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We present the design and the practical implementation of a polarimetric imaging system based on
liquid-crystal modulators that allows generation and analysis of any polarization state on the Poincaré
sphere. This system is more versatile than standard Mueller imagers that are based on optimized, but
limited, sets of illumination and analysis states. Examples of benefits brought by these extra degrees of
freedom are illustrated on two different applications: contrast enhancement and extraction of partial
polarimetric properties of a scene. © 2012 Optical Society of America
OCIS codes: 110.5405, 110.4280.

1. Introduction

Polarimetric images are useful for gathering infor-
mation that is not visible on intensity images. They
have many applications in machine vision, remote
sensing, biomedical imaging, and industrial control
[1–3]. In particular, several types of Mueller imaging
systems have been designed and demonstrated [4–6].
Such imagers illuminate the scene with four differ-
ent polarization states and analyze the light diffused
by the observed scene along four different states.
By acquiring 16 images with 16 combinations of illu-
mination/analysis states, they can measure the
wholeMueller matrix of each pixel of the scene. Their
illumination and analysis states are in general
optimized to reduce the propagation of errors during
the inversion process that leads from the measure-
ments to the estimated Mueller matrix [7–9], and
the systems are calibrated to compensate for the
unavoidable discrepancies between the theoretical
and real characteristics of the components [10].

Although Mueller imaging has demonstrated its
efficiency in many applications [11–13], there are
cases in which measuring the whole Mueller matrix
is not necessary. For example, if the purpose is to op-
timize discrimination between a target and an object
of interest, it has been demonstrated that a limited
number of images is sufficient [14–17]. However,
these images have to be acquired with illumination
and analysis states that depend on the scene and
may lie anywhere on the Poincaré sphere. In other
cases, it may be sufficient to extract only partial in-
formation, such as particular coefficients or set of
coefficients of the Mueller matrix [18,19]. In such ap-
plications, the fixed states adapted to acquisition of
the whole Mueller matrix may not be optimal for
acquiring the required information with a minimum
number of measurements.

To address this issue, we have designed and imple-
mented an experimental setup, based on liquid-
crystal variable retarders, that makes it possible to
illuminate the scene and analyze the light scattered
by the scene in any polarization state. In Section 2
we will first describe this setup, its performance,
and its limits. Then in Section 3 we will show its ben-
efits in two different domains of application: contrast
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optimization for target detection, and extraction of
polarimetric properties with a minimal number of
acquisitions and optimal precision.

2. Design and Implementation of the Polarimetric

Imager

The active polarimetric imaging system that we wish
to realize is based on the following principle. The
scene is illuminated with light whose polarization
state is defined by a Stokes vector S and is produced
by a polarization state generator (PSG). The polari-
metric properties of a region of the scene correspond-
ing to a pixel in the image are characterized by its
Mueller matrix M. The Stokes vector of the light
scattered by this region is S0 � MS. It is analyzed
by a polarization state analyser (PSA), which is a
generalized polarizer allowing selection of photons
characterized by the Stokes vector T. The number
of photoelectrons measured at a pixel of the sensor is

i �
ητI0

2
TTMS; (1)

where the superscript T denotes matrix transposi-
tion. In this equation, S and T are Stokes vectors
representing unit intensity, purely polarized light
(S � �s0; s1; s2; s3�

T , s20 � s21 � s22 � s23 � 1, and simi-
larly for T), I0 (in number of photons) is the photons
flux illuminating the area of the scene associated
with a pixel of the camera, τ is the transmission coef-
ficient associated with all the optical elements of the
system, and η is the conversion efficiency between
photons and electrons.

This setup constitutes the building block of a large
number of polarimetric imaging systems [20–22]. In-
deed, by using a fixed illumination state and four dif-
ferent analysis states, one obtains a Stokes image,
and by using 16 different combinations of illumina-
tion and analysis states, one can measure the whole
Mueller image. However, these imaging setups are
optimized to measure Stokes and/or Mueller data,

and they can generate or analyze only four fixed
polarization states. They are, in general, not able
to generate and analyze arbitrary polarization states
on the Poincaré sphere. In this section, we describe
an imaging system having this capability.

