
fUML-Driven Performance Analysis

through the MOSES Model Library⋆

Luca Berardinelli, Vittorio Cortellessa

Dept. of Information Engineering, Computer Science and Mathematics,
University of L’Aquila, 67100 L’Aquila, Italy

{luca.berardinelli,vittorio.cortellessa}@univaq.it

Abstract. The growing request for high-quality applications for em-
bedded systems demands model-driven approaches that facilitate their
design as well as the verification and validation activities.
In this paper we present MOSES, a model-driven performance analysis
methodology based on Foundational UML (fUML). Implemented as an
executable model library, MOSES provides data structures, as Classes,
and algorithms, as Activities, which can be imported to instrument fUML
models and then to carry out the performance analysis of the modeled
system through fUML model simulation. An industrial case study is pro-
vided to show MOSES at work, its achievements and its future challenges.

Keywords: fUML, Model-Driven Performance Analysis, Tool Support

1 Introduction

Evolution in the industrial process development of real time and embedded sys-
tems (RTES) has to face new challenges, especially in the design process.

By nature, RTES are constrained by the limited amount of resources available
(e.g., time, power, size) and these constraints need to be considered throughout
the engineering process. Allocation of application functions on execution plat-
forms, and the related consequences on resource usages need to be carefully
addressed during the design stages.

However, the software for RTES is traditionally developed adopting a code-
and-fix approach, thus neglecting design as well as verification and validation
(V&V) activities. This approach may result in software components that miss
functional and/or extra-functional requirements (e.g., performance), so compro-
mising the system deployment on the hardware platform that is usually co-
designed with the software [1].

Model-Driven Engineering (MDE) and Component-Based Software Engineer-
ing (CBSE) paradigms may play a capital role in the RTES domain by emphasiz-
ing, on one side, the adoption of models as the main design artifacts throughout
the whole development process, and on the other side the design and implemen-
tation of complex systems through reusable software components.

⋆ This work is partially supported by the EU-funded VISION ERC project (ERC-
240555), and by PRESTO ARTEMIS project (GA n. 269362).



RTES is the application domain of MOSES (MOdeling Software and platform
architEcture in UML for Simulation-based performance analysis), a model-driven
methodology based on executable UML models.

MOSES [2] was originally devised for UML 1.x Real Time models and later
ported to UML 2.x. In this paper, MOSES is re-designed from scratch to make it
compliant with the Foundational UML standard (fUML) [3], a strict UML subset
by the Object Management Group, provided with its own executable semantics
and virtual machine.

This work has been conducted in the context of the PRESTO project (im-
Provements of industrial Real-time Embedded SysTem development prOcess) [4],
which aims at improving the RTES development process with model-driven tech-
niques while considering industrial constraints like, for example, a smooth in-
tegration in current development processes. In this regard, it may happen that
existing, trusted Commercial-Off-The-Shelf components (COTS) lack of model-
based specifications (e.g., UML models), thus hindering their reuse within MDE
approaches. In PRESTO such limitations have been tackled by exploiting exe-
cution traces generated by test execution during the software integration phase.
Such traces may help developers to narrow the boundary of the system that
undergoes V&V activities by limiting the analyses to tracked components only.
In this context, MOSES has been re-designed to represent traces in fUML, and
to exploit them for modeling the system workload, with the aim of performance
analysis based on fUML model simulation.

In this paper we present the new design and performance analysis capability
of MOSES with the help of an industrial case study.

The rest of the paper is organized as follows. Section 2 provides a quick
background on fUML. Section 3 details the proposed case study and its fUML
model. Section 4 introduces MOSES and its modeling and performance analysis
capabilities based on the fUML semantics. Section 5 shows MOSES in action
on the case study. Finally, Section 6 discusses current limitations and future
challenges for MOSES also with respect to related work. Section 7 concludes the
paper.

2 The Foundational UML

Both MOSES and the case study have been modeled in fUML[3]. It defines the
operational semantics of a strict, computationally complete UML subset that
includes Classes, Common Behaviors, Activities, and Actions language units.
In essence, fUML enables the execution of UML models where structural ele-
ments are classes with their own properties, operations, and associations while
the behavioral specifications (e.g., operation body) are modeled through UML
activities.

