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Abstract. This paper presents a fully secure functional encryption scheme
for a wide class of relations, that are specified by non-monotone ac-
cess structures combined with inner-product relations. The security is
proven under a well-established assumption, the decisional linear (DLIN)
assumption, in the standard model. The proposed functional encryp-
tion scheme covers, as special cases, (1) key-policy and ciphertext-policy
attribute-based encryption with non-monotone access structures, and
(2) (hierarchical) predicate encryption with inner-product relations and
functional encryption with non-zero inner-product relations.

1 Introduction

1.1 Background

Although numerous encryption systems have been developed over several thou-
sand years, any traditional encryption system before the 1970’s had a great
restriction on the relation between a ciphertext encrypted by an encryption-key
(ek) and the decryption-key (dk) such that ek and dk should be equivalent. The
innovative notion of public-key cryptosystems in the 1970’s relaxed this restric-
tion, where ek and dk differ and ek can be published.

Recently, a new innovative class of encryption systems, functional encryption
(FE), has been extensively studied. FE provides more sophisticated and flexible
relations between the ek and dk where the ek and dk are parameterized by x and
v, respectively, and dkv can decrypt a ciphertext encrypted with ekx := (ek, x)
iff R(x, v) holds for some relation R. FE has various applications in the areas of
access control for databases, mail services, and contents distribution [2, 7, 9, 16,
17, 22–25, 27].

When R is the simplest relation or equality relation, i.e., R(x, v) holds iff
x = v, it is identity-based encryption (IBE) [3–6, 10, 12, 13, 15].

As a more general class of FE, attribute-based encryption (ABE) schemes
have been proposed [2, 7, 9, 16, 17, 22–25, 27], where either one of the param-
eters for ek and dk is a tuple of attributes and the other is a access struc-
ture or (monotone) span program M̂ along with a tuple of attributes, e.g.,



x := (x1, . . . , xd) for ek and v := (M̂, (v1, . . . , vd)) for dk, or v := (v1, . . . , vd) for
dk and x := (M̂, (x1, . . . , xd)) for ek. Here, some elements of the tuple may be
empty. The component-wise equality relations for (non-empty) attribute com-
ponents, e.g., {xt = vt}t∈{1,...,d}, are input to (monotone) span program M̂ ,
and R(x, v) holds iff the truth-value vector of (T(x1 = v1), . . . ,T(xd = vd)) is
accepted by M̂ , where T(ψ) := 1 if ψ is true, and T(ψ) := 0 if ψ is false (For
example, T(x = v) := 1 if x = v, and T(x = v) := 0 if x 6= v). If M̂ is embedded
into decryption-key dkv (e.g., v := (M̂, (v1, . . . , vd)) for dk and x := (x1, . . . , xd)
for ek), it is called key-policy ABE (KP-ABE). If M̂ is embedded into a ci-
phertext (e.g., x := (M̂, (x1, . . . , xd)) for ek and v := (v1, . . . , vd) for dk), it is
ciphertext-policy ABE (CP-ABE).

Inner-product encryption (IPE) [17] is also a class of FE, where each param-
eter for ek and dk is a vector over a field or ring (e.g., −→x := (x1, . . . , xn) ∈ F

n
q

and −→v := (v1, . . . , vn) ∈ F
n
q for ek and dk, respectively), and R(−→x ,−→v ) holds iff

−→x · −→v = 0, where −→x · −→v is the inner-product of −→x and −→v . The inner-product
relation represents a wide class of relations including equality, conjunction and
disjunction (more generally, CNF and DNF) of equality relations and polynomial
relations.

There are two types of secrecy in FE, attribute-hiding and payload-hiding [17].
Roughly speaking, attribute-hiding requires that a ciphertext conceal the asso-
ciated attribute as well as the plaintext, while payload-hiding only requires that
a ciphertext conceal the plaintext. Attribute-hiding FE is called predicate en-
cryption (PE) [17]. Anonymous IBE and hidden-vector encryption (HVE) [9] are
a class of PE and covered by predicate IPE, or PE with inner-product relations.

Although many ABE and IPE schemes have been presented over the last
several years, no adaptively-secure (or fully-secure) scheme has been proposed
in the standard model except [18]. The ABE scheme in [18] supports monotone
access structures with equality relations and is secure under non-standard as-
sumptions over composite order pairing groups. The IPE scheme in [18] supports
inner-product relations and is secure under a non-standard assumption, whose
size depends on some parameter that is not the security parameter.

No adaptively-secure (or fully-secure) ABE (even for monotone access struc-
tures) or IPE scheme has been proposed under a well-established assumption in
the standard model, and no adaptively-secure (or fully-secure) ABE scheme with
non-monotone access structures has been proposed (even under non-standard as-
sumptions) in the standard model. In addition, to the best of our knowledge,
no FE scheme (even with selective security) has been presented that supports
more general relations than those for ABE, i.e., access structures with equality
relations, and those for IPE, i.e., inner-product relations.

1.2 Our Result

– This paper proposes an adaptively secure functional encryption (FE) scheme
for a wide class of relations, that are specified by non-monotone access struc-
tures combined with inner-product relations. More precisely, either one of the
parameters for ek and dk is a tuple of attribute vectors and the other is a
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non-monotone access structure or span program M̂ := (M,ρ) along with a
tuple of attribute vectors, e.g., x := (−→x 1, . . . ,

−→x d) ∈ F
n1+···+nd
q for ek and

v := (M̂, (−→v 1, . . . ,
−→v d) ∈ F

n1+···+nd
q ) for dk. The component-wise inner-

product relations for attribute vector components, e.g., {−→x t ·
−→v t = 0 or not

}t∈{1,...,d}, are input to span program M̂ , and R(x, v) holds iff the truth-
value vector of (T(−→x 1 ·

−→v 1 = 0), . . . ,T(−→x t ·
−→v t = 0)) is accepted by span

program M̂ .
Similarly to ABE, we propose two types of FE schemes, the KP-FE and
CP-FE schemes. Although this paper focuses on the KP-FE scheme, similar
results are obtained for the CP-FE scheme (see the full version of this paper).
Note that in Section 5, parameter x for encryption is expressed by Γ :=
{(t,−→x t) | 1 ≤ t ≤ d} in place of a tuple of vectors (−→x 1, . . . ,

−→x d), where
1 ≤ t ≤ d means that t is an element of some subset of {1, . . . , d}, and
parameter v for the decryption key is expressed by S := (M,ρ) (not by
M̂ := (M,ρ) along with (−→v 1, . . . ,

−→v d) as described above), where ρ in S is
abused as ρ in M̂ combined with (−→v 1, . . . ,

−→v d) (see Definition 4).
Since the class of relations supported by the proposed FE scheme is more
general than that for ABE and IPE, the proposed FE scheme includes the
following schemes as special cases:
1. The (KP and CP)-ABE schemes for non-monotone access structures

with equality relations. Here, the underlying attribute vectors of the
FE scheme, {−→x t}t∈{1,...,d} and {−→v t}t∈{1,...,d}, are specialized to two-
dimensional vectors for the equality relation, e.g., −→x t := (1, xt) and
−→v t := (vt,−1), where −→x t ·

−→v t = 0 iff xt = vt.
2. The IPE and non-zero-IPE schemes, where a non-zero-IPE scheme is a

class of FE with R(−→x ,−→v ) iff −→x · −→v 6= 0. Here, the underlying access
structure S of the FE scheme is specialized to the 1-out-of-1 secret shar-
ing. The IPE scheme is ‘attribute-hiding,’ i.e., it is the PE scheme for
the inner-product relations (see the full version for the proof).
In addition, if the underlying access structure is specialized to the d-out-
of-d secret sharing, our FE scheme can be specialized to a hierarchical
zero/non-zero IPE scheme by adding delegation and rerandomization
mechanisms (see the full version for the construction and proof).

