like the one used in Fig. S5 for testing SKINTRONICS was 

used. Resistance change during bending was also measured, showing stability under complete 

folding at a small radius. The summary of the experimental and computational study in Figs. 2l-

m validates the structural safety of the printed electrode, with over 50% biaxial strain and up to 

180° bending at the radius of 250 µm (details in Fig. S8 and S9). FEA results show the maximum 

strain under 1% in any region of the electrode, while microscopic observation captures no fracture 

lines. This evidence, in addition to our prior studies evidencing long-term reliability15, 38, 42 
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regarding skin wearable electrodes demonstrate mechanical stability of SKINTRONICS device 

and electrodes for extended human use.  

 

Analysis of signal quality and classification accuracy 

The new electronic system, SKINTRONICS, is benchmarked against two state-of-the-art EEG 

monitoring devices. The first is a 32-channel EEG system (ActiveTwo System, Biosemi B.V.), 

using water-based conductive gels (SignaGel, Parker Laboratories) and the second is a wireless, 

portable system (BioRadio, Great Lakes NeuroTechnologies) that allows for 8 channels in a 

referential montage. We demonstrate the functionality and performance of the SKINTRONICS 

via the direct comparison with those commercial systems. The ActiveTwo 32-channel system uses 

Ag/AgCl active electrodes to represent the gold standard, benchtop EEG system, while the 

BioRadio represents a wireless, handheld EEG and uses dry, flexible elastomeric electrodes 

(Cognionics) as a control to compare the performance of the SKINTRONICS. The detailed 

procedure for data acquisition is provided in Methods. Figure 3 summarizes the comparison of 

SSVEP captured using a single occipital lobe channel (O1-Oz), by three different systems. The 

side-to-side comparison of 12.5 Hz SSVEP data captures the superior performance of the 

SKINRONICS (Figs. 3a-c) with the consistent and overlapping peaks of 12.5 Hz from the first 

channel (O1-Oz). In these panels, periodograms from 50 consecutive 1-second sample windows 

with 128 ms overlap from a single subject are overlaid on a single graph to demonstrate the signal 

variance from each of the three devices. Signal-to-noise ratio (SNR) analysis (Figs. 3d-f) for all 6 

subjects was performed offline in a numerical program (MATLAB, MathWorks). The method 

used for calculating SNR is provided. Among the three systems, the SKINTRONICS shows the 

highest average SNR (46.6 ± 2.16 dB) from four SSVEP classes, measured with 6 human subjects. 

This shows that SKINTRONICS SNR is a significant improvement over the conventional gel-

based system (ActiveTwo; 16.94 ± 4.60 dB) and the portable wireless system with dry electrodes 

(BioRadio; 28.89 ± 2.28 dB). Figures 3g-3k demonstrates each of four preprocessing and analysis 

methods with a 1.024-sec segment of 12.5 Hz SSVEP data. Two-channel (O1-Oz and O2-Oz) 

time-domain data (Fig. 3g) is converted to a single-window periodogram (Fig. 3h), PSDA (Fig. 

3i), and CSDA (Fig. 3j). The details of PSDA and CSDA methods are shown in Section S6 and 

Section S7, respectively. The primary metric used to establish the efficacy of the EEG system is 

information transfer rate (ITR), calculated in bits per unit time, as shown in Methods. To further 

quantify the SKINTRONICS performance, we conducted a canonical correlation analysis (CCA; 

details in Section S5). Our system achieves an average accuracy of 89.6 ± 2.1% at the shortest data 

length of 0.512 seconds for four SSVEP classes over 6 human subjects (original datasets in Fig. 

S10 and original accuracy of seven SSVEP classes in Fig. S11 with details in Methods). To 

improve upon the classification accuracy achieved using CCA, we utilized support vector 

machines (SVM) and CNN31. Feature extraction and classification techniques are detailed in 

Methods and Fig. S12. The summary of resulting accuracies from 4 datasets appears in Fig. 3k, 

which is based on 1-layer CNN analysis (architecture provided in Tables S2). These preliminary 

results suggest that the basic network most effectively extracts features from CSDA and time-

domain data.  

 

Optimization of convolutional neural network  
One of the key study points of this work is to show the universal capability to classify SSVEP from two channels on 

any subject. Therefore, 6-fold cross-validation is performed on a subject-to-subject basis as described in Methods. 