A. Description of the Imaging Setup

The active polarimetric imager that we have built is
represented in Fig. 1. The illumination part is com-
posed of a white-light fiber source (Fs) followed by a
spotlight (Sl) (from LINOS), allowing us to reduce the
numerical aperture at the output of the fiber (from
70° to 15° in our case). A diffuser is used to comple-
tely homogenize the beam in the plane of the lens L1.
Using two lenses L1 and L2, we design a Khöler illu-
mination that allows us to illuminate uniformly and
with a small numerical aperture the polarization
state generator composed of one polarizer (P1) and
two liquid-crystal variable retarders (LC1;2, from
Meadowlark Optics). This design is necessary since
the liquid-crystal cells have a critical acceptance an-
gle. If the incidence angle was too large, the polariza-
tion in the field could be different from that on the
axis, which would be very damaging for our applica-
tion. Thanks to this setup, the beam modulated by
the PSG is uniform in both intensity and polariza-
tion. It is then sent to infinity by a third lens (L3)
to illuminate the scene. The field diaphragm (FD)
allows control of the size of the beam on the object,
and the aperture diaphragm (AD), control of the
intensity of the illumination beam.

The light backscattered by the scene is then
analyzed with a PSA composed, as the PSG, of two
liquid-crystal variable retarders (LC3;4) and one po-
larizer (P2). The PSA is followed by a spectral filter
with a center wavelength of 640 nm and 10 nm band-
with. The bandwidth has to be small due to the
dependence of the retardance on the wavelength.
Finally, the photons passing through the filter are
collected by a 14 bit CCD camera (C) that produces
an intensity image.

Fig. 1. (Color online) Scheme of the imaging system: white-light fiber source; Sl, spotlight reducing the aperture angle at the output of the
fiber; d, diffuser; FD, field diaphragm; AD, aperture diaphragm; P1, P2, polarizers; LC1;…;4, liquid crystals; F, spectral filter; C, camera.
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Considering the choice of the PSG and the PSA, it
has to be noticed that different ways exist to generate
all the polarization states on the Poincaré sphere.
They depend on the components used to control the
polarization. In our case, we have chosen liquid-
crystal variable retarders (LCVR) that are particu-
larly well suited for polarimetric imaging. Indeed,
they have a good acceptance angle and offer wide,
clear aperture, nearly no aberrations, and no image
wander. When using such components, different con-
figurations can be considered to solve our problem
[23–25]. We have chosen the configuration repre-
sented in Fig. 2. It consists of one polarizer followed
by two LCVR that are oriented respectively with an-
gles γ and θ with respect to the axis x defined by the
direction of the linear polarizer.

It has been shown that only the configurations as-
sociated with angles γ � �45° and θ � γ � 45° allow
generation of any polarization state on the Poincaré
sphere [24], and this is why, in our experiment, the
angles γ and θ are equal, respectively, to 45° and 90°.

B. Experimental Validation

We controlled the performance of the PSG and the
PSA with a commercial polarimeter and verified
the agreement between the nominal polarization
states and those actually generated by the system.
To quantify the difference between the actual polar-
ization states and those theoretically expected, we
use the angle separating these two states on the
Poincaré sphere. The angle D between two polariza-
tion states with respective azimuth �α1; α2� and ellip-
ticities �ε1; ε2� is defined by

D � cos−1�sin�2ε1�: sin�2ε2�

� cos�2ε1�: cos�2ε2�: cos�2�α1 − α2���. (2)

We generated 16 polarization states distributed
over the whole Poincaré sphere, and we obtained
the results presented in Fig. 3. The maximal angle
between the experimental and theoretical polariza-
tion states, on the Poincaré sphere, is about 4.5°,
which represents amaximal error of 2.25° in azimuth
or ellipticity. This precision is sufficient for the appli-
cations that we will address in the following section.

If better precision was needed, different sources of
errors should be compensated for. First is the me-
chanical positioning of the liquid crystals, because
if they are not oriented at their nominal angles,
the applied voltage does not generate the expected
polarization states. In our case, we did not use very
precise mechanisms to orient the crystals, which
could be the source of some systematic errors. The
second potential source of error is the temperature
dependence of the liquid crystal response. Indeed,
the response of LCVR strongly depends on the tem-
perature, and even if our cells are controlled in
temperature, small fluctuations can appear and lead
to random errors.

3. Examples of Applications

Polarization contains valuable information that can
be helpful for enhancing imaging performance. Many
active polarimetric imaging systems already exist,
but the set of illumination and analysis states that
they can implement is usually limited. Our purpose
in the present section is to illustrate the benefit of
being able to generate and analyze any polarization
state on the Poincaré sphere. We will give two exam-
ples: contrast optimization for target detection and
extraction of partial polarimetric properties such
as subsets of Mueller matrix coefficients.

