
Fully Sparse Topic Models

Khoat Than1 and Tu Bao Ho1,2

1 Japan Advanced Institute of Science and Technology,
1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.

2 John von Neumann Institute, Vietnam National University, HCM, Vietnam.
Email: {khoat, bao}@jaist.ac.jp

Abstract. In this paper, we propose Fully Sparse Topic Model (FSTM)
for modeling large collections of documents. Three key properties of the
model are: (1) the inference algorithm converges in linear time, (2) learn-
ing of topics is simply a multiplication of two sparse matrices, (3) it pro-
vides a principled way to directly trade off sparsity of solutions against
inference quality and running time. These properties enable us to speed-
ily learn sparse topics and to infer sparse latent representations of doc-
uments, and help significantly save memory for storage. We show that
inference in FSTM is actually MAP inference with an implicit prior. Ex-
tensive experiments show that FSTM can perform substantially better
than various existing topic models by different performance measures. Fi-
nally, our parallel implementation can handily learn thousands of topics
from large corpora with millions of terms.

1 Introduction

Topic modeling has been increasingly maturing to be an attractive research area.
Originally motivated from textual applications, it has been going beyond far from
text to touch upon many amazing applications in Computer Vision, Bioinformat-
ics, Software Engineering, Forensics, to name a few. Recently, much interest in
this community has focused on developing topic models for large-scale settings,
e.g., [1, 2, 3, 4, 5]. In our observations, the most common large-scale settings
are: (a) the number of training documents is large; (b) the number of topics to be
learned is large; (c) the vocabulary size is large; (d) a large number of documents
need to be a posteriori inferred in a limited time budget. Further, combinations
of these settings yield more challenges to the topic modeling community.

Most previous works have focused on the settings (a) and (b) by utilizing
parallel/distributed/online architectures [1, 2, 3, 4, 6]. Those works, despite being
breakthrough developments for Latent Dirichlet Allocation (LDA) [7], however
will encounter some severe problems when vocabularies are very large or when
new representations of documents have to be stored for doing other tasks. The
main reason is that the Dirichlet distribution employed by LDA prevents any zero
contributions of terms to topics and of topics to documents; therefore the learned
topics and new representations of documents are extremely dense, consuming
huge memory. This challenges deployment of LDA in practical applications with

2

the settings (b) and (c).3 Besides, inference methods for LDA are often slow,
partially due to the NP-hardness nature of the model [8]. This characteristic
may ruin out applicability of LDA to applications with the setting (d).

To reduce memory for efficient storage and inference, some studies have in-
troduced the notion of sparsity for topic models. A popular approach is to use
regularization techniques to impose sparsity constraints on topics or/and latent
representations of documents, leading to RLSI [5], SRS [9], and STC [10].4 Even
though these models provide elegant solutions to the sparsity problem, they
remain some serious drawbacks when dealing with large-scale settings. Indeed,
SRS has no guarantee on convergence of inference/learning, and its scalability is
unknown. STC is extremely problematic with learning, because learning of top-
ics is to solve a optimization problem with a large number of variables which are
inseparable. RLSI has high complexity for both learning and inference, triple in
the number of topics. Finally, there are two common limitations of those models:
first, auxiliary parameters of those models associated with regularization terms
require us to do model selection, which is problematic in dealing with large-scale
settings; second, one cannot directly trade off sparsity of solutions against time
and quality.5

In this paper, we present our initial step towards resolving the mentioned four
large-scale settings. Specifically, we present Fully Sparse Topic Model (FSTM)
which is a simplified variant of LDA and Probabilistic Latent Semantic Analysis
(PLSA) [13]. Unlike LDA, our model does not employ Dirichlet priors, and allows
us to learn sparse latent representations of documents which are necessary for
many applications, e.g., information/image retrieval. Inference in our model is
casted as a concave maximization problem over the simplex of topics, which
can be solved in linear time by the Frank-Wolfe algorithm [14].6 One crucial
property of the Frank-Wolfe algorithm is that it is easy to directly trade off
sparsity level of solutions against quality and running time. So FSTM inherits
this property for inference. Sparse inference in FSTM results in an interesting
characteristic that there is an implicit prior over latent representations, without
an explicit endowment even. In addition, learning of topics is formulated as an
optimization problem so that it admits a closed-form solution, being a product
of two sparse matrices. Hence the learned topics are very likely to be sparse.

Summarizing, the ability to learn sparse topics and to infer sparse latent
representations of documents allows FSTM to save substantially memory for

3 Topical exploration of huge corpora, e.g. Google n-gram books, is an example.
4 Another direction is to use Indian buffet processes [11] or a spike-and-slap distribu-

tion [12] to induce sparsity. Nonetheless, this approach often results in much involved
models and thus complicates learning and inference. The proposed learning and in-
ference methods [11, 12] are very far from a touch upon large-scale settings.

5 For regularization techniques, one may expect to get sparser solutions by increasing
the values of the auxiliary parameters. However, it is not always provably true. Hence
such a control over sparsity is indirect.

6 Note that our reformulation of inference for FSTM can be readily applied to many
variants of PLSA and LDA, and hence can help accelerate their inference. The reason
is that such models often assume a document to be a mixture of topics.