The experimental classes, along with procedures for preparing training and test data are also provided. Here, 

convolutional neural networks are used to classify signals from the five classes. With shared weights, CNN can 
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detect features on either channel at any location, while keeping the size of the network relatively 

small43. From the most basic 1-layer CNN, a grid-search optimization method is used to optimize 

the model, as explained in Methods. As summarized in Fig. 4, multiple convolutional layers allow 

for detection of low-level features that cannot be detected with a single filter. It also allows for 

down-sampling and collection of relevant activations from previous layers, to be classified by a 

fully-connected layer. In Fig. 4a, we represent ‘active’ features using a gray-scale representation 

of the time-series data. Here, 50 2D-convolutions are performed across each channel, resulting in 

100 outputs total. An additional 100 2D convolutions are performed on the second convolutional 

layer, resulting in the outputs shown in Fig. 4b. A fully connected layer of 1,024 units is produced, 

followed by a fully connected output layer with 5-class SoftMax activation (Fig. 4c). Mean 

accuracy results from SVM and CNN models for time-domain and CSDA data are shown in Fig. 

4d and Fig. 4e, respectively. Of the four SVM kernel types tested, the highest accuracy results 

were chosen (cubic kernel) to be displayed for all results. This serves to establish universal 

applicability for the acquisition of SSVEP using only two-channel SKINTRONICS. The same 

subject-to-subject cross-validation scheme was used for all training models. The results show the 

SVM models able to achieve high accuracies with frequency-domain features for all kernel types. 

However, the linear SVM failed to classify time domain signals beyond trivial accuracies. Overall, 

the optimized 2-layer CNN was superior in all situations, due to its inherent ability to extract low-

level features through shared weights, able to train to detect many features that SVM cannot. Based 

on this evidence, this system and classification model can be trained on a small group of 

individuals and used in universal SSVEP-based BMI applications. To further emphasize these 

offline results, a confusion matrix, representing the results from the shortest data window input (w 

= 0.512 seconds) is summarized in Fig. 4f where the wireless scalp system achieves a high 

accuracy (94.54 ± 0.90%) for a corresponding ITR of 122.1 ± 3.53 bits per minute (Table 1). In 

comparison, real-time cue-guided SSVEP test data across all six subjects shows the accuracy of 

94.01 ± 3.6% (Fig. 4g). These results show a consistent level of accuracy even with real-time 

classification, which allows for precise control over different interface targets, including an 

electronic wheelchair, wireless mini-vehicle, and communication (presentation) tool.  

 

In vivo demonstration of wireless BMI with human subjects 

In this work, we demonstrate the feasibility of the SKINTRONICS for a portable, wireless BMI 

via SSVEP from 6 human subjects (Fig. 5). For the experiments, subjects were seated in front of 

the LED stimulus setup, about 0.8 m away from their head at eye level where all four stimuli are 

presented simultaneously (Fig. 5a). A subject conducts five tasks; gazing at each LED stimuli, and 

a null task (eyes closed, for alpha rhythms) and gazing four LED locations (Fig. 5b), while the 

SKINTRONICS securely conforms to the back of the subject’s neck (Fig. 5c). The EEG data is 

recorded, displayed and saved in real-time, along with the corresponding classification outputs on 

an Android-based mobile device (Fig. 5d). A set of representative EEG data from 5 classes appears 

in Fig. 5e. A subject uses these data to control three target machines, including a wireless electronic 

wheelchair (Pronto, Invacare; Fig. 5f), a wireless mini-vehicle (Minidrone, Parrot; Fig. 5g), and a 

presentation software (PowerPoint 2016, Microsoft; Fig. 5h). Overall, subjects were able to 

achieve highly accurate and precise real-time control of three target machines with 94.01 ± 3.6% 

accuracy at 0.512-second intervals and 96.24 ± 3.4% at 1.024-second intervals. Subjects with 

various hair types and conditions were selected to ensure the electrode’s performance in various 
scenarios (details of the BMI control scheme in Methods). Real-time, in vivo demonstration of the 

aforementioned machine controls with the SKINTRONICS are shown in Videos S1-S3. 
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Discussion  

The collection of materials presented here reports that a fully portable, wireless, ergonomic 

SKINTRONICS offers highly accurate, real-time monitoring of SSVEP on the scalp for a BMI. 