A. Contrast Enhancement

Contrast enhancement is an important research field
in the domain of imaging. In the radar domain, po-
larization has been used for a long time to enhance
the contrast in synthetic aperture radar (SAR)
images [26]. More recently, polarization has also
been proven useful for enhancing the contrast in op-
tical imaging [22,27,28]. However, standard polari-
metric imaging systems may not be able to reach
the highest possible value of the contrast for two
main reasons. The first one is that these systems,
as they can only use a limited number of polarization
states, are not able to fully adapt to the scene or to
the measurement conditions. The second reason is
that they often need to acquire multiple images to

Fig. 2. (Color online) Scheme of a PSG consisting of one linear
polarizer followed by two fixed retarders. The orientations of
the fast axes of the two variable retarders are given by the angles
γ and θ with respect to the direction of the polarizer. ϕ1 and ϕ2 are
the phase shifts introduced respectively by LCVR 1 and 2.

Fig. 3. (Color online) Comparison between the polarization states
theoretically expected and effectively generated using the PSG
presented Fig. 2 with the angles γ � 45° and θ � 90°

5304 APPLIED OPTICS / Vol. 51, No. 21 / 20 July 2012



extract the relevant information (e.g., at least, 4
images in a Stokes imaging system, or 16 images
in a Mueller imaging system). Recently, it has been
theoretically demonstrated that when considering
detection of a single target of interest against a back-
ground, the maximal value of the contrast can be
reached by a single measurement, but this measure-
ment has to be performed with optimized PSG and
PSA states [29]. Of course, these optimal states de-
pend on the scene and may be located anywhere on
the Poincaré sphere. Using the system that we have
built, we will present in the following experimental
results that confirm this theoretical expectation.

The image in Fig. 4(a) is the Mueller image of a
scene composed of some polygonal chunks of sandpa-
per glued on a sandpaper of different roughness, the
whole scene being covered with the same paint. By
looking at the M00 image, which corresponds to an
intensity image of the scene, we can see that the ob-
jects and the background cannot be discriminated.
We consider in this experiment that the total integra-
tion time to perform the acquisition is kept constant
and equal to t0. Since 16 images have to be acquired
to compute the entire Mueller matrix, the integra-
tion time used for the acquisition of each image
was about t0 ∕ 16. On the other hand, Fig. 4(b) repre-
sents the image obtained with PSG and PSA states
that maximize the contrast between two types of ma-
terials [16,28]. This single image has been acquired
with an integration time of t0, which explains why

it is much less noisy than the Mueller images. We
also observe that the contrast has been significantly
improved by using an optimal couple of polarization
states in illumination and analysis.

To quantify the contrast improvement, we will
use the Bhattacharyya distance [21] associated with
N dimensional data:

Bt;b �
1

8
�x̄t − x̄b�

T

�

Γt � Γb

2

�

−1

�x̄t − x̄b�

�
1

2
log

"

det
�

Γt�Γb

2

�

����������������������������������

det�Γt�det�Γb�
p

#

; (3)

where x̄u is a vector of dimension N containing the
average values associated with the region u � ft; bg
(respectively, target and background) in each dimen-
sion and Γu is the associated covariance matrix. In
the case where we acquire the full Mueller matrix,
the data are a set of N � 16 images associated with
each coefficient of the matrix. In the case where we
acquire only the optimal image, the data consist of
only N � 1 intensity image.

The Bhattacharyya distances associated with the
entire Mueller image [Fig. 4(a)] and the optimal
image [Fig. 4(b)] are the following:

Bmueller � 4.6; Bopt � 18.6. (4)

As expected, the contrast is much larger using only
one optimized acquisition than acquiring the entire
Mueller matrix if we consider that we have a fixed
amount of time to observe the scene.

This first example shows the improvement ob-
tained by using optimized polarizations that capture
in a single image all the information useful for dis-
crimination. However, this application requires the
knowledge of the polarimetric properties of the ob-
served scene. A further question is thus: Is it possible
to use our system to extract quickly the polarimetric
properties required to enhance the contrast? We
bring a possible solution to this issue in the next
section.