3

Table 1. Theoretical comparison of some topic models. V is the vocabulary size, K is
the number of topics, n is the length of the document to be inferred. K̄ is the average
number of topics to which a term has nonzero contributions, K̄ ≤ K. L is the number
of iterations for inference. K̄ (and L) is different for these models. ‘-’ denotes ‘no’ or
‘unspecified’ ; ‘X’ means ‘yes’ or ‘taken in consideration’.

Model FSTM PLSA LDA STC SRS RLSI
Document sparsity X - - X X -
Topic sparsity X - - - X X
Sparsity control direct - - indirect indirect indirect
Trade-off:

sparsity vs. quality X - - - - -
sparsity vs. time X - - - - -

Inference complexity L.O(n.K̄ + K) L.O(n.K) L.O(n.K) L.O(n.K) L.O(n.K) L.O(V.K̄2 + K3)
Inference error O(1/L) - - - - 0
Storage for topics V.K̄ V.K V.K V.K V.K̄ V.K̄
Auxiliary parameters 0 0 0 3 2 2

storage. Combined with a linear time inference algorithm, FSTM overcomes
severe limitations of previous probabilistic models and can deal well with the
settings (b), (c), and (d). Fast learning of topics and fast inference of documents
also help FSTM to overcome limitations of non-probabilistic models (e.g., STC
and RLSI), and enable us to deal well with the setting (a). Besides, an intrigu-
ing property of our model is the ability to directly trade off inference quality
against running time and sparsity level of latent representations. This property
is essential in order to resolve large-scale settings.

For further comparison, we report some theoretical characteristics of six
closely related models in Table 1. Extensive experiments demonstrate that FSTM
performs substantially better than various existing topic models by different per-
formance measures. Our parallel implementation can handily learn thousands of
topics from large corpora with millions of terms, which is on the order of mag-
nitudes larger than known experiments with state-of-the-art models.

Roadmap of this paper: we discuss briefly in Section 2 some necessary
concepts and results for concave optimization over simplex. The main model
will be presented in Section 3. Section 4 is devoted to analyzing some theoretical
characteristics of FSTM, and to revealing why there is an implicit prior over
latent representations. Evaluation and comparison are discussed in details in
Section 5. Our conclusions are in the final section.

2 Background

Before going deeply into our model and analysis, it is necessary to introduce
some notations and to revisit some known results about sparse approximation
for concave optimization over simplex.

V: vocabulary of V terms, often written as {1, 2, ..., V }.
Id: set of term indices of document d,

i.e., each element in Id is the vocabulary index of a term appearing in d.
d: a document represented as a count vector, d = (dj)j∈Id

,
where dj is the frequency of term j in d.

4

C: a corpus consisting of M documents, C = {d1, ..., dM}.
βk: a topic which is a distribution over the vocabulary V.

βk = (βk1, ..., βkV)t, βkj ≥ 0,
∑V

j=1 βkj = 1.
K: number of topics.
A topic model often assumes that a given corpus is composed from K topics,

β = (β1, ..., βK), and each document is a mixture of those topics. Example
models include PLSA, LDA and many of their variants. Under those models,
each document has another latent representation. Such latent representations of
documents can be inferred once those models have been learned previously.

Definition 1 (Topic proportion). Consider a topic model M with K topics.
Each document d will be represented by θ = (θ1, ..., θK)t, where θk indicates the
proportion that topic k contributes to d, and θk ≥ 0,

∑K
k=1 θk = 1. θ is called

topic proportion (or latent representation) of d.

Definition 2 (Inference). Consider a topic model M with K topics, and a
given document d. The inference problem is to find the topic proportion that
maximizes the likelihood of d under the model M.

For some applications, it is necessary to infer which topic contributes to a
specific emission of a term in a document. Nevertheless, it may be unnecessary
for many other applications. Therefore we do not take this problem into account
and leave it for future work.

Definition 3 (Document sparsity). Consider a topic model M with K top-
ics, and a corpus C with M documents. Let θm be the topic proportion of doc-
ument dm ∈ C. Then the document sparsity of C under the model M is de-
fined as the proportion of non-zero entries of the new representation of C, i.e.,
document sparsity = #non-zeros of (θ1,...,θM)

M.K .

Definition 4 (Topic sparsity). Consider a topic model M with K topics β =
(β1, ..., βK). Topic sparsity of M is defined as the proportion of non-zero entries
in β, i.e., topic sparsity = #non-zeros of β

V.K .

2.1 Concave maximization over simplex and sparse approximation

Let b1, ..., bK be vectors in RV . Denote as ∆ = conv(b1, ..., bK) the convex
hull of those vectors. Consider a concave function f(x) : RV → R which is
twice differentiable over ∆. We are interested in the following problem, concave
maximization over simplex,

x∗ = arg max
x∈∆

f(x) (1)

Convex/concave optimization has been extensively studied in the optimiza-
tion literature. There has been various excellent results such as [15, 16]. However,
we will concentrate on sparse approximation algorithms specialized for the prob-
lem (1). More specifically, we focus on the Frank-Wolfe algorithm [14].

5

Loosely speaking, the Frank-Wolfe algorithm is an approximation one for the
problem (1). Starting from a vertex of the simplex ∆, it iteratively selects the
most potential vertex of ∆ to change the current solution closer to that vertex
in order to maximize f(x). It has been shown that the Frank-Wolfe algorithm
converges at a linear rate to the optimal solution. Moreover, at each iteration,
the algorithm finds a provably good approximate solution lying in a face of ∆.