The flexible electronic system integrates a highly conformal wireless circuit on the back of the 

neck, a skin-like membrane electrode on the mastoid, and three flexible conductive electrodes on 

the occipital lobe. The extremely small form factor and associated portability of the low-power 

SKINTRONICS makes it less prone to interference and movement artifacts. The adherence to the 

skin and mechanically compliant electrodes allows for reasonable flexion and movements without 

any significant artifacts added to the EEG signals. Provided these advantages, locations of highest 

signal density may be targeted with fewer electrodes, producing high resolution signals from the 

areas of highest signal density. The electrode configuration is designed to target a consistently high 

SSVEP SNR across all subjects. A custom optimized algorithm using deep-learning CNN provides 

real-time, highly accurate classification of SSVEP and a highly efficient ITR with only two 

channels (122.1 ± 3.53 bits per minute; Table 1), enabling precise control of a wireless wheelchair, 

motorized mini-car, and a presentation software. Even though other two systems 30, 44 show higher 

ITR than the SKINTRONICS, they used a full benchtop system with an EEG cap and 9-channel 

gel electrodes. In addition, unlike these systems, the SKINTRONICS only used flickering stimulus 

without any synchronization technique for enhanced accuracy, which requires additional work in 

the system. To mitigate a possible risk of collision or accident, the electronic wheelchair can use 

a risk prevention system that may incorporate infrared or other proximity sensors 45. In addition, 

the wheelchair can be bound to a specific set of paths to prevent accidents arising from 

misclassification.  

Overall, the collective result in this work is significant due to the decreased number of channels 

used when compared to other systems and is also fully integrated for comfort and a low profile. 

Due to the decreased number of channels, correlation-based analyses such as canonical correlation 

analysis (CCA) and task-related component analysis (TRCA) could not be used with 2 channels. 

This control demonstrated by healthy subjects may easily be learned by subjects with weak or 

nonexistent motor control (locked-in syndrome), requiring only movement of the eyes and closure 

of the eyelids. Using high-quality signals over a targeted two channels, combined with an optimum 

classification method, we can achieve a high accuracy with limited information, generalized 

enough to be used with any subject, demonstrating the possibility of a universal BMI. Additionally, 

the EEG may be reconfigured to monitor motor evoked potentials46 or motor imagination47 for 

motor-impaired subjects, which will be further studied as a future work on therapeutic applications. 

For these applications, different electrodes will be used that are optimized for the required 

electrode locations and target signal characteristics. Furthermore, more randomization in 

performance comparison between multiple systems will be conducted along with different control 

targets.  

Collectively, this paper reports fundamental strategies to design an ergonomic, portable EEG 

system for a broad range of assistive devices, smart-home systems, and neuro-gaming interfaces. 

Future study would focus on investigation of fully elastomeric, wireless self-adhesive electrodes 

that can be mounted on the hairy scalp without any support from headgear, along with further 

miniaturization of the electronics to incorporate more electrodes for use with other studies.  

 

 

Methods 
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Topographical mapping of SSVEP EEG data. The detailed methods for this process are 

recorded in Section S1 and Fig. S1 of the Supplementary Materials. The representative sample of 

a topographical scalp captures the largest signal weights on the O1, O2, and Oz channels (data of 

other EEG mapping from six human subjects appear in Fig. S1d). These results are consistent with 

other topographical maps in a prior work9. For a deep neural network analysis, data was sampled 

at 256 Hz and the reference was set at Oz for the best results. The optimal electrode location was 

determined by a CNN trained to classify from all 32-channels (details of architecture in Table S1). 

The trained weights for each channel could then be extracted and plotted using a topographical 

mapping algorithm provided by open EEGLAB (open source software)48. Details of this method 

are explained in Section S1. This multi-channel quantitative EEG study retrospectively verifies the 

optimal two electrode locations that were used in the two-channel EEG study. 

Preparation of SKINTRONICS. The device preparation consisted of three stages. First, using 

microfabrication processes, the thin-film flexible circuit boards were constructed on a 

polydimethylsiloxane (PDMS)-coated four-inch silicon wafer and peeled-off for subsequent 

steps.49 The details of this process are given in Section S1. Second, the surface mount chip 

components were soldered onto exposed copper pads by reflow soldering using a solder paste 

(SMDLTLFP10T5, Chip Quik). Third, electrode integration and device encapsulation were 

conducted. For electrode integration, PDMS-insulated conductive film cables (HST-9805210, 