– The proposed FE scheme with such a wide class of relations is proven to
be adaptively secure (adaptively payload-hiding against CPA) under a well-
established assumption, the decisional linear (DLIN) assumption (over prime
order pairing groups), in the standard model.
Note that even for FE with the simplest relations or the equality relations,
i.e., IBE, only a few IBE schemes are known to be adaptively secure under
well-established assumptions; the Waters IBE scheme [26] under the DBDH
assumption, and the Waters IBE scheme [28] under the DBDH and DLIN
assumptions.
The DLIN assumption is considered to be the simplest decisional assumption
regarding pairing group G, since the DLIN assumption is defined only over
G, the DDH assumption does not hold in G, and the DBDH assumption is
defined over two groups G and GT .
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– To prove the security, this paper elaborately combines the dual system en-
cryption methodology proposed by Waters [28] and the concept of dual pair-
ing vector spaces (DPVS) proposed by Okamoto and Takashima [20, 21], in
a manner similar to that in [18]. See Section 2 (and the full version of this
paper) for the concept and actual construction of DPVS.
This paper also develops a new technique to prove the security based on the
DLIN assumption. This provides a new methodology of employing a simple
assumption defined on primitive groups to prove a complicated scheme that
is designed on a higher level concept, DPVS.
In our methodology, the top level of the security proof (based on the dual
system encryption methodology) directly employs only top level assump-
tions (assumptions by Problems 1 and 2), that are defined on DPVS. The
methodology bridges the top level assumptions and the primitive one, the
DLIN assumption, in a hierarchical manner, where several levels of assump-
tions are constructed hierarchically. Such a modular way of proof greatly
clarifies the logic of a complicated security proof.

– The efficiency of the proposed FE scheme is comparable to that of the ex-
isting ABE and IPE schemes. For example, if the proposed FE scheme is
specialized to the IPE scheme, the key and ciphertext sizes are (4n+5) · |G|,
while they are (2n + 3) · |G| for the IPE scheme in [18], where n is the di-
mension of the attribute vectors, and |G| denotes the size of an element of
pairing group G, e.g., 256 bits.

– It is easy to convert the (CPA-secure) proposed FE scheme to a CCA-secure
FE scheme by employing an existing general conversion such as that by
Canetti, Halevi and Katz [11] or that by Boneh and Katz [8] (using additional
8-dimensional dual spaces (Bd+1,B

∗
d+1) with nd+1 := 2 on the proposed FE

scheme, and a strongly unforgeable one-time signature scheme or message
authentication code with encapsulation). That is, we can present a fully
secure (adaptively payload-hiding against CCA) FE scheme for the same
class of relations in the standard model under the DLIN assumption as well as
a strongly unforgeable one-time signature scheme or message authentication
code with encapsulation (see the full version of this paper for the construction
and security proof).

1.3 Notations

When A is a random variable or distribution, y
R
← A denotes that y is randomly

selected from A according to its distribution. When A is a set, y
U
← A denotes

that y is uniformly selected from A. y := z denotes that y is set, defined or
substituted by z. When a is a fixed value, A(x) → a (e.g., A(x) → 1) denotes
the event that machine (algorithm) A outputs a on input x. A function f : N→ R

is negligible in λ, if for every constant c > 0, there exists an integer n such that
f(λ) < λ−c for all λ > n.

We denote the finite field of order q by Fq, and Fq \{0} by F
×
q . A vector sym-

bol denotes a vector representation over Fq, e.g., −→x denotes (x1, . . . , xn) ∈ F
n
q .

For two vectors −→x = (x1, . . . , xn) and −→v = (v1, . . . , vn),
−→x · −→v denotes the
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inner-product
∑n
i=1 xivi. The vector

−→
0 is abused as the zero vector in F

n
q

for any n. XT denotes the transpose of matrix X. Iℓ and 0ℓ denote the ℓ × ℓ
identity matrix and the ℓ × ℓ zero matrix, respectively. A bold face letter de-
notes an element of vector space V, e.g., x ∈ V. When bi ∈ V (i = 1, . . . , n),
span〈b1, . . . , bn〉 ⊆ V (resp. span〈−→x 1, . . . ,

−→x n〉) denotes the subspace gener-
ated by b1, . . . , bn (resp. −→x 1, . . . ,

−→x n). For bases B := (b1, . . . , bN ) and B
∗ :=

(b∗
1, . . . , b

∗
N ), (x1, . . . , xN )B :=

∑N
i=1 xibi and (y1, . . . , yN )B∗ :=

∑N
i=1 yib

∗
i .

2 Dual Pairing Vector Spaces by Direct Product of

Symmetric Pairing Groups

Definition 1. “Symmetric bilinear pairing groups” (q,G,GT , G, e) are a tuple
of a prime q, cyclic additive group G and multiplicative group GT of order q,
G 6= 0 ∈ G, and a polynomial-time computable nondegenerate bilinear pairing
e : G×G→ GT i.e., e(sG, tG) = e(G,G)st and e(G,G) 6= 1.

Let Gbpg be an algorithm that takes input 1λ and outputs a description of
bilinear pairing groups (q,G,GT , G, e) with security parameter λ.

In this paper, we concentrate on the symmetric version of dual pairing vector
spaces [20, 21] constructed by using symmetric bilinear pairing groups given in
Definition 1.

Definition 2. “Dual pairing vector spaces (DPVS)” (q,V,GT ,A, e) by a direct
product of symmetric pairing groups (q,G,GT , G, e) are a tuple of prime q, N -

dimensional vector space V :=

N︷ ︸︸ ︷
G× · · · ×G over Fq, cyclic group GT of order q,

canonical basis A := (a1, . . . ,aN ) of V, where ai := (

i−1︷ ︸︸ ︷
0, . . . , 0, G,

N−i︷ ︸︸ ︷
0, . . . , 0), and

pairing e : V× V→ GT .
The pairing is defined by e(x,y) :=

∏N
i=1 e(Gi,Hi) ∈ GT where x := (G1, . . . ,

GN ) ∈ V and y := (H1, . . . ,HN ) ∈ V. This is nondegenerate bilinear i.e.,
e(sx, ty) = e(x,y)st and if e(x,y) = 1 for all y ∈ V, then x = 0. For all
i and j, e(ai,aj) = e(G,G)δi,j where δi,j = 1 if i = j, and 0 otherwise, and
e(G,G) 6= 1 ∈ GT .