B. Extraction of Mueller Matrix Coefficients

To extract all the polarimetric properties of an object,
we need to acquire the full Mueller matrix, which re-
quires the acquisition of 16 images. However, we
have to note that in some cases, physical constraints
can reduce the number of degrees of freedom of the
Mueller matrix. These constraints might be, for ex-
ample, knowledge that the scene does not possess
certain properties (such as birefringence), making
some Mueller matrix elements zero. It is thus inter-
esting to develop a protocol to measure only the non-
zero coefficients of the matrix, which would require
less than 16 measurements and thus decrease the
acquisition time.

It is well known that by using four polarization
states located at the vertices of a regular tetrahedron

Fig. 4. (a) Mueller matrix of a scene composed of some polygonal
chunks of sandpaper glued on a sandpaper of different roughness,
the whole scene being cover with the same paint. The integration
time for the acquisition of each image used to compute the Mueller
matrix is t0 ∕ 16. (b) Optimal image obtained by using the set of
polarization states in illumination and analysis maximizing the
contrast. The integration time for the acquisition is t0.
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on the Poincaré sphere for lighting and analyzing, it
is possible to minimize the propagation of errors dur-
ing the estimation of the Mueller matrix from the
measured data [9]. However, this method is optimal
for extracting the entire Mueller matrix. If less than
16 coefficients have to be estimated, it may possible
to further improve estimation performance by using
a reduced number of acquisitions with optimized
couples of illumination/analysis states. It is thus ne-
cessary to determine which couples of polarization
states allow extraction of the desired coefficients of
theMueller matrix with optimal precision. This issue
has been addressed theoretically in such works as
[19,30]. We will, in the following, investigate how a
polarimetric imager with full degrees of freedom
can further improve acquisition of partial polari-
metric information.

1. Model for Multiple Polarimetric Image

Acquisition
To extract polarimetric information from a scene, an
active polarimetric imager will perform a number N
of intensity measurements in the following way:

TT
nMSn � In; n ∈ f1;…; Ng; (5)

where Sn denotes the PSG Stokes vector, Tn denotes
the PSA Stokes vector,M denotes the Mueller matrix
of the observed pixel, and In � 2in ∕ �ητI0� [see
Eq. (1)]. It has to be noted that the value of the in-
tensity In depends on four parameters

�

αSn ; ε
S
n

�

and
�

αTn ; ε
T
n

�

that are respectively the azimuth and the
ellipticity of the polarization states used in illumina-
tion and analysis:

Sn�α
S
n ; ε

S
n� �

2

6

6

4

1

cos�2αSn� cos�2ε
S
n�

sin�2αSn� cos�2ε
S
n�

sin�2εSn�

3

7

7

5

Tn�α
T
n ; ε

T
n � �

2

6

6

4

1

cos�2αTn � cos�2ε
T
n �

sin�2αTn � cos�2ε
T
n �

sin�2εTn �

3

7

7

5

;

(6)

with αn ∈ �−π ∕ 2; π ∕ 2� and εn ∈ �−π ∕ 4; π ∕ 4�.
Let us first consider that N � 16. In this case, one

can access the entire Mueller matrix, and Eq. (5) is
equivalent to the vector–matrix product:

∀n ∈ f1;…; 16g; WT
nVM � In⇔QT;SVM � I; (7)

where VM is the 16-component vector obtained by
reading the Mueller matrix M in the lexicographic
order, Wn the 16-component vector computed from
the Kronecker product (⊗) between the illumina-
tion and analysis states (Wn � Tn ⊗ Sn with
n ∈ f1;…; 16g), QT;S the 16 × 16 square matrix ob-
tained by stacking the vectors WT

n row by row, and

I the vector obtained by stacking the intensity
values In.

From Eq. (7), it is possible to extract the elements
of the Mueller matrix using the inverse of the 16 × 16

square matrix QT;S:

VM � Q−1
T;SI. (8)

Several authors have tried to optimize the condition
number of the matrix QT;S to minimize error propa-
gation during this inversion [19,30]. Indeed, the con-
dition number of a matrix measures the sensitivity of
the solution of a system of linear equations to errors
in the data. It gives an indication of the accuracy of
the results from matrix inversion. It is given by the
ratio of the largest singular value of the matrix to the
smallest:

cond�Q� �
σmax

σmin
; (9)

where σmax and σmin denote, respectively, the largest
and smallest singular values of thematrixQ. A “well-
conditioned” matrix is thus associated with a value
near 1, while a “badly conditioned” matrix is asso-
ciated with a high value of the condition number.
If this latter is equal to infinity, it means that at least
one of the singular values of the matrix is equal or
almost equal to zero, and thus that the matrix is
singular.