Elform) were used to connect the dry electrodes and the flexible device while using small amount 

of silver paint (Fast Drying Silver Paint, Ted Pella) as the adhesive for cable attachment. The 

assembled circuit was fully encapsulated with a low-modulus elastomer (Ecoflex 00-30, Smooth-

On, Inc.) both to protect the circuit components and to provide the necessary adhesiveness and 

compliance for application on skin. Prior to the fabrication, the circuit design was validated on a 

printed board to confirm the optimized layout with matching antenna circuitry (Fig. S2a), along 

with the optimized components for a protocol of 2.45 GHz Bluetooth low energy. The reflection 

coefficient (S11), plotted in Fig. S2b, has a local minimum at 2.449 GHz of -29.68 dB, which allows 

for excellent telemetry at reasonably large ranges. The details of the device fabrication and 

encapsulation processes appear in Section S2 and step-by-step illustration is shown in Fig. S3. 

Recording of SSVEP. Flexible elastomeric electrodes (placed at O1, O2, and Oz) are connected 

to the SKINTRONICS through flexible thin film cables, which are routed under the headband and 

connected on the right side of the device. In addition, a skin-conformal, aerosol-jet printed 

electrode with improved skin adhesion reduces motion artifacts and enhances skin-electrode 

contact impedance. This electrode acts as a driven bias, therefore its ability to capture EEG is out 

of the scope of this paper and not tested. The SKINTRONICS wireless telemetry unit uses a 

Bluetooth low-energy microcontroller (nRF52832, Nordic Semiconductor) due to its high 

throughput, low latency, low power draw and wireless range39. The BLE protocol supports 

wireless synchronization of multiple devices to support greater numbers of channels50. 

Considering each SKINTRONICS can support up to 8 channels, more devices can be synchronized 

for measuring multi-EEG signals at different locations. For EEG recording, a front-end integrated 

circuit (ADS1299, Texas Instruments) was used, which is a low-noise 24-bit analog-to-digital 

converter with a built-in bias drive, while supporting up to eight differential-input channels (Fig. 

S4a). The design also incorporates second-generation low-noise instrumentation amplifiers as the 

first gain stage (INA828, Texas Instruments). A schematic and block diagram of the connections 

for the external amplifiers are shown in Fig. S4b, and the internal signal routing is listed in Fig. 

S4c. The optimal configuration for the first gain stage was set to 100 V/V for use with dry 

electrodes, which provides an isolated low-noise, low-offset first gain stage. The internal 
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programmable gain was set to 1 to minimize DC offset, harmonic distortion, and amplifier 

saturation. To improve common-mode rejection, the driven ground electrode’s bias amplifier was 
configured as an open-loop. In this configuration, bias signals reached open-loop gain, which was 

the maximum possible gain achievable by the amplifier (Fig. S4d). Parasitic capacitive effects51 

were limited through passive shielding with the elastomeric material on wiring and exposed 

electrode surfaces. A conventional bias electrode configuration is shown in Fig. S4e.  

Computational mechanics. Finite element analysis was conducted using commercial software 

(Abaqus FEA, Dassault Systemes) to determine mechanical behavior under bending deformation 

at multiple locations. For the computational modeling, the following material properties (E: 

Young’s Modulus, v: Poisson’s Ratio) of ECu = 119 GPa and vCu = 0.34 for copper; EPI= 2.5 GPa 

and vPI=0.34 for polyimide were used.52, 53 

Biaxial mechanical stretching. Biaxial stretching was used to test the stretchability of the skin-

like flexible electrode used at the mastoid. Here, the electrode is placed in a custom-built biaxial 

stretcher (Fig. S8), where opposite ends of a completed electrode are silver-pasted to copper wires 

that are connected to a digital multi-meter for resistance measurements. Biaxial stretching caused 

the resistance to increase as expected as the interconnects thinned, followed by a fracture at over 

60% strain (Fig. S9). 

32-channel EEG recording. For determining precise electrode locations for placing a two channel 

EEG device on the scalp, a deep learning-based topographic mapping procedure is used. A 32-

channel EEG system (ActiveTwo System, Biosemi B.V., Amsterdam) was used to acquire data 

from subjects with active Ag/AgCl electrodes interfaced with the scalp through conductive water-

based gel (Saline Base Signa Gel, Parker Laboratories, Inc., Fairfield, NJ). Impedances between 

measurement and ground electrodes were maintained below 10kΩ during testing. The study 

involved 8 volunteers ages 18 to 40 and the study was conducted by following the approved IRB 

protocol (# H17212) at Georgia Institute of Technology. Prior to the in vivo study, all subjects 

agreed with the study procedures and provided signed consent forms. 