DPVS also has linear transformations φi,j on V s.t.φi,j(aj) = ai and φi,j(ak)

= 0 if k 6= j, which can be easily achieved by φi,j(x) := (

i−1︷ ︸︸ ︷
0, . . . , 0, Gj ,

N−i︷ ︸︸ ︷
0, . . . , 0)

where x := (G1, . . . , GN ). We call φi,j “distortion maps”.
DPVS generation algorithm Gdpvs takes input 1λ (λ ∈ N) and N ∈ N, and

outputs a description of paramV := (q,V,GT ,A, e) with security parameter λ and
N -dimensional V. It can be constructed by using Gbpg.

For the asymmetric version of DPVS, (q,V,V∗,GT ,A,A
∗, e), see the full

version of this paper. The above symmetric version is obtained by identifying
V = V

∗ and A = A
∗ in the asymmetric version.
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We describe random dual orthonormal bases generator Gob below, which is
used as a subroutine in the proposed FE scheme.

Gob(1
λ,−→n := (d;n1, . . . , nd)) : paramG := (q,G,GT , G, e)

R
← Gbpg(1

λ), ψ
U
← F

×
q ,

N0 := 5, Nt := 4nt for t = 1, . . . , d,

for t = 0, . . . , d, paramVt
:= (q,Vt,GT ,At, e) := Gdpvs(1

λ, Nt, paramG),

Xt := (χt,i,j)i,j
U
← GL(Nt,Fq), (ϑt,i,j)i,j := ψ · (XT

t )−1,

bt,i := (χt,i,1, . . . , χt,i,Nt
)At

=
∑Nt

j=1 χt,i,jat,j , Bt := (bt,1, . . . , bt,Nt
),

b∗
t,i := (ϑt,i,1, . . . , ϑt,i,Nt

)At
=

∑Nt

j=1 ϑt,i,jat,j , B
∗
t := (b∗

t,1, . . . , b
∗
t,Nt

),

gT := e(G,G)ψ, param−→n := ({paramVt
}t=0,...,d, gT )

return (param−→n , {Bt,B
∗
t }t=0,...,d).

We note that gT = e(bt,i, b
∗
t,i) for t = 0, . . . , d; i = 1, . . . , Nt.

3 Functional Encryption with General Relations

3.1 Span Programs and Non-Monotone Access Structures

Definition 3 (Span Programs [1]). Let {p1, . . . , pn} be a set of variables. A
span program over Fq is a labeled matrix M̂ := (M,ρ) where M is a (ℓ×r) matrix
over Fq and ρ is a labeling of the rows of M by literals from {p1, . . . , pn,¬p1, . . . ,
¬pn} (every row is labeled by one literal), i.e., ρ : {1, . . . , ℓ} → {p1, . . . , pn,¬p1,
. . . , ¬pn}.

A span program accepts or rejects an input by the following criterion. For
every input sequence δ ∈ {0, 1}n define the submatrix Mδ of M consisting of
those rows whose labels are set to 1 by the input δ, i.e., either rows labeled by
some pi such that δi = 1 or rows labeled by some ¬pi such that δi = 0. (i.e.,
γ : {1, . . . , ℓ} → {0, 1} is defined by γ(j) = 1 if [ρ(j) = pi] ∧ [δi = 1] or
[ρ(j) = ¬pi] ∧ [δi = 0], and γ(j) = 0 otherwise. Mδ := (Mj)γ(j)=1, where Mj is
the j-th row of M .)

The span program M̂ accepts δ if and only if
−→
1 ∈ span〈Mδ〉, i.e., some linear

combination of the rows of Mδ gives the all one vector
−→
1 . (The row vector has

the value 1 in each coordinate.) A span program computes a Boolean function f
if it accepts exactly those inputs δ where f(δ) = 1.

A span program is called monotone if the labels of the rows are only the posi-
tive literals {p1, . . . , pn}. Monotone span programs compute monotone functions.
(So, a span program in general is “non”-monotone.)

We assume that the matrixM satisfies the condition:Mi 6=
−→
0 for i = 1, . . . , ℓ.

We now introduce a non-monotone access structure with evaluating map γ
by using the inner-product of attribute vectors, that is employed in the proposed
functional encryption schemes.
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Definition 4 (Inner-Products of Attribute Vectors and Access Struc-
tures). Ut (t = 1, . . . , d and Ut ⊂ {0, 1}

∗) is a sub-universe, a set of attributes,
each of which is expressed by a pair of sub-universe id and nt-dimensional vector,

i.e., (t,−→v ), where t ∈ {1, . . . , d} and −→v ∈ F
nt
q \ {

−→
0 }.

We now define such an attribute to be a variable p of a span program M̂ :=
(M,ρ), i.e., p := (t,−→v ). An access structure S is span program M̂ := (M,ρ)
along with variables p := (t,−→v ), p′ := (t′,−→v ′), . . ., i.e., S := (M,ρ) such that
ρ : {1, . . . , ℓ} → {(t,−→v ), (t′,−→v ′), . . ., ¬(t,−→v ),¬(t′,−→v ′), . . .}.

Let Γ be a set of attributes, i.e., Γ := {(t,−→x t) |
−→x t ∈ F

nt
q \ {

−→
0 }, 1 ≤ t ≤ d},

where 1 ≤ t ≤ d means that t is an element of some subset of {1, . . . , d}.
When Γ is given to access structure S, map γ : {1, . . . , ℓ} → {0, 1} for span

program M̂ := (M,ρ) is defined as follows: For i = 1, . . . , ℓ, set γ(i) = 1 if
[ρ(i) = (t,−→v i)] ∧[(t,−→x t) ∈ Γ ] ∧[−→v i ·

−→x t = 0] or [ρ(i) = ¬(t,−→v i)] ∧[(t,−→x t) ∈ Γ ]
∧[−→v i ·

−→x t 6= 0]. Set γ(i) = 0 otherwise.

Access structure S := (M,ρ) accepts Γ iff
−→
1 ∈ span〈(Mi)γ(i)=1〉.

We now construct a secret-sharing scheme for a non-monotone access struc-
ture or span program.

Definition 5. A secret-sharing scheme for span program M̂ := (M,ρ) is:

1. Let M be ℓ × r matrix. Let column vector
−→
f T := (f1, . . . , fr)

T U
← F

r
q .