Theorem 1. [14] Let f be a twice differentiable concave function over ∆, and
denote Cf = − 1

2 supy,z∈∆;ỹ∈[y,z](y− z)t.∇2f(ỹ).(y− z). After ` iterations, the
Frank-Wolfe algorithm finds a point x` on an (` + 1)−dimensional face of ∆
such that

max
x∈∆

f(x)− f(x`) ≤ 4Cf

` + 3
. (2)

It is worth noting some observations about the Frank-Wolfe algorithm:

- It achieves a linear rate of convergence, and has provably bounds on the
goodness of solutions. These are crucial for practical applications.

- Overall running time mostly depends on how complicated f and ∇f are.
- It provides an explicit bound on the dimensionality of the face of ∆ in which

an approximate solution lies. After ` iterations, x` is a convex combination of
at most `+1 vertices of ∆. Let θ` be the coefficients of that combination, i.e.,
x` =

∑
k θ`kbk. Theorem 1 ensures that at most ` + 1 out of K components

of θ` are non-zero. This implies that we can find an approximate solution to
the problem (1) with an associated sparse latent representation θ`.

- It is easy to directly control the sparsity level of such latent representations
by trading off sparsity against quality. (The fewer the number of iterations,
the more sparse the latent representation.) This characteristic makes the
algorithm more attractive for resolving high dimensional problems.

3 Fully sparse topic models

In this section, we present our model, named Fully Sparse Topic Model (FSTM),
which is considerably simple. To be more detailed, FSTM assumes that a corpus
is composed from K topics, β1, ..., βK , and each document d is generated by the
following process:

1. Pick randomly a topic proportion θ.
2. For the jth word in d:

– Pick a latent topic zk with probability P (zk|d) = θk,
– Generate a word wj with probability P (wj |zk) = βkj.

It is straightforward to see that FSTM is a simplified variant of LDA. The
main difference is that FSTM does not employ Dirichet prior over topic pro-
portions, and deliberately allows only few topics to contribute to a document.
This relaxation allows us to infer really sparse topic proportions of documents.
Besides, we further propose an approach to learning topics so that sparsity of

6

Fig. 1. Graphical representations of three topic models.

topic proportions can be exploited. The latent topics are sparse as well, hence
leading to the name of our model. Figure 1 depicts the graphical representation
of FSTM, accompanied by PLSA and LDA.

In spite of no explicit prior over θ in the model description, we will see
in Section 4 that in fact there exists an implicit prior having density function
p(θ|λ) ∝ exp(−λ.||θ||0), where ||θ||0 is the number of non-zero entries of θ.
This property is a consequence of sparse inference in our model. Note that this
property of FSTM is intriguing and hence we term it “implicit modeling”.

3.1 Inference

Given a document d and topics β, the inference task in FSTM is to find which
topics contribute to d and how much they contribute to d. In other words, we
have to infer θ. Unlike existing inference approaches for topic models, we will
not make effort to infer directly θ. Instead, we reformulate the inference task as
a concave maximization problem over the simplex of topics.

Lemma 1. Consider FSTM with topics β1, ..., βK , and a given document d.
The inference problem can be reformulated as the following concave maximization
problem, over the simplex ∆ = conv(β1, ..., βK),

x∗ = arg max
x∈∆

∑

j∈Id

dj log xj . (3)

Proof. For a given document d, the probability that a term wj appears in d can
be expressed as P (wj |d) =

∑K
k=1 P (wj |zk).P (zk|d) =

∑K
k=1 θkβkj . Hence the

log likelihood of d is log P (d) = log
∏

j∈Id
P (wj |d)dj =

∑
j∈Id

dj log P (wj |d) =∑
j∈Id

dj log
∑K

k=1 θkβkj .
The inference task is the problem of searching for θ to maximize the likelihood

of d. Denoting as xj =
∑K

k=1 θkβkj and x = (x1, ..., xV)t, we arrive at

log P (d) =
∑

j∈Id

dj log xj . (4)

Therefore optimization over θ now is translated into that over x. Note that
x = (x1, ..., xV)t =

∑K
k=1 θkβk. Combining this with the fact that

∑
k θk = 1,

θk ≥ 0, ∀k, one can easily realize that x is a convex combination of the K topics
β1, ..., βK . It implies x ∈ ∆. As a result, the inference task is in turn the problem
of finding x ∈ ∆ that maximizes the objective function (4). ut

7

Algorithm 1 Inference algorithm
Input: document d and topics β1, ..., βK .
Output: θ∗, for which

∑K
k=1 θ∗,kβk = x∗ maximizes f(x) =

∑
j∈Id

dj log xj .
Pick as βr the vertex of ∆ = conv(β1, ..., βK) with largest f value.
Set x0 := βr; θ0,r = 1; θ0,k = 0,∀k 6= r;
for ` = 0, ...,∞ do

i′ := arg maxi βt
i∇f(x`);

α′ := arg maxα∈[0,1] f(αβi′ + (1− α)x`);
x`+1 := α′βi′ + (1− α′)x`;
θ`+1 := (1− α′)θ`; and then set θ`+1,i′ := θ`+1,i′ + α′.

end for

This lemma provides us a connection between inference and concave opti-
mization, and allows us to seamlessly use the Frank-Wolfe algorithm for infer-
ence. An appropriate adaptation to the Frank-Wolfe algorithm [14] results in an
inference algorithm for FSTM, as presented in Algorithm 1. In our implementa-
tion, we solve for α by the gradient ascent approach.