The fUML standard goes along with a Java-based reference implementation1

of an fUML virtual machine (fUML VM). Free open source and commercial
UML modeling tools exist that embed this reference implementation within their

1 http://fuml.modeldriven.org

http://fuml.modeldriven.org


modeling environments, like Papyrus and MagicDraw2. We have adopted the
latter as the main modeling environment and its Cameo Simulation Toolkit
plug-in to enable the model simulation.

Since fUML does not introduce any heavyweight extension, any fUML model
is UML-compliant. At run time, the fUML VM generates a so-called instance

model and ignores the non-executable part (including annotations from UML
profiles [5]). InstanceSpecifications, Links, and Slots elements are generated
within the instance model as the run-time counterparts of Classes, Associations
and Properties, respectively. In this respect, the execution of fUML activities
adds, deletes or modifies elements of the instance model.

3 Case Study: Indoor Positioning System

The case study that we consider in this paper concerns the SW/HW development
of an Indoor Positioning System (IPS) based on a Mobile Ad Hoc NETwork
(MANET). MANETs are self-configuring and self-healing networks, which do
not require any pre-existing infrastructure or centralized control. Their nodes are
mobile, connected by wireless links, then the network topology is very dynamic.

Fig. 1: MOSES and its surrounding
environment.

With regard to the software part, IPS
reuses the Optimized Link State Routing
(OLSR) [6] as its IP routing protocol. OLSR
is optimized for MANETs because it mini-
mizes the broadcast of control messages by
forcing their flow through selected nodes,
a.k.a. multipoint relays (MPRs). OLSR is
a COTS: both a Request for Comments
(RFC3626)[6] by the Internet Engineering
Task Force, and standard implementations
(OLSR Daemon, olsrd 3) exist for such pro-
tocols. The RFC3626 modularizes OLSR into
core functionalities (Neighbour Sensing, Mul-
tipoint Relaying, Link-State Flooding) and
defines three types of control messages (HELLO, Topology Control TC, and
Multiple Interface Declaration MID) whose contents are stored in eight different
information repositories. The hardware platform consists of IPS nodes includ-
ing two main components: an ATMEL ATZB-900-B0 module 4 that sustains,
with its transceiver, the signaling among nodes, and ii) an OMAP L138 mod-
ule5, embedding a general purpose ARM CPU and a Digital Signal Processor
(DSP), that sustains physical, medium access control, and network layers of the
communication network. The OLSR daemon is deployed on the OMAP.

Figure 2b shows an excerpt of both the software architecture and the hard-
ware platform of the IPS fUML Model. The abstraction level (i.e., what is ex-

2 www.papyrusuml.org/,www.nomagic.com/products/magicdraw.html
3 IPS software: http://www.olsr.org/.
4 http://www.atmel.com/Images/doc8227.pdf
5 http://www.ti.com/product/omap-l138

www.papyrusuml.org/
www.nomagic.com/products/magicdraw.html
http://www.olsr.org/
http://www.atmel.com/Images/doc8227.pdf
http://www.ti.com/product/omap-l138


Fig. 2: Excerpts of the MOSES library architecture (a), the instrumented MANET
software and hardware structures (b).

plicitly modeled and what is left out as external environment) is chosen in ac-
cordance with the execution traces obtained by the case study provider, namely
Thales Italy, then runs the OLSR daemon on both virtualized environments
and prototypical test-beds of several IPS nodes [4]. In particular, the tracked
OLSR execution traces involved i) five (over eight) OLSR information reposito-
ries, namely LinkSet, NeighborSet, MPRSelectorSet, 2HopNeighborSet, and
MPRSet, and ii) the link sensing functional capability (over three), all described
in the RFC3626 [6]. Moreover, since the link sensing is carried out through the
flooding of HELLO Messages, the other kinds of messages (TC, MID) are not
part of the IPS fUML Model.