Then, s0 :=
−→
1 ·
−→
f T =

∑r
k=1 fk is the secret to be shared, and −→s T :=

(s1, . . . , sℓ)
T := M ·

−→
f T is the vector of ℓ shares of the secret s0 and the

share si belongs to ρ(i).
2. If span program M̂ := (M,ρ) accept δ, or access structure S := (M,ρ) accepts

Γ , i.e.,
−→
1 ∈ span〈(Mi)γ(i)=1〉 with γ : {1, . . . , ℓ} → {0, 1}, then there exist

constants {αi ∈ Fq | i ∈ I} such that I ⊆ {i ∈ {1, . . . , ℓ} | γ(i) = 1} and∑
i∈I αisi = s0. Furthermore, these constants {αi} can be computed in time

polynomial in the size of matrix M .

3.2 Key-Policy Functional Encryption with General Relations

Definition 6 (Key-Policy Functional Encryption : KP-FE). A key-policy
functional encryption scheme consists of four algorithms.

Setup This is a randomized algorithm that takes as input security parameter
and format −→n := (d;n1, . . . , nd) of attributes. It outputs public parameters
pk and master secret key sk.

KeyGen This is a randomized algorithm that takes as input access structure S :=
(M,ρ), pk and sk. It outputs a decryption key skS.

Enc This is a randomized algorithm that takes as input message m, a set of

attributes, Γ := {(t,−→x t)|
−→x t ∈ F

nt
q \ {

−→
0 }, 1 ≤ t ≤ d}, and public parameters

pk. It outputs a ciphertext ctΓ .
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Dec This takes as input ciphertext ctΓ that was encrypted under a set of at-
tributes Γ , decryption key skS for access structure S, and public parameters
pk. It outputs either plaintext m or the distinguished symbol ⊥.

A KP-FE scheme should have the following correctness property: for all

(pk, sk)
R
← Setup(1λ,−→n ), all access structures S, all decryption keys skS

R
←

KeyGen(pk, sk,S), all messages m, all attribute sets Γ , all ciphertexts ctΓ
R
←

Enc(pk, m, Γ ), it holds that m = Dec(pk, skS, ctΓ ) with overwhelming probabil-
ity, if S accepts Γ .

Definition 7. The model for proving the adaptively payload-hiding security of
KP-FE under chosen plaintext attack is:

Setup The challenger runs the setup algorithm, (pk, sk)
R
← Setup(1λ, −→n ), and

gives public parameters pk to the adversary.
Phase 1 The adversary is allowed to adaptively issue a polynomial number of

queries, S, to the challenger or oracle KeyGen(pk, sk, ·) for private keys, skS

associated with S.
Challenge The adversary submits two messages m(0),m(1) and a set of at-

tributes, Γ , provided that no S queried to the challenger in Phase 1 ac-

cepts Γ . The challenger flips a coin b
U
← {0, 1}, and computes ct

(b)
Γ

R
←

Enc(pk,m(b), Γ ). It gives ct
(b)
Γ to the adversary.

Phase 2 The adversary is allowed to adaptively issue a polynomial number of
queries, S, to the challenger or oracle KeyGen(pk, sk, ·) for private keys, skS

associated with S, provided that S does not accept Γ .
Guess The adversary outputs a guess b′ of b.

We note that the model can easily be extended to handle chosen-ciphertext
attacks by allowing for decryption queries in Phases 1 and 2.

The advantage of adversary A in the above game is defined as Adv
KP-FE,PH
A (λ)

:= Pr[b′ = b]− 1/2 for any security parameter λ. A KP-FE scheme is secure if
all polynomial time adversaries have at most a negligible advantage in the above
game.

Similarly we can define a ciphertext-policy FE (CP-FE) scheme (see the full
version of this paper).

4 Assumption

Definition 8 (DLIN: Decisional Linear Assumption). The DLIN problem

is to guess β ∈ {0, 1}, given (paramG, G, ξG, κG, ωξG, γκG, Yβ)
R
← GDLIN

β (1λ),
where

GDLIN
β (1λ) : paramG := (q,G,GT , G, e)

R
← Gbpg(1

λ),

κ, ω, ξ, γ
U
← Fq, Y0 := (ω + γ)G, Y1

U
← G,

return (paramG, G, ξG, κG, ωξG, γκG, Yβ),
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for β
U
← {0, 1}. For a probabilistic machine E, we define the advantage of E for

the DLIN problem as:

AdvDLIN
E (λ) :=

∣∣∣Pr
[
E(1λ, ̺)→1

∣∣∣̺ R
←GDLIN

0 (1λ)
]
−Pr

[
E(1λ, ̺)→1

∣∣∣̺ R
←GDLIN

1 (1λ)
]∣∣∣ .

The DLIN assumption is: For any probabilistic polynomial-time adversary E,
the advantage AdvDLIN

E (λ) is negligible in λ.

5 Proposed KP-FE Scheme

We define function ρ̃ : {1, . . . , ℓ} → {1, . . . , d} by ρ̃(i) := t if ρ(i) = (t,−→v ) or
ρ(i) = ¬(t,−→v ), where ρ is given in access structure S := (M,ρ). In the proposed
scheme, we assume that ρ̃ is injective for S := (M,ρ) with decryption key skS.
We will show how to relax the restriction in the full version of this paper.

In the description of the scheme, we assume that input vector,−→x t := (xt,1, . . . ,
xt,nt

), is normalized such that xt,1 := 1. (If −→x t is not normalized, change it to
a normalized one by (1/xt,1) ·

−→x t, assuming that xt,1 is non-zero).

Setup(1λ, −→n := (d;n1, . . . , nd)) : (param−→n , {Bt,B
∗
t }t=0,...,d)

R
← Gob(1

λ,−→n ),

B̂0 := (b0,1, b0,3, b0,5), B̂t := (bt,1, .., bt,nt
, bt,3nt+1, .., bt,4nt

) for t = 1, .., d,

B̂
∗
0 := (b∗

0,1, b
∗
0,3, b

∗
0,4), B̂

∗
t := (b∗

t,1, .., b
∗
t,nt

, b∗
t,2nt+1, .., b

∗
t,3nt

) for t = 1, .., d,

pk := (1λ, param−→n , {B̂t}t=0,...,d), sk := {B̂∗
t }t=0,...,d,

return pk, sk.

KeyGen(pk, sk, S := (M,ρ)) :
−→
f

U
← F

r
q ,
−→s T := (s1, . . . , sℓ)

T := M ·
−→
f T, s0 :=

−→
1 ·
−→
f T, η0

U
← Fq,

k∗
0 := (−s0, 0, 1, η0, 0)B∗

0
,

for i = 1, . . . , ℓ,

if ρ(i) = (t,−→v i := (vi,1, . . . , vi,nt
) ∈ F

nt
q \ {

−→
0 }), θi, ηi,1, .., ηi,nt

U
← Fq,

nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷
k∗
i := ( si + θivi,1, θivt,2, .., θivi,nt

, 0nt , ηi,1, .., ηi,nt
, 0nt )B∗

t
,

if ρ(i) = ¬(t,−→v i), ηi,1, . . . , ηi,nt

U
← Fq,

nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷
k∗
i := ( si(vi,1, .., vi,nt

), 0nt , ηi,1, .., ηi,nt
, 0nt )B∗

t
,

return skS := (S,k∗
0,k

∗
1, . . . ,k

∗
ℓ ).