3.2 Learning

The task of learning FSTM is to learn all topics β, given a corpus C. We use EM
scheme to iteratively learn the model. Specifically, we repeat the following two
steps until convergence: (E-step) do inference for each document of C; (M-step)
maximize the likelihood of C with respect to β.

Note that the E-step for each document is discussed in the previous subsec-
tion. The remaining task is to solve for β. Denoting as θd the topic proportion of
document d ∈ C which has been inferred in the E-step, we express the log like-
lihood of C as log P (C) =

∑
d∈C log P (d) =

∑
d∈C

∑
j∈Id

dj log
∑K

k=1 θdkβkj ≥∑
d∈C

∑
j∈Id

dj

∑K
k=1 θdk log βkj . We have used Jensen’s inequality to derive the

last term, owing to the fact
∑

k θdk = 1, θdk ≥ 0,∀k. Next we maximize the lower
bound of log P (C) with respect to β. In other words, we have to maximize

g(β) =
∑

d∈C

∑

j∈Id

dj

K∑

k=1

θdk log βkj , such that
V∑

j=1

βkj = 1, βkj ≥ 0, ∀k, j. (5)

It is worthwhile noticing that the vectors βk are separable from each other
in the objective function g(β). Hence we can solve for each individually. Taking
the Lagrange function into consideration and forcing its derivatives to be 0, we
easily arrive at the following solution

βkj ∝
∑

d∈C
djθdk. (6)

Up to this point, we can learn FSTM by iterating E-step and M-step until
convergence. In the E-step, each document is inferred by using the Frank-Wolfe
algorithm, given the objective function as in (3) and topics β. The M-step only
does simple calculation according to (6) to update all topics.

8

4 Theoretical analysis

We will show that the inference algorithm for FSTM can provide provably good
solutions. It requires modestly few arithmetic operations, linear in the length of
the document to be inferred or/and in the number of topics. Further, we can
easily trade off quality of solution against sparsity and inference time. Existing
topic models do not own these interesting properties.

4.1 Complexity and goodness of inference

Theorem 2. Consider FSTM with K topics, and a document d. Let Cf be de-
fined as in Theorem 1 for the function f(x) =

∑
j∈Id

dj log xj. Then Algorithm 1
converges to the optimal solution with a linear rate. In addition, after L itera-
tions, the inference error is at most 4Cf/(L+3), and the topic proportion θ has
at most L + 1 non-zero components.

Proof. Inference of FSTM is exactly the Frank-Wolfe algorithm for the function
f(x) =

∑
j∈Id

dj log xj which is twice differentiable at all x satisfying xj > 0,
∀j ∈ Id. Hence this theorem is a corollary of Theorem 1. ut

Next we will analyze computational complexity of the inference algorithm.
Common technique to store a sparse matrix is row-wise, i.e., we store all non-zero
elements in a row of that matrix by an 1-dimensional array. This is beneficial
to do multiplication of a sparse matrix with a vector. Indeed, consider a matrix
B of size m × n. Letting m̄ be the average number of non-zero elements of a
column of B, computing Bx requires only O(n.m̄ + m) arithmetic operations.

Theorem 3. Each iteration of Algorithm 1 requires only O(n.K̄+K) arithmetic
operations, where K̄ is the average number of topics to which a term has non-
zero contributions, K̄ ≤ K, and n = |Id|. Overall, after L iterations, Algorithm 1
requires L.O(n.K̄ + K) arithmetic operations.

Proof. Letting a = ∇f(x), we have βt∇f(x) = βta. Note that a is very sparse
because of ai = ∂f/∂xi = 0, for i /∈ Id. Hence only n columns of βt involve
in computation of βta. This implies that we need just O(n.K̄ + K) arithmetic
operations to compute βta and to find the index i′. O(n.K̄ + K) arithmetic
operations are also sufficient to do the initial step of choosing x0, since the most
expensive computations are to evaluate f at the vertices of the simplex, which
amounts to a multiplication of (log β)td, where log β = (log βij)V×K .

Searching for α can be done very quickly since the problem is concave in
one variable. Each evaluation of f(x) requires only O(n) operations. Moreover
O(n.K̄ + K) arithmetic operations are sufficient to update other variables. ut
Remark 1 (Learning). Our model is learned by the EM scheme. Each EM it-
eration requires M.L.O(n.K̄ + K) arithmetic operations to infer M training
documents, and an update for the topics according to formula (6). Note that up-
date of topics amounts to multiplication of two very sparse matrices (one is the
matrix representing the training corpus, and the other is the new representation
of that corpus.) Hence it can be computed very fast.

9

4.2 Managing sparsity level and trade-off

Good solutions are often necessary for practical applications. In practice, we
may have to spend intensive time and huge memory to search such solutions.
This sometimes is not necessary or impossible in limited time/memory settings.
Hence one would prefer to trading off quality of solutions against time/memory.