2-channel EEG recording. Target skin and scalp locations are cleaned with isopropyl alcohol 

before skin preparation. Abrasive skin preparation gel (NuPrep, Weaver and Co., United States) 

was gently applied to each of the electrode locations with a cotton swab to prepare the skin for 

electrode placement. Excess gel is removed using a gauze pad and the locations are cleaned with 

alcohol wipes before electrodes are applied. For the single skin electrode location, adhesive tape 

is used to remove dead skin cells from the surface and alcohol wipes are used to clean and prepare 

the skin. Impedances between the hair mount electrodes to ground were maintained below 20 kΩ. 
Due to the use of flexible contacts of the scalp-mounted dry electrode and skin-like electrode on 

the mastoid, we maintained relatively low the skin-electrode contact impedance. 

Calculation of signal-to-noise ratio (SNR). SNR was calculated from a continuously recorded 

10-second sample, using the computed periodogram with 2048-point (8.192 sec) overlapping 

windows for each of the four stimuli. Data for each subject were recorded consecutively on the 

same day, starting with the ActiveTwo, followed by the BioRadio, and finally the SKINTRONICS. 

The recordings from all three devices were performed within two hours. The setup time for the 

ActiveTwo was about half an hour for each subject, while the BioRadio and SKINTRONICS were 

easier to set up due to the use of fewer electrodes (about 15 minutes to set up for each subject). 

Setup time includes skin preparation time and checking the electrode impedance before starting 

EEG recording. The time required to record all the training and test data was about 13.5 minutes, 

for each system, with each individual trial being 75 seconds, with a minute break in between each 

of the six trials. 
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Calculation of information transfer rate (ITR). SSVEP BCI systems are generally assessed 

based on ITR, measured in bits/min and their classification accuracy.54 ITR is calculated as 

follows: 

2 2 2

1 60 bits
log log (1 ) log

1 min

A
ITR N A A A

N w

−
= + + −

−
 

where N is the number of targets, A is the accuracy, and w is the combined size of the classified 

windows in seconds, and the gaze shift time55. For each instruction relayed through the interface, 

the incoming EEG data was evaluated three times, every 64 ms. Actions are taken if three 

consecutive windows are consistent, providing an additional layer of protection to prevent 

incorrect commands from being transmitted to targets. Using this method, the 4-class classification 

results using CCA results in an ITR of 77.63 ± 5.32 bits per minute, with window length, w=0.94 

s, adjusted for gaze-shifting (+300 ms) and confusion protection (+128 ms). For testing 

classification performance, a total of 30 individual stimuli were presented, for a total of 0.704 

seconds, which allowed for classification of three consecutive 0.512ms samples. This was used as 

a safety mechanism for the control interface, where action would only be taken with a majority 

decision (2 or more classes match). Combined with gaze shift time, that brings the length of the 

window used up to 0.94 seconds (0.512+0.3+0.128 s). This same process was repeated for all the 

different window lengths. As a result, for each subject there were 450 samples of test data per trial 

for each window length, 90 for each class.  

Feature extraction. Analysis includes comparison of time-domain and frequency-domain data 

using identical windows from the initial source in the form of single-window periodogram analysis 

and Welch power spectral density analysis (PSDA). A third, coherence-based method, cross-

spectral density analysis (CSDA) was also implemented due to its ability to analyze the coherence 

of multiple channels, allowing for more precise frequency decomposition versus single-channel 

PSDA. Time domain signals were preprocessed using 3rd order Butterworth high-pass filter with 

a cutoff frequency of 4 Hz to remove DC offset and baseline drift. Due to the high quality of the 

source signals, no other digital filtration was found to significantly improve classification. These 

feature extraction methods are used to compare the learned feature-extraction capability of CNN 

versus manual feature extraction with SVM using various kernel functions (linear, quadratic, 

cubic, Gaussian).  

Cross-validation of classification algorithms. For SVM and CNN classification, five subjects’ 
training data was used to train the model and the remaining subject’s data was used for evaluation. 
For the CNN, the training involved feeding a training batch of 256 and a test batch of 100 samples 

in each iteration. Following 3000 training iterations (approximately 57 epochs), or, if no validation 

improvement occurs after 150 training steps, the training terminates. The test sets are subsequently 

evaluated for accuracy.  