Enc(pk, m, Γ := {(t,−→x t := (xt,1, .., xt,nt
) ∈ F

nt
q \ {

−→
0 }) | 1 ≤ t ≤ d, xt,1 := 1}) :

δ, ϕ0, ϕt,1, . . . , ϕt,nt
, ζ

U
← Fq for (t,−→x t) ∈ Γ,

c0 := (δ, 0, ζ, 0, ϕ0)B0
,

9



nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷
ct := ( δ(xt,1, .., xt,nt

), 0nt , 0nt , ϕt,1, .., ϕt,nt
)Bt

for (t,−→x t) ∈ Γ,

cd+1 := gζTm, ctΓ := (Γ, c0, {ct}(t,−→x t)∈Γ , cd+1).

return ctΓ .

Dec(pk, skS := (S,k∗
0,k

∗
1, . . . ,k

∗
ℓ ), ctΓ := (Γ, c0, {ct}(t,−→x t)∈Γ , cd+1)) :

If S := (M,ρ) accepts Γ := {(t,−→x t)}, then compute I and {αi}i∈I such that

s0 =
∑
i∈I αisi, and

I ⊆ {i ∈ {1, . . . , ℓ} | [ρ(i) = (t,−→v i) ∧ (t,−→x t) ∈ Γ ∧
−→v i ·

−→x t = 0]

∨ [ρ(i) = ¬(t,−→v i) ∧ (t,−→x t) ∈ Γ ∧
−→v i ·

−→x t 6= 0] }.

K := e(c0,k
∗
0)

∏

i∈I ∧ ρ(i)=(t,−→v i)

e(ct,k
∗
i )
αi

∏

i∈I ∧ ρ(i)=¬(t,−→v i)

e(ct,k
∗
i )
αi/(

−→v i·
−→x t)

return m′ := cd+1/K.

[Correctness]

e(c0,k
∗
0)

∏
i∈I ∧ ρ(i)=(t,−→v i)

e(ct,k
∗
i )
αi ·

∏
i∈I ∧ ρ(i)=¬(t,−→v i)

e(ct,k
∗
i )
αi/(

−→v i·
−→x t)

= g−δs0+ζT

∏
i∈I ∧ ρ(i)=(t,−→v i)

gδαisi

T

∏
i∈I ∧ ρ(i)=¬(t,−→v i)

g
δαisi(

−→v i·
−→x t)/(

−→v i·
−→x t)

T

= g
δ(−s0+

∑
i∈I

αisi)+ζ

T = gζT .

6 Security

The proofs of Lemmas 1–4 and 6–8, and Claim 1 are given in the full version of
this paper.

6.1 Theorem

Theorem 1. The proposed KP-FE scheme is adaptively payload-hiding against
chosen plaintext attacks under the DLIN assumption.

For any adversary A, there exist probabilistic machines E0, E
+
h , Eh+1 (h =

0, . . . , ν − 1), whose running times are essentially the same as that of A, such
that for any security parameter λ,

Adv
KP-FE,PH
A (λ) ≤ AdvDLIN

E0
(λ) +

ν−1∑

h=0

(
AdvDLIN

E+

h

(λ) + AdvDLIN
Eh+1

(λ)
)

+ ǫ,

where ν is the maximum number of A’s key queries and ǫ := (2dν+12ν+d+7)/q.

6.2 Lemmas

We will show three lemmas for the proof of Theorem 1.
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Definition 9 (Problem 1). Problem 1 is to guess β, given (param−→n , B̂0, B̂
∗
0,

eβ,0, {B̂t, B̂
∗
t ,eβ,t,i}t=1,...,d;i=1,...,nt

)
R
← GP1

β (1λ,−→n ), where

GP1
β (1λ,−→n ) : (param−→n , {Bt,B

∗
t }t=0,...,d)

R
← Gob(1

λ,−→n ),

B̂0 := (b0,1, b0,3, b0,5), B̂t := (bt,1, .., bt,nt
, bt,3nt+1, .., bt,4nt

) for t = 1, .., d,

B̂
∗
0 := (b∗

0,1, b
∗
0,3, b

∗
0,4), B̂

∗
t := (b∗

t,1, .., b
∗
t,nt

, b∗
t,2nt+1, .., b

∗
t,3nt

) for t = 1, .., d,

u0
U
← F

×
q , δ, δ0

U
← Fq, (ut,i,j)i,j=1,...,nt

U
← GL(nt,Fq) for t = 1, .., d,

e0,0 := (δ, 0, 0, 0, δ0)B0
, e1,0 := (δ, u0, 0, 0, δ0)B0

,

for t = 1, . . . , d; i = 1, . . . , nt;

δt,i,j
U
← Fq for j = 1, . . . , nt,

nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷
e0,t,i := ( 0i−1, δ, 0nt−i, 0nt , 0nt , δt,i,1, .., δt,i,nt

)Bt
,

e1,t,i := ( 0i−1, δ, 0nt−i, ut,i,1, .., ut,i,nt
, 0nt , δt,i,1, .., δt,i,nt

)Bt
,

return (param−→n , B̂0, B̂
∗
0,eβ,0, {B̂t, B̂

∗
t ,eβ,t,i}t=1,...,d;i=1,...,nt

),

for β
U
← {0, 1}. For a probabilistic machine B, we define the advantage of B as

the quantity

AdvP1
B (λ) :=

∣∣∣Pr
[
B(1λ, ̺)→1

∣∣∣̺ R
←GP1

0 (1λ,−→n )
]
−Pr

[
B(1λ, ̺)→1

∣∣∣̺ R
←GP1

1 (1λ,−→n )
]∣∣∣ .

Lemma 1. For any adversary B, there exists a probabilistic machine E, whose
running time is essentially the same as that of B, such that for any security
parameter λ, AdvP1

B (λ) ≤ AdvDLIN
E (λ) + 5/q.