Searching for sparse solutions is a common approach in Machine Learning to
reduce memory for storage and efficient processing. Most previous works have
tried to learn sparse solutions by imposing regularization which induces spar-
sity, e.g., L1 regularization [10, 5] and entropic regularization [9]. Nevertheless,
those techniques are severely limited in the sense that we cannot directly control
sparsity level of solutions (e.g., one cannot decide how many non-zero compo-
nents solutions should have). In other words, sparsity level of solutions is a priori
unpredictable. This limitation makes regularization techniques inferior in mem-
ory limited settings. This is also the case with other works that employ some
probabilistic distributions to induce sparsity such as [11, 12].

Unlike prior topic models, the inference algorithm for FSTM naturally pro-
vides a principled way to control sparsity. Theorem 2 implies that if stopped at
the Lth iteration, the inferred solution has at most L + 1 non-zero components.
Hence one can control sparsity level of solutions by simply limiting the number
of iterations. It means that we can predict a priori how sparse and how good
the inferred solutions are. Less iterations, more sparse (but probably worse) so-
lutions of inference. Besides, we can trade off sparsity against inference time.
More iterations imply more necessary time and probably denser solutions.

4.3 Implicit prior over θ

In Section 3 we describe our model without any specific prior over latent repre-
sentations θ. As well-known in the literature, no prior endowment may cause a
model to be prone to overfitting. Nonetheless, it seems not the case with FSTM.
Indeed, we argue that there is an implicit prior over θ in the model.

Note that the inference algorithm of FSTM allows us to easily trade off
sparsity of solutions against quality and time. If one insists on solutions with
at most t nonzero components, the inference algorithm can modified accord-
ingly. In this case, it mimics that one is trying to find a solution to the prob-
lem maxθ∈∆1{f(θ) : ||θ||0 ≤ t}, where ∆1 is the unit simplex in RK . We
remark a well-known fact that the constraint ||θ||0 ≤ t is equivalent to addi-
tion of a penalty term λ.||θ||0 to the objective function [17], for some constant
λ. Therefore, one is trying to solve for θ∗ = arg maxθ∈∆1{f(θ) − λ.||θ||0} =
arg maxθ∈∆1 P (d|θ).P (θ) = arg maxθ∈∆1 P (θ|d), where p(θ) ∝ exp(−λ.||θ||0).
Notice that the last problem, θ∗ = arg maxθ∈∆1 P (θ|d), is an MAP inference
problem. Hence, these observations basically show that inference by Algorithm 1
for sparse solutions mimics MAP inference. As a result, there exists an implicit
prior, having density function p(θ;λ) ∝ exp(−λ.||θ||0), over latent topic propor-
tions. This is another characteristic that distinguish FSTM from existing topic
models.

10

5 Experimental evaluation

This section is devoted to investigating practical performance of our model. Due
to space limit, we focus mainly on investigating practical behaviors of FSTM to
see clearly its characteristics. We will describe briefly performance of our model
on huge corpora, omitting implementation details in this extended abstract.7

5.1 Sparsity, time, quality, and trade-off

We first aim at answering the following questions: (1) how sparse are topics and
latent representations of documents? (2) how fast can the model infer/learn?
(3) can the model achieve good quality? To this end, we chose 4 corpora for
experiments: 2 small (AP, KOS), and 2 average (Grolier, Enron).8 Figure 2 con-
tains some information about these corpora. For each corpus, we used 90% for
learning and 10% held out for evaluation. Four models are included for com-
parison: FSTM, PLSA, LDA, and STC.9 In our experiments we used the same
convergence criteria for these models: relative improvement of log likelihood (or
objective functions in STC) is less than 10−6 for inference, and 10−4 for learning;
at most 1000 iterations are allowed to do inference. We used default settings for
some other auxiliary parameters of STC, relating to regularization terms.

Document sparsity: Figure 2 presents the results of experiments on four cor-
pora. Document sparsity is used to see sparsity level of latent representations
discovered by those models. Observing the first two rows of Figure 2, one can see
that all models, except LDA, can discover sparse latent representations. PLSA
interestingly can discover very sparse representations. It even often outperformed
STC, which was intentionally designed for modeling sparsity. However, it seems
that PLSA achieved sparse solutions by incident. Indeed, we rarely observed
sparse topic proportions in the learning phase, but inference often resulted in
sparse ones. One crucial reason for these contrary behaviors is that information
was lost when saving the learned models, as we observed many nonzero elements
of topics went to 0. STC can indeed discover sparse latent representations as
expected. Nonetheless, the discovered sparsity level was not very high, i.e., new
representations of documents were still pretty dense. Furthermore, the sparsity
level seems to be inconsistent as the number of topics increases

On contrary, FSTM can discover very sparse latent representations in both
learning and inference phases. The sparsity level consistently decreases as the
7 The code is available at http://www.jaist.ac.jp/∼s1060203/codes/fstm.
8 AP was retrieved from http://www.cs.princeton.edu/∼blei/lda-c/ap.tgz

KOS and Enron were retrieved from http://archive.ics.uci.edu/ml/datasets/
Grolier was from http://cs.nyu.edu/∼roweis/data.html

9 LDA code was taken from http://www.cs.princeton.edu/∼blei/lda-c/
STC code was taken from http://www.cs.cmu.edu/∼junzhu/stc/
PLSA was coded by ourselves with the best effort. SRS and RLSI were not included
because of two reasons. First, there is no available code for these models. More im-
portantly, there is an inconsistence in the update formula derived in [9] that prevents
us from implementation; RLSI heavily needs involved distributed architectures.