The hardware part may include all the computing, storage and communica-
tion resources embedded on the ATMEL ATZB-900-B0 and OMAP L138 modules.
The latter is modeled through compound classes in Figure 2b. In particular, we
concentrate only on computing resources, i.e., the ARM926Ej-S CPU, which pro-
cesses the software requests arriving at the OLSR component deployed on each
MANET Node.

The IPS software behavior is represented through hierarchical fUML activi-
ties. Top level activities are meant to reproduce, at simulation time, the software
execution traces (traceable as Message Sequence Charts [7]) through call opera-
tion actions (Figure 3a) that, in turn, are further detailed with activities assigned
to operation methods, as shown for the LinkSet::update() in Figure 3b.



4 The MOSES Model Library for Performance Analysis

MOSES6, originally implemented within UML RealTime [2], has been here re-
designed as an fUML model library [3] (see Figure 1) whose data structures
(including analysis results) and algorithms are represented by UML Classes and
Activities, respectively. As a consequence, the main benefit of MOSES has been
preserved throughout its evolution process, that is allowing performance anal-
ysis while avoiding translational approaches to different external notations and
related technological spaces [8]. This is achieved by integrating the performance
analysis algorithms and results directly within the modeling language used in
systems development, as suggested in [9].

MOSES is meant to instantiate an intermediate layer between the compo-
nents of a software architecture and those of the underlying platform. Such layer
is in charge to model and deliver additional data for the sake of performance
analysis.

The MOSES architecture is shown in Figure 2a. A MOSES Model is composed
by SwComponents running on a platform that provides different kinds of hardware
resources, like FCFS CPUs, DiskResources, NetworkResources. SwComponents
receive inputs from the surrounding environment in terms of one or more Software

Requests that, in turn, include one or more ResourceRequests (i.e. Computing

Requests, StorageRequests, and CommunicationRequests) to specific hard-
ware resources of the underlying platform (FCFS CPUs, DiskResources, Network

Resources, respectively).

Fig. 3: MOSES and its surrounding environment.

The fUML VM as

is does not provide any
data structure or algo-
rithm specific for perfor-
mance analysis purposes.
In particular, as remarked
in [10], the fUML VM
does not support the no-
tion of time, which is fun-
damental for any kind of
performance analysis. To
cope with this limitation,
MOSES characterizes each request with a set of metadata (see Figure 3) that
are Arrival Time (AT), Service Time (ST), Waiting Time (WT), and Comple-
tion Time (CT), filled during the simulation. In particular, MOSES represents
ATs and STs indices as exponentially distributed random variables, with distinct
lambda parameters. The simulation engine uses such variables to sample i) the
average amount of time between the arrival of consecutive requests and ii) the
average amount of resource requested. In addition, the exponential distribution
guarantees the memoryless property between the corresponding events, i.e. the
arrivals of SoftwareRequests and resource usages, respectively.

6 Further details at http://sealabtools.di.univaq.it/tools.php

http://sealabtools.di.univaq.it/tools.php


The other two indices, WT and CT, result from the simulation process and
thus they are modeled as derived properties. In MOSES, the combination of
these four indices (ATs, WTs, STs, and CTs) allows to simulate resource sharing
among software components and, then, to calculate performance indices like
system response time and resource utilizations under concurrency.

Figure 3 shows, with the help of an UML-like Sequence Diagram7, how the
aforementioned MOSES library elements interact once instantiated and simu-
lated by the fUML VM. MOSES generates AT(λat)s and ST(λst)s and derives
/WTs and /CTs, accordingly, for each execution occurrence over lifelines rep-
resenting active objects at simulation time (from left to right, the whole MOSES

Model, its constituting SwComponents and platform resources of their execution
hosts).

In MOSES, all kinds of requests are collected and managed by a hierar-
chical set of dispatchers. A top-level MainDispatcher is in charge of splitting
each SoftwareRequest into one or more ResourceRequests addressed to differ-
ent components. Each ResourceRequest is further split in hardware-specific re-
quests sent to hardware-level dispatchers, namely CPUDispatcher, DiskDispatcher,
and NetworkDispatcher, which forward each specific request (ComputingRequest,
StorageRequest, CommunicationRequest) to the proper hardware resource.