Definition 10 (Problem 2). Problem 2 is to guess β, given (param−→n , B̂0, B̂
∗
0,

h∗
β,0,e0, {B̂t, B̂

∗
t ,h

∗
β,t,i,et,i}t=1,...,d;i=1,...,nt

)
R
← GP2

β (1λ,−→n ), where

GP2
β (1λ,−→n ) : (param−→n , {Bt,B

∗
t }t=0,...,d)

R
← Gob(1

λ,−→n ),

B̂0 := (b0,1, b0,3, b0,5), B̂t := (bt,1, .., bt,nt
, bt,3nt+1, .., bt,4nt

) for t = 1, .., d,

B̂
∗
0 := (b∗

0,1, .., b
∗
0,4), B̂

∗
t := (b∗

t,1, .., b
∗
t,nt

, b∗
t,2nt+1, .., b

∗
t,3nt

) for t = 1, .., d,

τ, u0
U
← F

×
q , ω, δ, γ0

U
← Fq, w0 := τ/u0,

(zt,i,j)i,j=1,..,nt
:= Zt

U
← GL(nt,Fq), (ut,i,j)i,j=1,..,nt

:= (Z−1
t )T for t = 1, .., d,

h∗
0,0 := (ω, 0, 0, γ0, 0)B∗

0
, h∗

1,0 := (ω,w0, 0, γ0, 0)B∗

0
, e0 := (δ, u0, 0, 0, 0)B0

,

for t = 1, . . . , d; i = 1, . . . , nt;
(
wt,i,j

)
i,j=1,...,nt

:= τ · Zt, γt,i,j
U
← Fq for j = 1, .., nt,
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nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ nt︷ ︸︸ ︷
h∗

0,t,i := ( 0i−1, ω, 0nt−i, 0nt , γt,i,1, .., γt,i,nt
, 0nt )B∗

t

h∗
1,t,i := ( 0i−1, ω, 0nt−i, wt,i,1, .., wt,i,nt

, γt,i,1, .., γt,i,nt
, 0nt )B∗

t

et,i := ( 0i−1, δ, 0nt−i, ut,i,1, .., ut,i,nt
, 0nt , 0nt )Bt

,

return (param−→n , B̂0, B̂
∗
0,h

∗
β,0,e0, {B̂t, B̂

∗
t ,h

∗
β,t,i,et,i}t=1,..,d;i=1,..,nt

),

for β
U
← {0, 1}. For a probabilistic adversary B, the advantage of B for Problem

2, AdvP2
B (λ), is similarly defined as in Definition 9.

Lemma 2. For any adversary B, there exists a probabilistic machine E, whose
running time is essentially the same as that of B, such that for any security
parameter λ, AdvP2

B (λ) ≤ AdvDLIN
E (λ) + 5/q.

Lemma 3. For p ∈ Fq, let Cp := {(−→x ,−→v )|−→x · −→v = p} ⊂ V × V ∗ where V is
n-dimensional vector space F

n
q , and V ∗ its dual. For all (−→x ,−→v ) ∈ Cp, for all

(−→r ,−→w ) ∈ Cp, Pr [−→x U = −→r ∧ −→v Z = −→w ] = 1
/
♯ Cp, where Z

U
← GL(n,Fq), U :=

(Z−1)T.

6.3 Proof of Theorem 1

Proof Outline : At the top level of strategy of the security proof, we follow the
dual system encryption methodology proposed by Waters [28]. In the method-
ology, ciphertexts and secret keys have two forms, normal and semi-functional.
In the proof herein, we also introduce another form called pre-semi-functional.
The real system uses only normal ciphertexts and normal secret keys, and semi-
functional/pre-semi-functional ciphertexts and keys are used only in a sequence
of security games for the security proof.

To prove this theorem, we employ Game 0 (original adaptive-security game)
through Game 3. In Game 1, the target ciphertext is changed to semi-functional.
When at most ν secret key queries are issued by an adversary, there are 2ν game
changes from Game 1 (Game 2-0), Game 2-0+, Game 2-1 through Game 2-
(ν − 1)+ and Game 2-ν. In Game 2-h, the first h keys are semi-functional while
the remaining keys are normal, and the target ciphertext is semi-functional. In
Game 2-h+, the first h keys are semi-functional and the (h + 1)-th key is pre-
semi-functional while the remaining keys are normal, and the target ciphertext
is pre-semi-functional. The final game with advantage 0 is changed from Game
2-ν. As usual, we prove that the advantage gaps between neighboring games are
negligible.

For skS := (S,k∗
0,k

∗
1, . . . ,k

∗
ℓ ) and ctΓ := (Γ, c0, {ct}(t,−→x t)∈Γ , cd+1), we focus

on
−→
k ∗

S
:= (k∗

0,k
∗
1, . . . ,k

∗
ℓ ) and −→c Γ := (c0, {ct}(t,−→x t)∈Γ ), and ignore the other

part of skS and ctΓ (and call them secret key and ciphertext, respectively) in
this proof outline. In addition, we ignore a negligible factor in the (informal)
descriptions of this proof outline. For example, we say “A is bounded by B”
when A ≤ B + ǫ(λ) where ǫ(λ) is negligible in security parameter λ.
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A normal secret key,
−→
k ∗ norm

S
(with access structure S), is the correct form of

the secret key of the proposed FE scheme, and is expressed by Eq. (1). Similarly,
a normal ciphertext (with attribute set Γ ), −→c norm

Γ , is expressed by Eq. (2). A

semi-functional secret key,
−→
k ∗ semi

S
, is expressed by Eq. (8), and a semi-functional

ciphertext, −→c semi
Γ , is expressed by Eqs. (3)-(5). A pre-semi-functional secret key,

−→
k

∗ pre-semi
S

, and pre-semi-functional ciphertext, −→c pre-semi
Γ , are expressed by Eq.

(6) and Eqs. (3), (7) and (5), respectively.

To prove that the advantage gap between Games 0 and 1 is bounded by
the advantage of Problem 1 (to guess β ∈ {0, 1}), we construct a simulator of
the challenger of Game 0 (or 1) (against an adversary A) by using an instance

with β
U
← {0, 1} of Problem 1. We then show that the distribution of the secret

keys and target ciphertext replied by the simulator is equivalent to those of
Game 0 when β = 0 and Game 1 when β = 1. That is, the advantage of
Problem 1 is equivalent to the advantage gap between Games 0 and 1 (Lemma
4). The advantage of Problem 1 is proven to be equivalent to that of the DLIN
assumption (Lemma 1).

The advantage gap between Games 2-h and 2-h+ is similarly shown to be
bounded by the advantage of Problem 2 (i.e., advantage of the DLIN assump-
tion) (Lemmas 5 and 2). Here, we introduce special forms of pre-semi-functional

keys and ciphertexts,
−→
k

∗ spec.pre-semi
S

and −→c spec.pre-semi
Γ , respectively, such that

they are equivalent to pre-semi-functional keys and ciphertexts,
−→
k

∗ pre-semi
S

and
−→c pre-semi
Γ , respectively, except that w0r0 = a0 :=

∑r
k=1 gk and r0

U
← Fq (note that

r0, w0
U
← Fq for

−→
k

∗ pre-semi
S

and −→c pre-semi
Γ ). These forms of keys and ciphertexts,

−→
k

∗ spec.pre-semi
S

and −→c spec.pre-semi
Γ , are simulated by using Problem 2 with β = 1.