11

Data AP KOS Enron Grolier

M 2246 3430 39861 29762
V 10473 6906 28102 15276

0 50 100
0

0.5

1

K

D
oc

um
en

t s
pa

rs
ity

(i
nf

er
en

ce
)

AP

0 50 100
0

0.5

1

K

D
oc

um
en

t s
pa

rs
ity

(l
ea

rn
in

g)

0 50 100
0

0.5

1

K

T
op

ic
 s

pa
rs

ity

0 50 100
0

0.5

1

K

KOS

0 50 100
0

0.5

1

K

0 50 100
0.4

0.6

0.8

1

K

0 50 100
0

0.5

1

K

Enron

0 50 100
0

0.5

1

K

0 50 100
0.4

0.6

0.8

1

K

0 50 100
0

0.5

1

K

Grolier

0 50 100
0

0.5

1

K

0 50 100
0.7

0.8

0.9

1

K

0 50 100
0

20

40

60

K

In
fe

re
nc

e
tim

e
(s

)

0 50 100
0

2000

4000

6000

K

L
ea

rn
in

g
tim

e
(s

)

0 50 100
0

20

40

K

0 50 100
0

2000

4000

6000

K

0 50 100
0

200

400

600

K

0 50 100
0

5

10

15
x 10

4

K

0 50 100
0

500

1000

K

0 50 100
0

2

4

6
x 10

4

K

FSTM PLSA LDA STC

Fig. 2. Experimental results as the number K of topics increases. For STC, there was a
memory problem when dealing with Enron and Grolier for large K (e.g., when K = 70,
STC has to solve a optimization problem with more than 20 millions of variables, and
hence cannot be handled in a personal PC.) Hence we could not do experiments for
such large K’s.

12

number of topics increases. This implies that despite modeling a corpus with
many topics, few topics actually contributes to a specific document. For example,
on average, only 3 topics have non-zero contributions to a document of AP among
100 topics of the model; when modeling with 10 topics, only 2 topics on average
have non-zero contributions to a document. This seems to be consistent with the
fact that a document often says about few topics, independent with the number
of topics a model is taking into account. Hence FSTM can discover very compact
representations and save significantly memory for storage.

Topic sparsity: observing Figure 2, one easily realizes that most models could
not discover sparse topics. LDA and STC are not surprised, because topics are
assumed to be samples of Dirichlet distributions which implicitly prevent any
zero contribution of terms to topics. PLSA could discover some sparse topics,
but the sparsity level was insignificant. FSTM outperformed other models in this
aspect, having discovered very sparse topics. The sparsity level of topics tends to
increase as we model data with more topics. This achievement can be explained
by the facts that new representations of documents inferred by FSTM are very
sparse, that the original documents are sparse, and that topics are simply a
product of these two sparse representations (see equation 6). Therefore, the
learned models are often significantly compact.

Inference time: in Section 4, we have shown theoretically that inference of
FSTM is in linear time. This is further supported by our experiments, as depicted
in Figure 2. Both FSTM and STC worked comparably in practice. PLSA inferred
most slowly by the folding-in technique. LDA can infer much more quickly by
fast variational Bayesian methods [7]. Nevertheless, it still worked much more
slowly than FSTM, often tens of times more slowly. There are at least two rea-
sons for this slow inference: first, the inference problem in LDA is inherently
NP-hard [8] and thus may require much time to reach at good solutions; sec-
ond, the variational Bayesian algorithm has to do many computations relating
to logarithm, exponent, gamma, and digamma functions which are expensive. In
contrast, inference in FSTM can be done in linear time, and the objective func-
tion (likelihood) is relatively cheap to compute. In addition, the learned topics
are often very sparse. All of these contribute to speeding up inference in FSTM.

Learning time: observing the last row of Figure 2, one can see that LDA
and STC learned really slowly, often hundreds/thousands of times more slowly
than FSTM and PLSA.10 Slow learning of STC can be explained by the fact
that learning of topics in this model is very expensive, since we have to solve
a optimization problem with huge number, K.V , of variables which are insep-
arable. LDA learned slowly because its inference algorithm is slow, and it has
to solve various optimization problems requiring various evaluations of Gamma
and Digamma functions which are often expensive. PLSA learned fastest due
to its simple learning formulations. There is a seemingly contrary behavior of

10 At some settings, we observe that STC did stop learning very early after only 4 or
5 iterations, but inference after that paid more time to do than usual. Otherwise, it
needed many iterations (often more than 30) to reach convergence. Hence we suppose
that those early terminations were caused by some internal issues.

13

PLSA, in which learning is fastest but inference is slowest. The main reason is
that inference by folding-in [13] is an adaptation of learning, and more impor-
tantly learning does not require doing separately inference of documents which
differs from other models. FSTM can learn very fast, comparably with PLSA.
One reason for such a fast learning is the fast inference algorithm. Another rea-
son is that the inferred topic proportions and topics themselves are very sparse,
and hence help further speed up learning.