2. Optimal Extraction of Partial Polarimetric

Information
Let us now assume that some coefficients of the
Mueller matrix under investigation a equal to zero.
The nonzero coefficients of this matrix form a set Ω of
cardinal NΩ. Let us take an example:

M �

2

6

6

6

4

M00 M01 0 0

0 M11 M12 0

0 M21 M22 0

M30 0 0 M33

3

7

7

7

5

. (10)

In this case, the set Ω containing all the indices of
the nonzero Mueller matrix coefficients is Ω �
f00; 01; 11; 12; 21; 22; 30; 33g and NΩ � 8. Our pur-
pose will be to measure these nonzero coefficients
with optimal precision by using an optimal associa-
tion of a number NΩ of PSG/PSA �S;T� couples. Tak-
ing into account the fact that only the coefficients in
Ω are nonzero, Eq. (7) can be written as

QΩ

T;SV
Ω

M � IΩ; (11)

where VΩ
M is a NΩ-dimensional vector containing

all the nonzero coefficients of the Mueller matrix,
QΩ

T;S is the NΩ ×NΩ matrix whose lines are vectors
Wn [see Eq. (7)], from which only the NΩ coefficients
indexed by the set Ω are kept, and IΩ is the vector
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obtained by stacking the NΩ intensity values
obtained.

To minimize the error propagation during inver-
sion, the matrix QΩ

T;S has to have a condition number
as close as possible to unity. Our goal is thus to find
the best association of PSG/PSA yielding a matrix
QΩ

T;S with a minimal condition number:

�S; T � � arg min
�Sn;Tn�;n∈f1;…;NΩg

fcond�QΩ

T;S�g; (12)

where S and T are respectively the sets of PSG (Sn)
and PSA (Tn) with n ∈ f1;…; NΩg that minimize the
condition number of the QΩ

T;S matrix.
To perform this search, one has to pay attention

to the number of parameters that have to be opti-
mized simultaneously. Indeed, each intensity image
depends on four parameters, e.g., the azimuth and
ellipticity of the PSG and PSA states. Optimizing
the NΩ PSG/PSA states needed for the calculation
thus involves 4 ×NΩ parameters, which can be quite
large. Moreover, it is likely that the performance cri-
terion will have local minima. It is thus necessary
to use an algorithm robust to the presence of local
maxima. After comparing different solutions, we
have chosen to use the shuffled complex evolution
(SCE-UA) method [31]. This algorithm consists in
generating different sets of illumination and analysis
polarization states and in changing them by using a
global evolution framework that finally leads to a
parameter set given a well minimized condition
number of the QΩ

T;S matrix.
To validate our method, we first look for four polar-

ization states that can be used in both illumination
and analysis to extract the entire Mueller matrix
(this represents an optimization on eight para-
meters). In this case, it is already known that the
minimal value of the condition number is 3.00,
and that this value is reached when the four polar-
ization states form a regular tetrahedron on the
Poincaré sphere [32,33]. Our algorithm actually
reaches a solution having these properties. If we
now wish to optimize all 16 PSG/PSA couples simul-
taneously (which represents optimization on 64
parameters), the algorithm converges toward a mini-
mal value of the condition number of 3.8, close to the
best one expected, but a little different, certainly due
to the fact that the difficulty of reaching a global
minimum grows with the number or parameters to
optimize.

We will now illustrate the improvement in estima-
tion precision brought by optimizing the PSG and
the PSA configuration for NΩ measurements with
NΩ ≤ 16. The first example is a comparison of the re-
sults of our approach and those presented in a recent
paper for the extraction of polarimetric coefficients
using a reduced set of optimized images. The second
is an experimental validation of the concept in a
real-world example.

C. Optimizing the Acquisition of Specific Mueller Matrices

In a recent paper, Savenkov and al. [19] presented a
way to optimally extract the nonzero components of a
block-diagonal Mueller matrix of the form

M �

2

6

6

6

4

M00 M01 0 0

M10 M11 0 0

0 0 M22 M23

0 0 M32 M33

3

7

7

7

5

�13�

using only eight acquisitions. This interesting result
has been obtained by optimizing the PSG configura-
tions and using the Stokes imaging system in analy-
sis. The optimization is thus only done on the
polarization states in illumination, and it is likely
that the results could be further improved by opti-
mizing the illumination and analysis states simulta-
neously, which is possible with our imaging system.
We have thus applied our optimization method to
this problem. Simultaneous optimization of the
eight PSG/PSA configurations allowing extraction
of the eight nonzero coefficients of the Mueller ma-
trix with the best condition number yields the result
presented in Table 1.