From the definition of these forms,
−→
k

∗ spec.pre-semi
S

can decrypt −→c spec.pre-semi
Γ for

any Γ when S accepts Γ , i.e., it is hard for simulator B+
h to tell (

−→
k

∗ spec.pre-semi
S

,
−→c spec.pre-semi
Γ ) for Game 2-h+ from (

−→
k ∗ norm

S
, −→c semi

Γ ) for Game 2-h under the
assumption of Problem 2. On the other hand, a0(= w0r0) is independently dis-
tributed from the other variables when S does not accept Γ (shown in Proof of

Claim 1 by using Lemma 3). That is, the joint distribution of
−→
k

∗ pre-semi
S

and
−→c pre-semi
Γ is equivalent to that of

−→
k

∗ spec.pre-semi
S

and −→c spec.pre-semi
Γ , when S does

not accept Γ (i.e., B+
h ’s simulation using Problem 2 with β = 1 is the same

distribution as that of Game 2-h+ from the adversary’s view). In other words,

w0 and r0 in
−→
k

∗ spec.pre-semi
S

and −→c spec.pre-semi
Γ (given by B+

h ’s simulation using
Problem 2 with β = 1) are correlated for the case that S accepts Γ or for simu-
lator B+

h ’s view, but adversary A cannot notice the correlation since A’s queries
should satisfy the condition that S does not accept Γ .

The advantage gap between Games 2-h+ and 2-(h+1) is similarly shown to be
bounded by the advantage of Problem 2, i.e., advantage of the DLIN assumption
(Lemmas 6 and 2).

Finally we show that Game 2-ν can be conceptually changed to Game 3
(Lemma 7).
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Proof of Theorem 1 : To prove Theorem 1, we consider the following (2ν+3)
games. In Game 0, a part framed by a box indicates coefficients to be changed
in a subsequent game. In the other games, a part framed by a box indicates
coefficients which were changed in a game from the previous game.

Game 0 : Original game. That is, the reply to a key query for S := (M,ρ) with
ℓ× r matrix M is:

k∗
0 := (−s0, 0 , 1, η0, 0)B∗

0
,

for i = 1, . . . , ℓ,

if ρ(i)=(t,−→v i),k
∗
i :=(si+θivi,1, θivi,2, .., θivi,nt

, 0nt , ηi,1, .., ηi,nt
,0nt)B∗

t
,

if ρ(i)=¬(t,−→v i),k
∗
i :=(si(vi,1, .., vi,nt

), 0nt , ηi,1, .., ηi,nt
, 0nt)B∗

t
,





(1)

where
−→
f

U
← F

r
q ,
−→s T := (s1, . . . , sℓ)

T := M ·
−→
f T, s0 :=

−→
1 ·
−→
f T, θi, η0, ηi,1, . . . ,

ηi,nt

U
← Fq, and −→v i := (vi,1, . . . , vi,nt

) ∈ F
nt
q \ {

−→
0 }. The target ciphertext for

challenge plaintexts (m(0),m(1)) and Γ := {(t,−→x t) | 1 ≤ t ≤ d} is:

c0 := (δ, 0 , ζ, 0, ϕ0)B0
,

ct := (δ(xt,1, . . . , xt,nt
), 0nt , 0nt , ϕt,1, . . . , ϕt,nt

)Bt
for (t,−→x t) ∈ Γ,

cd+1 := gζTm
(b),





(2)

where b
U
← {0, 1}; δ, ζ, ϕ0, ϕt,1, . . . , ϕt,nt

U
← Fq, and −→x t := (xt,1, . . . , xt,nt

) ∈

F
nt
q \ {

−→
0 }.

Game 1 : Same as Game 0 except that the target ciphertext is:

c0 := (δ, r0 , ζ, 0, ϕ0)B0
, (3)

ct := (δ(xt,1, .., xt,nt
), rt,1, .., rt,nt

, 0nt , ϕt,1, .., ϕt,nt
)Bt

for (t,−→x t) ∈ Γ, (4)

cd+1 := gζTm
(b), (5)

where r0, rt,1, . . . , rt,nt

U
← Fq.

Game 2-h+ (h = 0, . . . , ν −1) : Game 2-0 is Game 1. Game 2-h+ is the same
as Game 2-h except the reply to the (h + 1)-th key query for S := (M,ρ) with
ℓ× r matrix M , and ct of the target ciphertext are:

k∗
0 := (−s0, w0 , 1, η0, 0)B∗

0
,

for i = 1, . . . , ℓ,

if ρ(i) = (t,−→v i)

k∗
i := (si + θivi,1, θivi,2, .., θivi,nt

, wi,1, .., wi,nt
, ηi,1, .., ηi,nt

, 0nt)B∗

t
,

if ρ(i) = ¬(t,−→v i)

k∗
i := (si(vi,1, .., vi,nt

), wi,1, .., wi,nt
, ηi,1, .., ηi,nt

, 0nt)B∗

t
,





(6)

ct := (δ(xt,1, .., xt,nt
), rt,1, .., rt,nt

, 0nt , ϕt,1, , , , ϕt,nt
)Bt

for (t,−→x t) ∈ Γ, (7)
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where w0
U
← Fq,

−→g
U
← F

r
q ,
−→a T := (a1, . . . , aℓ)

T := M · −→g T, τi
U
← Fq (i =

1, . . . , ℓ), Zt
U
← GL(nt,Fq), Ut := (Z−1

t )T for t = 1, . . . , d,

(wi,1, . . . , wi,nt
) := (ai + τivi,1, τivi,2, . . . , τivi,nt

) · Zt,

(wi,1, . . . , wi,nt
) := ai(vi,1, . . . , vi,nt

) · Zt,

(rt,1, . . . , rt,nt
) := (xt,1, . . . , xt,nt

) · Ut.

Game 2-(h + 1) (h = 0, . . . , ν − 1) : Game 2-(h + 1) is the same as Game
2-h+ except the reply to the (h + 1)-th key query for S := (M,ρ) with ℓ × r
matrix M , and ct of the target ciphertext are:

k∗
0 := (−s0, w0, 1, η0, 0)B∗

0
,

for i = 1, . . . , ℓ,

if ρ(i)=(t,−→v i),k
∗
i :=(si+θivi,1, θivi,2, .., θivi,nt

, 0nt , ηi,1, .., ηi,nt
,0nt)B∗

t
,

if ρ(i)=¬(t,−→v i),k
∗
i :=(si(vi,1, .., vi,nt

), 0nt , ηi,1, .., ηi,nt
, 0nt)B∗

t
,





(8)

ct := (δ(xt,1, . . . , xt,nt
), rt,1, . . . , rt,nt

, 0nt , ϕt,1, . . . , ϕt,nt
)Bt

for (t,−→x t) ∈ Γ,

where rt,1, . . . , rt,nt

U
← Fq.

Game 3 : Same as Game 2-ν except that c0 and cd+1 of the target ciphertext
are

c0 := (δ, r0, ζ
′ , 0, ϕ0)B0

, cd+1 := gζTm
(b),

where ζ ′
U
← Fq (i.e., independent from ζ

U
← Fq).

Let Adv
(0)
A (λ), Adv

(1)
A (λ),Adv

(2-h)
A (λ),Adv

(2-h+)
A (λ) and Adv

(3)
A (λ) be the ad-

vantage of A in Game 0, 1, 2-h, 2-h+ and 3, respectively. Adv
(0)
A (λ) is equivalent

to Adv
KP-FE,PH
A (λ) and it is clear that Adv

(3)
A (λ) = 0 by Lemma 8.