Quality: we next consider how good our model is. We use three measures to
quantify the quality: Bayesian Information Criterion (BIC), Akaike Information
Criterion (AIC) [18], and Perplexity [7]. BIC and AIC are popular measures
for model selection in Machine Learning.11 They measure both simplicity and
goodness-of-fit of the considered models; the simpler is preferred when two mod-
els have comparable quality of fitting data. A model with larger BIC/AIC is
more likely to overfit the data [18]. Perplexity is also a common measure in topic
modeling literature to compare predictive power of different models.12

Figure 3 presents the quality of three models on four corpora. (STC was
not included in this investigation, because the objective function in learning is
a regularized one, and hence different in manner with probabilistic topic mod-
els.) Observing the first two rows of the figure, one can easily realize that BIC
and AIC of FSTM were significantly better than those of LDA and PLSA for
most experiments. Note that FSTM can learn very sparse topics as previously
discussed. In addition, we observed that the likelihoods achieved by FSTM were
often comparable with those by PLSA, while those by LDA were often worst.
Hence FSTM was evaluated better than other models according to BIC/AIC.
For PLSA and LDA, despite using more free parameters (dense topics) to model
data, the achieved likelihoods were not very significantly greater than those of
FSTM. Therefore, they are more likely prone to overfitting. The ability to avoid
overfitting of FSTM in these experiments supports further the theoretical analy-
sis in Section 4, where an implicit prior is argued to keep FSTM from overfitting.

The last row of Figure 3 shows perplexity obtained by three models. We ob-
serve that PLSA consistently achieved better perplexity than LDA and FSTM.
This seems unusual since LDA is a Bayesian extension of PLSA and thus should
have better predictive power. Nonetheless, in our observations, at least two fac-
tors had contributed to this inferior predictiveness: first, the variational Bayesian
method [7] is not guaranteed to find good solutions; second, the objective of in-
ference in LDA is posterior probability P (θ|d), not the likelihood P (d), while
perplexity is mainly about likelihood. FSTM achieved good predictive power.

11 AIC = (−2 log L + 2p)/M , and BIC = (−2 log L + p log M)/M , where L is the
achieved likelihood, and p is the number of free parameters of the model. Note that
free parameters in the considered topic models basically correspond to the entries of
topics, and one more for LDA. Hence p = (V − 1)K + 1 for LDA, while p + K for
FSTM/PLSA is the number of non-zero entries of the learned topics.

12 Perplexity of a model M is calculated on the testing set D by Perp(D|M) =
exp

(−∑
d∈D log P (d|M)/

∑
d∈D |d|

)
.

14

0 50 100
2000

4000

6000

8000

K

B
IC

AP

0 50 100
2500

3000

3500

4000

K

A
IC

0 50 100
2000

3000

4000

K

KOS

0 50 100
2000

2200

2400

K

0 50 100
2500

3000

3500

K

Enron

0 50 100
2550

2600

2650

2700

K

0 50 100
1500

2000

2500

K

Grolier

0 50 100
1800

1850

1900

1950

K

0 50 100
2000

2500

3000

3500

K

Pe
rp

le
xi

ty

0 50 100
1000

1500

2000

2500

K

0 50 100
2000

3000

4000

5000

K
0 50 100

1000

2000

3000

4000

K

FSTM PLSA LDA

Fig. 3. Quality of three models as the number of topics increases. Lower is better.

20 40 60 80 100
0

0.2

0.4

Number of iterations

D
oc

um
en

t s
pa

rs
ity

20 40 60 80 100
2000

3000

4000

Pe
rp

le
xi

ty

0.15 0.2 0.25
0

0.5

1

Document sparsity

In
fe

re
nc

e
tim

e
(s

)

0.15 0.2 0.25
2000

3000

4000

Pe
rp

le
xi

ty

Fig. 4. Illustration of trading off sparsity against quality and time. Inference was done
on AP, where FSTM had been learned with 50 topics.

The inference algorithm of FSTM played a crucial role in this good power, since
it is guaranteed to find provably good solutions as analyzed in Section 4.

Trade-off: Figure 4 illustrates how FSTM trades off sparsity of solutions
against inference quality (measured by perplexity) and running time. Unsurpris-
ingly, more iterations means better quality but probably denser topic propor-
tions. Note that the upper bound on inference error in Theorem 2 is quite loose.
However, in practice inference converged very quickly, as observed in Figure 4.
After 20 iterations on average, the quality and sparsity level were almost stable.
We rarely observed inference needed more than 100 iterations to reach conver-
gence. This is an interesting behavior of FSTM and is appealing to resolving
large-scale settings.

15

5.2 Large-scale settings

We implemented a parallel version of FSTM using OpenMP for large-scale learn-
ing. Even though OpenMP is a shared memory model, we employed both data
parallelism and task parallelism schemes. Data is distributed across clusters of
CPUs, each cluster has its own subset of data and sub-model in the learning
phase. Communication of a cluster with the master is only its sub-model. Note
that FSTM consistently learns sparse models. Hence communication of sub-
models for FSTM are significantly more compact than other implementations of
LDA [1, 3, 4]. (Details of implementation are omitted due to space limit.)