The condition number of the associated QΩ

T;S ma-
trix is equal to 2.70. Let us now compare these
results with those obtained with Stokes imaging.
We consider that this Stokes imaging system uses
the four optimal states that allow minimization of er-
rors due to propagation of the noise when inverting
the measures [9]. According to [19], the two optimal
PSG states are (79.8°,14.7°) and (−42.5°,37.6°) (azi-
muth and ellipticity). The condition number of the
matrix QΩ

T;S associated with these states is 6.9. It
is more than twice larger than the result obtained
by optimizing simultaneously the illumination and
analysis states.

However, it is difficult to precisely relate condition
numbers with actual processing performance. To
have a more concrete understanding of the perfor-
mance improvement, we will use the following
criterion:

C � trace
h

��QΩ

T;S�
TQΩ

T;S�
−1
i

. (14)

Table 1. Set of Optimal States in Illumination and Analysis,

Respectively, of Azimuth And Ellipticity �αs ;εs�, �αt ;εt �,

Minimizing the Condition Number of the QΩ

T ;S Matrix in

the Case of a Mueller Matrix of the Form in Eq. (13)

Image n° �αs; εs� �αt; εt�

1 (−56.4°, 8.1°) (60.8°, −6.3°)
2 (2.35°, 43.0°) (−49.6°, −4.2°)
3 (49.8°, 5.7°) (53.3°, 17.7°)
4 (−72.4°, −7.1°) (5.4°, −5.1°)
5 (17.8°, −3.8°) (−14.1°, 12.8°)
6 (8.3°, −11.6°) (−72.6°, 6.0°)
7 (−46.6°, 30.2°) (−7.7°, 44.8°)
8 (53.7°,18.6°) (41.8°, −33.6°)
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It represents the sum of estimated variances of the
NΩ estimated coefficients [34,35]. When using the
method described in [19], one obtains C � 15.2,
whereas using the method described in the present
paper, one obtains C � 5.3: the estimation variance
is thus reduced by about a factor 3. This result con-
firms that by optimizing all the polarization states in
illumination and analysis simultaneously, it is possi-
ble to enhance significantly the estimation precision
of Mueller matrix coefficients. Of course, in some ap-
plications, it may be easier or cheaper to use a Stokes
imager rather than a polarimetric system with full
degrees of freedom. The advantage in terms of esti-
mation precision that we have demonstrated has
thus to be mitigated with implementation-related
criteria to determine which is the best architecture
for a given application.

D. Estimation of Diagonal Mueller Matrices

To validate our approach experimentally, we will
now apply it to a real-world acquisition problem.
We acquire 20 times the entire Mueller matrix of a
wooden board and obtain the following average nor-
malized Mueller matrix:

2

6

6

4

1.00 −0.00 −0.02 0.01
−0.00 0.18 0.00 0.01
−0.01 0.01 −0.18 0.00
0.01 0.01 0.00 −0.09

3

7

7

5

. (15)

This matrix is almost diagonal, the nondiagonal coef-
ficients being small. To characterize this type of
wood, we thus only have to estimate the four coeffi-
cientsM00,M11,M22, andM33. There are several sets
of four PSG/PSA couples that lead to the optimal con-
dition number of 2.2. One of them is given in Table 2.

We implemented this set of states on our imager to
measure the four coefficients using the method pre-
sented in Eq. (8). To reduce the influence of random
fluctuations, we repeated the measure 20 times and
obtained, on average, the four following coefficients:

M00 � 1; M11 � 0.18;

M22 � −0.16; M33 � −0.09. (16)

We can see that there is a little difference between
the estimated Mueller matrix and the real one. This
error can be analyzed as due to the noise or as a bias
due to a small nondiagonal coefficient in the Mueller

matrix. To confirm this, we have computed the
standard deviation of the estimated coefficient com-
puted from the four optimized images and the one of
the coefficient coming from the full Mueller matrix
and we have obtained the result presented in Table 3.

We can see that the standard deviation on the coef-
ficients is of the same order as the difference between
the average values of the coefficients. Consequently,
in this configuration, the discrepancy between the
partial measures and the full ones [see Eq. (15)] is
mainly due to measurement noise such as photon
noise. The performance of estimation can thus be im-
proved by increasing the integration time to acquire
images with higher SNR, for example.