Experimental classes. We measure SSVEP at four frequencies (11.1, 12.5, 15.2, and 16.7 Hz), 

and alpha rhythms to test the robustness of a system to specifically decode SSVEP. We use alpha 

rhythms as the null class (no target interface action), intended for the user to relax their eyes in 

case of fatigue. Due to the overlapping frequency ranges between alpha rhythms (8 – 12 Hz) and 

intended SSVEP classes56, the decoding process becomes more complex and error-prone to 

conventional machine learning techniques. Therefore, SSVEP frequencies below 11.1 Hz were not 

used due to frequency overlap with alpha rhythms. It was studied that the risk of short bursts of 

alpha rhythms could cause false positive results in these ranges57. The converse case is also a 

concern, where intentional alpha rhythms (subject has eyes closed) are incorrectly interpreted as 

SSVEP within the alpha frequency band. Despite many prior works showing SSVEP-based 
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systems within the alpha rhythm range, there has been limited study regarding confusion between 

SSVEP and alpha rhythm classification. Frequencies above 16.7 Hz were considered (18.5 and 20 

Hz) in a 7-class SSVEP system and the average classification accuracy across all subjects was 

summarized in Fig. S10. However, these frequencies were not included in the final system as they 

were considered extraneous, and some subjects had trouble focusing on these higher frequency 

stimuli. The stimulus for this application included four green LEDs arranged on a 3D-printed 

hollow ring fixture. A microcontroller (nRF51, Nordic Semiconductor, Oslo, Norway) controls the 

timings of the LEDs using a real-time operating system (FreeRTOS, open-source software) to 

ensure correct timings. The timings to toggle each LED were set as 45 ms, 40 ms, 33 ms, and 30 

ms, corresponding to 11.1 Hz, 12.5 Hz, 15.2 Hz, and 16.7 Hz respectively.  

Preparation of training and test data. For all experiments, a 250 Hz sampling rate was used with 

SKINTRONICS. The procedure for gathering training data involved a continuous EEG recording 

with 15 seconds for each class, separated by auditory cues. The classes were recorded in order of 

alpha rhythms, for the first 15 seconds, followed by 15 seconds of gazing at four different LED 

stimuli. Here, each recording where all five classes are performed constitutes a single trial. This 

trial was performed 6 times for each subject. Note that the experimental method for gathering 

training data is not the same as the experimental testing method. Empirical data from the 

SKINTRONICS suggested that training from a continuous stimulus was significantly more 

effective use of training data than a faster (< 1 second) cue-guided task. This may be because the 

relevant SSVEP features required for training are most optimal during these longer sessions of 

looking at the stimulus. To train the SVM and CNN models, the training data were sub-divided 

into window sizes of 128, 192, 256, 384, 512 data points (corresponding to 0.512, 0.768, 1.024, 

1.536, 2.048 sec data windows) to gauge changes in accuracy over different window sizes. The 

recording procedure for training and test data allowed for an additional 0.3 seconds for gaze-

shifting between stimuli. From the training set, there were 2700 samples from each subject used, 

450 samples from each of the 6 recordings. Therefore, for 5 subjects, a single training epoch 

consisted of training on 13,500 samples.  

Grid search optimization of CNN. In all CNN models, the filters and other trained variables were 

optimized using an optimization algorithm with a constant learning rate (Adam, learning 

rate=0.001, ß1=0.9, ß2=0.999)58, and error was calculated using the cross-entropy loss function. 

The input to the network is a 2D array of (n, 2), where n is the number of data points for a window 

sampled at 250 Hz (e.g. n=128, for a window length of 0.512s), and the 2 represents each of the 

two channels. This work optimizes the baseline CNN (architecture in Table S2) through two stages 

of improvements, adjusting components and hyperparameters on a single layer. A grid search 

approach was used because training for such a small dataset could be completed in a few minutes 

on consumer hardware, and it was reasonably efficient to find an optimal solution. First the 

optimum parameters are determined for a CNN with 1 convolutional layer and 1 fully connected 

layer before the output layer. This model is then expanded to multiple layers, as needed, to further 

improve accuracy. Details of optimization procedure via grid search appear in Section S8 and 

illustrated in Fig. S13-S16 and Table S3-S8 in Supplementary Materials. The optimized CNN for 

time-domain (2-CNN-TD) and CSDA (2-CNN-CSDA) data can be found in Table S9 and Table 