It is worth noting that, in MOSES, we assume that each SoftwareRequest

always implies a computing request and, optionally, further storage and commu-
nication requests.

Finally, MOSES also provides i) workload generators of SoftwareRequests
(GenericOpenWorkload), and ii) data structures to manage requests, like dis-
patchers’ queues (SoftwareRequestQueue, ComputingRequestQueue), and to
store analysis parameters and results (SimulationParameters, SimulationResults).

5 Performance Analysis of MOSES Models

The performance analysis of MOSES models is carried out on top of MOSES in-
termediate layer which, in turn, exploits the simulation capabilities of the fUML
VM. The correct instantiation of the MOSES intermediate layer at simulation
time requires the wiring of the MOSES library with the user defined fUML
Model through model instrumentation (see Figure 1). This modeling step is re-
alized in two consecutive steps: i) the identification of software and hardware
resources on the user-defined fUML Model by establishing their generalization
to the corresponding MOSES classes, and ii) the behavior extension of the iden-
tified software/hardware components through MOSES-specific actions.

The former step is shown in Figure 2. The system boundary is represented
by MANET Node, within the IPS network, which receives HELLOs from its neigh-
bors. Therefore, a MANET Node corresponds to a MOSES Model, whose generic
SwComponents are concretely represented by the OLSR and its information repos-
itories. The ARM CPU is the shared hardware resource that schedules the comput-
ing requests generated by the received HELLOs following a First-Come First-
Served (FCFS) policy. The second step is exemplified in Figure 4 for the LinkSet

7 This is not part of the MOSES library but used for explanatory purposes.



Fig. 4: OLSR software requests (a), LinkSet::update() before (b) and after model in-
strumentation by MOSES (c), and MOSES GUI (d).

::update() operation whose generic behavior (Figure 4b) is instrumented with
MOSES-specific (gray) actions that are in charge of: i) scheduling software re-
quests (getNextSoftwareRequest, ii) retrieving performance parameters from
a case study-specific GUI (shown in Figure 4d), and iii) generating the software
demands (sendResourceRequestDemandVector)) to shared platform resources.
In our case study, for sake of illustration, we have limited the set of shared re-
sources to the ARM CPU and, therefore, demands are quantified in CPU time (i.e.,
the service time ST, in Figure 3).

Given a suitably instrumented fUML model, the next step is to define the per-
formance scenario, i.e. software request workload(s), performance requirement(s)
and index(es).

For IPS we aim at estimating the utilization of the ARM CPU of a single MANET

Node with 25 neighbors. The workload is represented by the receiving node pro-
cessing of HELLO messages. Each message generates five consecutive operation
calls to five distinct OLSR’s information repositories, as modeled through the
executable activity in Figure 4a.



A successful scenario is determined by: i) an ARM CPU load lower then 50%,
and ii) a response time, for each HELLO message, lower than 40 milliseconds .
This latter threshold is determined by dividing the OLSR HELLO_INTERVAL [6]
(set to 2 seconds) by the maximum system size that is set to 25 nodes. The vio-
lation of these performance requirements can cause the reshaping of the network
or the choice of a more powerful CPU for the MANET Node.

Through three separated panels on the MOSES GUI (shown in Figure 4d),
the MOSES user can provide inputs and observe the analysis results.

The Workload Specification (panel) characterizes the arrival process of HEL-
LOs. The AT between two consecutive HELLOs is represented as an exponen-
tially distributed random variable whose λ parameter is set to 0.0005 seconds.

Similarly, the Resource Demand Vector Specification (panel) groups the pa-
rameters that determine the ST of component operations in five sets, one for
each operation invoked in the activity in Figure 3a. The STs can be assumed, in
case of "what-if" analyses, or measured on software running on a predefined plat-
form, if available. In our case study, we collected8 the average execution times
of the involved operations by executing the olsrd daemon on a real UWB node.