4. Conclusion

We have realized a polarimetric imaging system
based on liquid-crystal modulators that allows gen-
eration and analysis of any polarization state on
the Poincaré sphere. It is fully electronically con-
trolled, and the maximal error on the generation
of a polarization state is only 2.25° in azimuth and
ellipticity. This system is more versatile than stan-
dard Mueller imagers, and we have shown in several
examples that it can perform better. First, this sys-
tem makes it possible to implement the illumination
and analysis states that optimize the discrimination
between targets of interest and a background. Sec-
ond, it can perform extraction of a subset of nonzero
Mueller matrix coefficients with minimal error.

Of course, the demonstrated improvement in dis-
crimination ability or estimation precision has to
be mitigated with the cost and the ease of operation
of other possible architectures. However, we are con-
fident that the instrument and optimization ap-
proach proposed in this paper are efficient tools to
investigate such applications of polarization imaging
as remote sensing, imaging through turbid media,
and industrial control.
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Table 2. Optimal States Used to Acquire the Four Images that

Enable Extraction of the Four Relevant Coefficients

of the Mueller Matrix of the Piece of Wood

Image �αs; εs� �αt; εt�

1 (0°, 0°) (90°, 0°)
2 (45°, 0°) (45°, 0°)
3 (0°, −45°) (0°, 45°)
4 (−22.5°, −17.62°) (22.5°, −17.62°)

Table 3. Standard Deviation (std) of the Coefficients Computed

from the Acquisition of the Full Mueller Matrix or from the

Acquisition of Four Optimized Imagesa

Full Mueller Matrix Four Images

std�M11� 0.02 0.01
std�M22� 0.02 0.02
std�M33� 0.02 0.02

aStandard deviations are computed on 20 samples.

5308 APPLIED OPTICS / Vol. 51, No. 21 / 20 July 2012



References

1. J. S. Tyo, M. P. Rowe, E. N. Pugh, and N. Engheta, “Target
detection in optical scattering media by polarization-
difference imaging,” Appl. Opt. 35, 1855–1870 (1996).

2. J. E. Solomon, “Polarization imaging,” Appl. Opt. 20,
1537–1544 (1981).

3. R. Walraven, “Polarization imagery,” Opt. Eng. 20, 14–18
(1981).

4. A. D. Martino, Y.-K. Kim, E. Garcia-Caurel, B. Laude, and B.
Drévillon, “Optimized Mueller polarimeter with liquid crys-
tals,” Opt. Lett. 28, 616–618 (2003).

5. P. Lemaillet, S. Rivet, and B. L. Jeune, “Optimization of a
snapshot Mueller matrix polarimeter,” Opt. Lett. 33,
144–146 (2008).

6. P. A. Letnes, I. S. Nerbø, L. M. S. Aas, P. G. Ellingsen, and M.
Kildemo, “Fast and optimal broad-band Stokes/Mueller
polarimeter design by the use of a genetic algorithm,” Opt.
Express 18, 23095–23103 (2010).

7. J. S. Tyo, “Design of optimal polarimeters: maximization of
signal-to-noise ratio and minimization of systematic error,”
Appl. Opt. 41, 619–630 (2002).

8. J. Zallat, S. Ainouz, and M. P. Stoll, “Optimal configurations
for imaging polarimeters: impact of image noise and systema-
tic errors.” J. Opt. A 8, 807–814 (2006).

9. F. Goudail, “Noise minimization and equalization for Stokes
polarimeters in the presence of signal-dependent Poisson shot
noise,” Opt. Lett. 34, 647–649 (2009).

10. E. Compain, S. Poirier, and B. Drevillon, “General and self-
consistent method for the calibration of polarization modula-
tors, polarimeters, and Mueller-matrix ellipsometers,” Appl.
Opt. 38, 3490–3502 (1999).

11. G. W. Kattawar and M. J. Rakovic, “Virtues of Mueller matrix
imaging for underwater target detection,” Appl. Opt. 38,
6431–6438 (1999).

12. K. M. Twietmeyer, R. A. Chipman, A. E. Elsner, Y. Zhao, and
D. VanNasdale, “Mueller matrix retinal imager with
optimized polarization conditions,” Opt. Express 16,
21339–21354 (2008).

13. M.-R. Antonelli, A. Pierangelo, T. Novikova, P. Validire, A.
Benali, B. Gayet, and A. De, Martino, “Mueller matrix ima-
ging of human colon tissue for cancer diagnostics: how Monte
Carlo modeling can help in the interpretation of experimental
data,” Opt. Express 18, 10200–10208 (2010).