We then experimented with the Webspam corpus consisting of 350K docu-
ments with more than 16 millions of terms.13 2000 topics was selected, and we
run on 128 CPUs (each with 2.9 GHz), divided into 32 clusters. We observed that
even though the documents in this corpus are often very long, inference was done
very quickly, and each iteration of the EM algorithm took approximately 1 hour.
After convergence, the achieved topic sparsity is 0.0114 and document sparsity
is 0.0028. This means, over 2000 topics, on average only 5.6 topics contribute
to a specific document; and 1.14% of 16 million terms significantly contribute
to a topic. Storage of the new representation of the corpus is less than 34Mb,
substantially reduced from 23.3Gb of the original one.

Since Webspam is a supervised dataset, we did a classification experiment
either. We use the new representation of the corpus previously learned by FSTM
to be the input for Liblinear [19], resulting in Liblinear+FSTM method for clas-
sification where FSTM plays the role as a dimensionality reduction subroutine.
Using 5-folds cross-validation and default settings for Liblinear, the obtained
accuracy is 99.146%. The most recent advanced method [20] can achieve a com-
parable accuracy of 99.15%, but evaluated on only one split of data. Note that
the new representation has 2000 dimensions, and is 700 times smaller than the
original one. All of these suggest that FSTM can infer very meaningful repre-
sentations of documents. As a result, FSTM can provide us a useful tool, not
only a model of linguistic data but also a dimensionality reduction approach, to
efficiently deal with large-scale settings.

6 Conclusion

We have introduced our novel topic model for modeling large collections of doc-
uments. Our model overcomes many serious limitations of existing topic models,
and has been demonstrated to work qualitatively on real data. The scalability
of our model enables us to easily deal with large-scale settings.

Our work in this paper also touches upon two interesting questions: (1) Is
there an algorithm for efficiently inferring sparse latent representations of docu-
ments/objeccts? (2) Is it possible to directly trade off sparsity against inference
quality and inference time? The first question has been addressed in Machine
Learning. Existing regularization techniques can help us find sparse solutions,
13 Webspam was retrieved from http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/

16

but cannot provide an affirmative answer to the second question. Our work pro-
vides a positive answer for both questions, at least for Topic Modeling, by real-
izing that the Frank-Wolfe algorithm for sparse approximation can help. Hence,
it opens various potential directions for future research.

Acknowledgement

We would like to thank the reviewers for very helpful comments.

References

[1] Smola, A., Narayanamurthy, S.: An architecture for parallel topic models. Pro-
ceedings of the VLDB Endowment 3(1-2) (2010) 703–710

[2] Hoffman, M.D., Blei, D.M., Bach, F.: Online learning for latent dirichlet alloca-
tion. In: NIPS. Volume 23. (2010) 856–864

[3] Newman, D., Asuncion, A., Smyth, P., Welling, M.: Distributed algorithms for
topic models. The Journal of Machine Learning Research 10 (2009) 1801–1828

[4] Asuncion, A.U., Smyth, P., Welling, M.: Asynchronous distributed estimation of
topic models for document analysis. Statistical Methodology 8(1) (2011) 3–17

[5] Wang, Q., Xu, J., Li, H., Craswell, N.: Regularized latent semantic indexing. In:
SIGIR ’11, ACM (2011) 685–694

[6] Wang, Y., Bai, H., Stanton, M., Chen, W.Y., Chang, E.: Plda: Parallel latent
dirichlet allocation for large-scale applications. In: AAIM 2009. 301–314

[7] Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. Journal of Machine
Learning Research 3(3) (2003) 993–1022

[8] Sontag, D., Roy, D.M.: Complexity of inference in latent dirichlet allocation. In:
Advances in Neural Information Processing Systems (NIPS). (2011)

[9] Shashanka, M., Raj, B., Smaragdis, P.: Sparse overcomplete latent variable de-
composition of counts data. In: NIPS. (2007)

[10] Zhu, J., Xing, E.P.: Sparse topical coding. In: UAI. (2011)
[11] Williamson, S., Wang, C., Heller, K.A., Blei, D.M.: The ibp compound dirichlet

process and its application to focused topic modeling. In: ICML. (2010)
[12] Wang, C., Blei, D.M.: Decoupling sparsity and smoothness in the discrete hier-

archical dirichlet process. In: NIPS. Volume 22. (2009) 1982–1989
[13] Hofmann, T.: Unsupervised learning by probabilistic latent semantic analysis.

Machine Learning 42 (2001) 177–196
[14] Clarkson, K.L.: Coresets, sparse greedy approximation, and the frank-wolfe algo-

rithm. ACM Trans. Algorithms 6 (2010) 63:1–63:30
[15] Nesterov, Y.: Smooth minimization of non-smooth functions. Mathematical Pro-

gramming 103(1) (2005) 127–152
[16] Lan, G.: An optimal method for stochastic composite optimization. Mathematical

Programming (2011) 1–33
[17] Murray, W., Gill, P., Wright, M.: Practical optimization. Academic Press, 1981
[18] Forster, M.R.: Key concepts in model selection: Performance and generalizability.

Journal of Mathematical Psychology 44(1) (2000) 205–231
[19] Fan, R., Chang, K., Hsieh, C., Wang, X., Lin, C.: Liblinear: A library for large

linear classification. Journal of Machine Learning Research 9 (2008) 1871–1874
[20] Yu, H.F., Hsieh, C.J., Chang, K.W., Lin, C.J.: Large linear classification when

data cannot fit in memory. ACM Trans. Knowl. Discov. Data 5(4) (February
2012) 23:1–23:23