S10 respectively. The optimization of CNN results in enhanced classification accuracy from 6 

subjects (Table S11-S14). To demonstrate the device performance, the same optimized CNN 

procedure was performed on data from two commercial systems (BioRadio and ActiveTwo) and 

summarized in Table S15-S16 and Fig. S17.  
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BMI control scheme. An Android-based operating system was selected to demonstrate 

functionality and feasibility of a fully portable, wireless BMI. The SSVEP data transmitted from 

the SKINTRONICS with short electrode cables (Table S17) was received by a Bluetooth enabled 

smartphone (Samsung Galaxy S7). The data was preprocessed and fed into the trained CNN for 

classification on the smartphone. The output of the classification was used to wirelessly control 

the interface target. For the electronic wheelchair and wireless vehicle, the methods of control are 

the same as they are both two-wheel drive vehicles. When the subject has their eyes closed, the 

vehicle does not move, and only begin to move once SSVEP is classified by the central processing 

device. The top LED (11.1 Hz) is used to program the forward motion of the wheelchair and 

vehicle. The right-facing 15.2 Hz LED results in a counter-clockwise rotation, while the left-facing 

12.5 Hz results in a clockwise rotation. The final 16.7 Hz LED operates the reverse functionality. 

For the presentation control interface, the top LED initiates the start of the presentation, the right 

LED proceeds forward through the slides, and the left LED reverts to the previous slide. Lastly, 

the bottom LED terminates the presentation. Note that six subjects participated in the BMI control 

study (their hair information and associated EEG SNR in Table S18). Overall, this BMI control 

demonstration with the wireless, portable SKINTRONICS shows the potential for other neuro-

interface applications, as the controls can be easily reassigned to any target with equivalent or 

fewer targets. Additionally, this method can be scaled up to include a greater number of classes, 

which was previously not possible due to a lack of signal quality.  
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Figure 1. Overview of the system architecture featuring fully portable and wireless scalp 

electronics. a, Photo of a subject who has flexible wireless electronics (SKINTRONICS) 

conformed to the back of the neck with dry hair electrodes under a fabric headband and a 

membrane electrode on the mastoid, connected via thin film cables. b, Neural network-based 

topographical map that indicates EEG signal amplitudes. c, Photo capturing the ultrathin, flexible 

wireless electronics on skin, with an inset demonstrating device flexibility while handling. d, 

Aerosol-jet printed stretchable, skin-like electrode with an open-mesh structure (inset). e, Images 

showing gentle splaying of the conductive flexible elastomer legs of a dry hair electrode when 

slight downward pressure is applied, allowing the legs to separate the hair and the Ag/AgCl tipped 

legs to achieve good contact with the scalp. f, Illustration (left) showing electrode positions on a 

posterior view of the brain and highlighted occipital lobe and flow chart (right) describing the 

entire process of EEG-enabled brain-machine interfaces. 
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Figure 2. Mechanical flexibility and stretchability of the scalp electronics. a, Photo of the 

electronics bent at first location along the vertical axis, as shown in the inset photo, demonstrating 

180° bending (radius of curvature: 1.3 mm). b, FEA of fine mesh structure simulating 180° bending 

with same radius resulting in minimal strain at the interconnects (scale bar: maximum principal 

strain). c, Measurement of electrical resistance for the device under cyclic bending between 0 and 

180°, showing negligible changes in resistance. d, RSSI response at 0° and 180° with different 

distances up to 15 meters (n = 3 samples). e, Device bent at the second location along the vertical 

axis, as shown in the inset photo, between ADC and amplifiers (radius of curvature: 1.3 mm). f, 

FEA of the flexible structure simulating 180° bending with minimal strain (scale bar: maximum 

principal strain). g, Measurement of cyclic bending effect on the device in e, by recording the 

change of electrical resistance. h, RSSI response up to 15 meters at 0° and 180° bending. i, 15.2 

Hz SSVEP data recorded without (top) and with 180° bending (bottom). j, Hair-based elastomer 

electrode under compression. k, Corresponding load and unload curves showing a negligible peak 

change in resistance over a 6-second cycle. l, Subunit of a skin-mounted electrode under 100% 

stretching in experiment and FEA, showing no mechanical failure. m, 180° bending test of the 

electrode, showing less than 2% strain in FEA and no mechanical defects in experimental 

observation. 
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Figure 3. Comparison of device signal quality and classification accuracy. Three data sets for 

a conventional EEG system (ActiveTwo; 1st column), bulky clip-on wireless system (BioRadio; 