14. D. G. Jones, D. H. Goldstein, and J. C. Spaulding, “Reflective
and polarimetric characteristics of urban materials,” Proc.
SPIE 6240, 62400A (2006).

15. B. G. Hoover and J. S. Tyo, “Polarization components analysis
for invariant discrimination,” Appl. Opt. 46, 8364–8373
(2007).

16. G. Anna, F. Goudail, and D. Dolfi, “Polarimetric target detec-
tion in the presence of spatially fluctuatingMueller matrices,”
Opt. Lett. 36, 4590–4592 (2011).

17. G. Anna, F. Goudail, and D. Dolfi, “Optimal discrimination of
multiple regions with an active polarimetric imager,” Opt.
Express 19, 25367–25378 (2011).

18. J. S. Tyo, S. J. Johnson, Z. Wang, and B. G. Hoover, “Designing
partial Mueller matrix polarimeters,” Proc. SPIE 7461

74610V (2009).
19. S. Savenkov, R.Muttiah, E. Oberemok, and A. Klimov, “Incom-

plete active polarimetry: measurement of the block-diagonal
scattering matrix,” J. Quant. Spectrosc. Radiat. Transfer 112,
1796–1802 (2011).

20. B. Laude-Boulesteix, A. De Martino, B. Drévillon, and L.
Schwartz, “Mueller polarimetric imaging system with liquid
crystals,” Appl. Opt. 43, 2824–2832 (2004).

21. F. Goudail, P. Terrier, Y. Takakura, L. Bigué, F. Galland, and
V. Devlaminck, “Target detection with a liquid crystal-
based passive Stokes polarimeter,” Appl. Opt. 43, 274–282
(2004).

22. A. Bénière, F. Goudail, M. Alouini, and D. Dolfi, “Design and
experimental validation of a snapshot polarization contrast
imager,” Appl. Opt. 48, 5764–5773 (2009).

23. J. Liu and R. M. A. Azzam, “Polarization properties of corner-
cube retroreflectors: theory and experiment,” Appl. Opt. 36,
1553–1559 (1997).

24. K. M. Twietmeyer and R. A. Chipman, “Optimization of
Mueller matrix polarimeters in the presence of error sources,”
Opt. Express 16, 11589–11603 (2008).

25. M. Shribak, “Complete polarization state generator with one
variable retarder and its application for fast and sensitive
measuring of two-dimensional birefringence distribution,” J.
Opt. Soc. Am. A 28, 410–419 (2011).

26. A. B. Kostinski and W. M. Boerner, “On the polarimetric con-
trast optimization,” IEEE Trans. Antennas Propagat. 35,
988–991 (1987).

27. M. Richert, X. Orlik, and A. DeMartino, “Adapted polarization
state contrast image,” Opt. Express 17, 14199–14210 (2009).

28. F. Goudail and A. Bénière, “Optimization of the contrast
in polarimetric scalar images,” Opt. Lett. 34, 1471–1473
(2009).

29. F. Goudail, “Comparison of the maximal achievable contrast
in scalar, Stokes and Mueller images,” Opt. Lett. 35,
2600–2602 (2010).

30. J. S. Tyo, Z. Wang, S. J. Johnson, and B. G. Hoover, “Design
and optimization of partial Mueller matrix polarimeters,”
Appl. Opt. 49, 2326–2333 (2010).

31. Q. Y. Duan, V. K. Gupta, and S. Sorooshian, “A shuffled
complex evolution approach for effective and efficient global
minimization,” J. Optim. Theory Appl. 76, 501–521 (1993).

32. A. Ambirajan and D. C. Look, “Optimum angles for a
polarimeter: part II,” Opt. Eng. 34, 1656–1658 (1995).

33. J. S. Tyo, “Noise equalization in Stokes parameter images
obtained by use of variable-retardance polarimeters,” Opt.
Lett. 25, 1198–1200 (2000).

34. A. Papoulis, Probability, Random Variables and Stochastic
Processes (McGraw-Hill, 1984).

35. F. Goudail and A. Bénière, “Estimation precision of the degree
of linear polarization and of the angle of polarization in the
presence of different sources of noise,” Appl. Opt. 49,
683–693 (2010).

20 July 2012 / Vol. 51, No. 21 / APPLIED OPTICS 5309