Table 1: Timing parameters for components’ operations.
Component::Operation Avg(ST )1SR (ms) Avg(ST )25SR (ms) λ25 = (1/Avg(ST )25SR)

LinkSet::update() 149.00 3725.00 3.0E − 4
NeighborSet::update() 15.86 396.50 2.5E − 3
MPRSelectorSet::update() 97.96 2449.00 4.0E − 4
2HopNeighborSet::update() 1.54 38.50 2.6E − 2
MPRSet::recalculation() 1.72 43.00 2.32E − 2

Table 2: Performance Analysis Results.
Performance Index Required Estimated

CPU Utilization (%) < 40 11.8
Max System Response Time (single HELLO - batch of 25 HELLOs) (ms) 80 - 2000 21.19 - 529.74

The last column on Table 1 lists the lamba parameters used to generate
STs of component operations that, like ATs of HELLOs, are obtained from ex-
ponentially distributed random variables. Moreover, we model a batch arrival

process of 25 HELLOs, that is, 25 software requests arriving at the same time
and then sharing the same AT value. In accordance with this assumption, we
suitably multiply the measured average STs (Avg(ST )1SR) by the batch size 25
(Avg(ST )25SR) and obtain the corresponding λ parameters (λ25) to associate
to demand vectors on the MOSES GUI. Finally, for this paper experiments we
have stopped the simulation after the arrivals of 20 batches, for a total of 500
HELLOs.

MOSES analysis capabilities are currently limited to the calculation of two
performance indices: i) the System Response Time (average, minimum, and max-
imum in milliseconds), which corresponds to the difference between the AT of a
batch of HELLOs on the UWB node interface and the CT of whole batch, and
ii) the CPU Utilization, i.e., the percentage of time (i.e. the CT of the latest

8 through a software profiler available at www.qnx.com

www.qnx.com


batch) that the CPU spends in processing batches (obtained from WTs and STs
of each batch).

The performance requirements outlined at the beginning of this section and
the obtained results are listed in Table 2. For sake of this paper experimentation,
we consider the results satisfactory even though further investigation and more
complex performance scenarios shall be simulated in future.

6 Related Work

MOSES leverages fUML to enable performance analysis within the fUML tech-
nological space, without the need of translations to external notations, as tradi-
tionally approached in the performance analysis domain [11].

This paper is part of a broader research effort towards extra-functional anal-
yses based on fUML model simulation[5,12,13]. In [12], we proposed the perfor-
mance analysis of mobile agents for wireless sensor network in Agilla, that is a
domain specific programming language whose behavioral units (namely patterns)
and data structures are modeled as a reusable fUML library. In [5] and [13] we
devised an Eclipse-based translational approach that combines fUML with pro-
files for post-simulation performance analysis of fUML model execution traces.

These approaches still suffer from i) the scarce availability of reusable core

executable model libraries (e.g., common data structures like queue or stack),
thus demanding a huge modeling effort to fUML modelers and, even more, ii)
fUML VM design deficiencies that still limit the adoption of fUML for V&V
analyses [10,14,15]. The former limitation may take advantage of the Action
Language for fUML (Alf), an OMG native scripting language for UML behav-
iors. Alf can be used to specify large and complex UML Activities (as those
realized for the MOSES library). Regarding the latter limitation, [10] and [14]
both propose to redesign the fUML execution model 9 to support testing and
debugging of fUML models [10], and concurrency, synchronization, and schedul-
ing capabilities [14]. In [15], the authors proposed an extension of the fUML
semantics via a fUML library (i.e., without the need of modifying the current
fUML VM implementation) that is meant to be reused for a more efficient design
of simulation frameworks based fUML, like MOSES. Finally, scalability issues
may originate from the inherent nature of fUML libraries. Indeed, MOSES can
be seen as a layered tool where all its functionalities run within a hosting UML
modeling environment, which, in turn, run atop a Java Virtual Machine (see Fig-
ure 1). This layered infrastructure may cause scalability issues for analysis tools,
like MOSES, running on the topmost layer. In this respect, we noticed that the
simulation speed decreases while augmenting the number of arrivals. However,
we used the fUML VM as a black box component as embedded in Cameo Sim-
ulation Toolkit. Alternative fUML VMs 10 should be tested to validate MOSES
against particular VM’s implementation biases. Assessing the maturity level of
fUML and of available VMs is out of scope of this paper and left as future work.