We will show four lemmas (Lemmas 4-7) that evaluate the gaps between

pairs of Adv
(0)
A (λ),Adv

(1)
A (λ), Adv

(2-h)
A (λ),Adv

(2-h+)
A (λ),Adv

(2-(h+1))
A (λ) for h =

0, . . . , ν − 1 and Adv
(3)
A (λ). From these lemmas and Lemmas 1 and 2, we obtain

Adv
KP-FE,PH
A (λ) = Adv

(0)
A (λ) ≤

∣∣∣Adv
(0)
A (λ)− Adv

(1)
A (λ)

∣∣∣ +
∑ν−1
h=0

∣∣∣Adv
(2-h)
A (λ)−

Adv
(2-h+)
A (λ)

∣∣∣+
∑ν−1
h=0

∣∣∣Adv
(2-h+)
A (λ)− Adv

(2-(h+1))
A (λ)

∣∣∣+
∣∣∣Adv

(2-ν)
A (λ)− Adv

(3)
A (λ)

∣∣∣
+Adv

(3)
A (λ) ≤ AdvP1

B0
(λ)+

∑ν−1
h=0 AdvP2

B+

h

(λ)+
∑ν−1
h=0 AdvP2

Bh+1
(λ)+ (2dν+2ν+d+

2)/q ≤ AdvDLIN
E0

(λ) +
∑ν−1
h=0

(
AdvDLIN

E+

h

(λ) +AdvDLIN
Eh+1

(λ)
)

+ (2dν + 12ν + d+ 7)/q.

This completes the proof of Theorem 1. ⊓⊔

Lemma 4. For any adversary A, there exists a probabilistic machine B0, whose
running time is essentially the same as that of A, such that for any security

parameter λ, |Adv
(0)
A (λ)− Adv

(1)
A (λ)| ≤ AdvP1

B0
(λ) + (d+ 1)/q.
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Lemma 5. For any adversary A, there exists a probabilistic machine B+
h , whose

running time is essentially the same as that of A, such that for any security

parameter λ, |Adv
(2-h)
A (λ)− Adv

(2-h+)
A (λ)| ≤ AdvP2

B+

h

(λ) + (d+ 1)/q.

Proof. In order to prove Lemma 5, we construct a probabilistic machine B+
h

against Problem 2 by using an adversary A in a security game (Game 2-h or
2-h+) as a black box as follows:

1. B+
h is given a Problem 2 instance, (param−→n , B̂0, B̂

∗
0,h

∗
β,0,e0, {B̂t, B̂

∗
t ,h

∗
β,t,j ,

et,j}t=1,...,d;j=1,...,nt
).

2. B+
h plays a role of the challenger in the security game against adversary A.

3. At the first step of the game, B+
h provides A a public key pk := (1λ, param−→n ,

{B̂t}t=0,...,d) of Game 2-h (and 2-h+), that is a part of the Problem 2 in-
stance.

4. When the ι-th key query is issued for access structure S := (M,ρ), B+
h

answers as follows:
(a) When 1 ≤ ι ≤ h, B+

h answers semi-functional key (k∗
0, . . . ,k

∗
ℓ ) with Eq.

(8), that is computed by using {B̂∗
t }t=0,...,d of the Problem 2 instance.

(b) When ι = h+ 1, B+
h calculates (k∗

0, . . . ,k
∗
ℓ ) by using

(h∗
β,0, {h

∗
β,t,j}t=1,...,d;j=1,...,nt

) of the Problem 2 instance as follows:

µt,l, µ̃k,l
U
← Fq for t = 1, . . . , d; k = 1, . . . , r; l = 1, 2,

p∗
β,0 :=

∑r
k=1

(
µ̃k,1h

∗
β,0 + µ̃k,2b

∗
0,1

)
,

for t = 1, . . . , d; k = 1, . . . , r; j = 1, . . . , nt;

p∗
β,t,j := µt,1h

∗
β,t,j + µt,2b

∗
t,j , p̃∗

β,t,k,j := µ̃k,1h
∗
β,t,j + µ̃k,2b

∗
t,j ,

k∗
0 := −p∗

β,0 + b∗
0,3,

for i = 1, . . . , ℓ,

if ρ(i) = (t,−→v i), k∗
i :=

∑nt

j=1 vi,jp
∗
β,t,j +

∑r
k=1Mi,kp̃

∗
β,t,k,nt

,

if ρ(i) = ¬(t,−→v i), k∗
i :=

∑nt

j=1 vi,j(
∑r
k=1Mi,kp̃

∗
β,t,k,j),

where (Mi,k)i=1,...,ℓ;k=1,...,r := M .
(c) When ι ≥ h+ 2, B+

h answers normal key (k∗
0, . . . ,k

∗
ℓ ) with Eq. (1), that

is computed by using {B̂∗
t }t=0,...,d of the Problem 2 instance.

5. When B+
h receives an encryption query with challenge plaintexts (m(0),m(1))

and Γ := {(t,−→x t) | 1 ≤ t ≤ d} fromA, B+
h computes the challenge ciphertext

(c0, {ct}(t,−→x t)∈Γ , cd+1) such that for (t,−→x t) ∈ Γ ,

c0 := e0 + ζb0,3 + q0, ct :=
∑nt

j=1 xt,jet,j + qt, cd+1 := gζTm
(b),

where ζ
U
← Fq, b

U
← {0, 1}, q0

U
← span〈b0,5〉, qt

U
← span〈bt,3nt+1, . . . , bt,4nt

〉,
and (b0,3,e0, {et,j}t=1,..,d;j=1,..,nt

) is a part of the Problem 2 instance.
6. When a key query is issued by A after the encryption query, B+

h executes
the same procedure as that of step 4.
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7. A finally outputs bit b′. If b = b′, B+
h outputs β′ := 1. Otherwise, B+

h outputs
β′ := 0.

Claim 1. The distribution of the view of adversary A in the above-mentioned
game simulated by B+

h given a Problem 2 instance with β ∈ {0, 1} is the same
as that in Game 2-h (resp. Game 2-h+) if β = 0 (resp. β = 1).

The proof of Claim 1 is given in the full version of this paper. This completes
the proof of Lemma 5. ⊓⊔

Lemma 6. For any adversary A, there exists a probabilistic machine Bh+1,
whose running time is essentially the same as that of A, such that for any secu-

rity parameter λ, |Adv
(2-h+)
A (λ)− Adv

(2-(h+1))
A (λ)| ≤ AdvP2

Bh+1
(λ) + (d+ 1)/q.

Lemma 7. For any adversary A, Adv
(3)
A (λ) ≤ Adv

(2-ν)
A (λ) + 1/q.

Lemma 8. For any adversary A, Adv
(3)
A (λ) = 0.
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