2nd column), and our 2-channel SKINTRONICS (3rd column). a-c, Periodograms of 50 samples 

from 12.5 Hz SSVEP signals overlaid over each other, with peaks highlighted with red circles; this 

comparison illustrates our device’s ability to precisely target and capture SSVEP signals without 

excessive noise. d-f, Average signal-to-noise ratio (SNR) with four SSVEP classes, across all six 

tested subjects. Error bars represent standard error of the mean (n=60 recordings; 6 subjects, 10 

recordings each). g, Two-channel SSVEP data at 12.5 Hz in time domain. h, Further preprocessing 

in the form of frequency-analysis including a single-window periodogram. i, Welch power-spectral 

density analysis (PSDA) overlapping periodogram. j, Cross-spectral density analysis (CSDA) of 

both channels. Note that the cross-spectral input includes the normal Welch power spectrum, 

resulting in three features. k, Comparison of classification accuracy between four preprocessing 

methods, shown in (g-j). The points on the graph are the mean accuracies from 36 trials from all 6 

test subjects. Error bars represent standard error of the mean (n = 36 trials). 
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Figure 4. EEG classification with CNN. a, High-pass filtered raw EEG data in time domain with 

features linearly rescaled between 0 and 1, labeled as SSVEP class ‘12.5 Hz’, along with a 
representative greyscale image. b, Greyscale representation of output weights in the two layers of 

CNN as well as in the fully connected layer using the 2-CNN model for time domain data. c, Table 

of softmax class outputs, indicating a correct choice with 99.89% probability. d, CNN and SVM 

classification test accuracy using time domain data and cross-validating across all subjects. e, CNN 

and SVM test accuracy on frequency-domain data, cross-validating across all subjects, with 

window lengths from 0.512 to 2.048 seconds. The displayed results are from the strongest SVM 

of the four tested (cubic kernel). f, Confusion matrix representing results from offline accuracy 

test of time-domain data of data window length w=0.512s, with an overall accuracy of 94.54% 

(n=2700 samples; 6 subjects, 450 samples each). g, Confusion matrix representing results from 

real-time accuracy test of time-domain data of length w=0.512s, with an overall accuracy of 

94.01% (n=2700 samples; 6 subjects, 450 samples each). 
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Figure 5. In vivo demonstration of SKINTRONICS BMI with human subjects. a-c, Subject 

seated in a powered wheelchair (a) with the LED stimulus array (b) and SKINTRONICS secured 

and conforming to the back of the neck (b). d, Android user interface during training and 

evaluation, showing time-domain data, corresponding power spectrum, and output class. e, EEG 

data recorded at each state, labeled as alpha rhythms, 11.1 Hz, 15.2 Hz, 12.5 Hz, 16.7 Hz SSVEP 

respectively. f-h, Three target machines to control via SSVEP signals, including a wireless 

electronic wheelchair (f) with 5 classes (no action, forward, rotate counterclockwise, rotate 

clockwise, and reverse, and wireless vehicle (g) with the same commands as the wheelchair, and 

PowerPoint presentation (h) with 5-class actions (no action, begin presentation, next slide, 

previous slide, and end presentation, respectively).  

  



22 

 

Table 1. Comparison of information transfer rate (ITR) between the SKINTRONICS and 

reported values.  

 Year 
Accuracy 

(%) 
Length 

(sec) 
Number of 

classes 

Number of 
channels 

ITR 

(bits/min) 
This work 

(SKINTRONICS) 2019 94.54 0.94 5 2 122.1 ± 3.53 

Nakanishi et al. 
30 

2018 89.83 0.8 40 9 
325.33 ± 

38.17 

Chen et al. 
44 

2015 91.09 1 40 9 270.0 ± 61.8 

Bevilacqua et al. 
59 

2014 95.61 2 3 4 38.44* 

Kwak et al. 
31 

2017 99.19 2 5 8 67.13* 

Volosyak et al. 
60 

2011 96.79 2 5 8 
61.70 ± 

32.68 

Lin et al. 
18 

2007 73.00 1.5 9 8 60.74* 

Bin et al. 
20 

2009 95.30 2 5 8 58.6 ± 9.6 

Wang et al. 
14 

2010 97.20 3.08 16 10 72.2 

*Calculated values from the reported data. 

 
 