9 That is a UML model from which the fUML VM is generated.
10 See http://modeling-languages.com/list-of-executable-uml-tools/

http://modeling-languages.com/list-of-executable-uml-tools/


7 Conclusion

In this paper we presented MOSES, a methodology and tool for performance
analysis realized as an executable fUML library.

MOSES has been redesigned within the JU Artemis PRESTO project. The
new MOSES aims at reproducing the behavior of software execution traces at
simulation time, in order to validate their performance requirements. An in-
dustrial case study has been provided to show MOSES at work and outline
achievements and future challenges. As future work, we plan to further investi-
gate the limitations of current and future fUML VM implementations (such as
scalability issues) to extend the performance analysis capabilities of the MOSES
library as well as applying similar fUML-driven approaches to the analysis of
different extra-functional properties (e.g., reliability).

References

1. J. Teich. Hardware/software codesign: The past, the present, and predicting the
future. Proc. of the IEEE, 100(Special Centennial Issue):1411–1430, May 2012.

2. V. Cortellessa, P. Pierini, R. Spalazzese, and A. Vianale. Moses: Modeling software
and platform architecture in uml 2 for simulation-based performance analysis. In
QOSA, volume 5281 of LNCS, pages 86–102. Springer, 2008.

3. OMG. Semantics of a Foundational Subset for Executable UML Models, 2011.
4. PRESTO Consortium. imProvements of industrial Real-time Embedded SysTem

development prOcess, http://www.presto-embedded.eu/, June 2014.
5. L. Berardinelli, P. Langer, and T. Mayerhofer. Combining fUML and profiles for

non-functional analysis based on model execution traces. In QoSA, 2013.
6. IETF. OLSR 3626, http://tools.ietf.org/html/rfc3626.
7. E. Gaudin and E. Brunel. Property verification with MSC. In SDL Forum, pages

19–35, 2013.
8. J. Bézivin. Model driven engineering: An emerging technical space. Generative

and transformational techniques in software engineering, pages 36–64, 2006.
9. R.B. France and B. Rumpe. Model-driven development of complex software: A

research roadmap. In Future of Software Engineering, pages 37–54, 2007.
10. Y. Laurent, R. Bendraou, and M.P. Gervais. Executing and debugging UML mod-

els: an fUML extension. In Proc. of ACM Symposium on Applied Computing, SAC
’13, pages 1095–1102, New York, NY, USA, 2013. ACM.

11. V. Cortellessa, A. Di Marco, and P. Inverardi. Model-Based Software Performance
Analysis. Springer, 2011.

12. L. Berardinelli, A. Di Marco, and S. Pace. fUML-Driven Design and Performance
Analysis of Software Agents for Wireless Sensor Network. In Software Architecture,
volume 8627 of LNCS, pages 324–339. Springer, 2014.

13. M. Fleck, L. Berardinelli, P. Langer, T. Mayerhofer, and V. Cortellessa. Resource
contention analysis of service-based systems through fUML-driven model execu-
tion. Proc. of NiM-ALP, page 6, 2013.

14. A. Benyahia, A. Cuccuru, S. Taha, F. Terrier, F. Boulanger, and S. Gérard. Ex-
tending the standard execution model of UML for real-time systems. In IFIP Conf.
on Distributed and Parallel Emb. Sys. (DIPES’10), pages 43–54. Springer, 2010.

15. J. Tatibouet, A. Cuccuru, S. Gérard, and F. Terrier. Principles for the realization
of an open simulation framework based on fuml (wip). In DEVS Integrative M&S
Symposium (DEV’13), pages 1–6. SCS, 2013.


	fUML-Driven Performance Analysis through the MOSES Model Library
	Introduction
	The Foundational UML
	Case Study: Indoor Positioning System
	The MOSES Model Library for Performance Analysis
	Performance Analysis of MOSES Models
	Related Work
	Conclusion


