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Abstract

Background: Identification of unknown fungal species aids to the conservation of fungal diversity. As many fungal

species cannot be cultured, morphological identification of those species is almost impossible. But, DNA barcoding

technique can be employed for identification of such species. For fungal taxonomy prediction, the ITS (internal

transcribed spacer) region of rDNA (ribosomal DNA) is used as barcode. Though the computational prediction of

fungal species has become feasible with the availability of huge volume of barcode sequences in public domain,

prediction of fungal species is challenging due to high degree of variability among ITS regions within species.

Results: A Random Forest (RF)-based predictor was built for identification of unknown fungal species. The reference

and query sequences were mapped onto numeric features based on gapped base pair compositions, and then used

as training and test sets respectively for prediction of fungal species using RF. More than 85% accuracy was

found when 4 sequences per species in the reference set were utilized; whereas it was seen to be stabilized

at ~88% if ≥7 sequence per species in the reference set were used for training of the model. The proposed

model achieved comparable accuracy, while evaluated against existing methods through cross-validation procedure.

The proposed model also outperformed several existing models used for identification of different species other than

fungi.

Conclusions: An online prediction server “funbarRF” is established at http://cabgrid.res.in:8080/funbarrf/ for fungal

species identification. Besides, an R-package funbarRF (https://cran.r-project.org/web/packages/funbarRF/) is also

available for prediction using high throughput sequence data. The effort put in this work will certainly supplement the

future endeavors in the direction of fungal taxonomy assignments based on DNA barcode.
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Background

In meta-genomic studies, taxonomy classification is crucial

for characterizing microbial communities [1]. In particular,

prediction of unknown fungal specimens and conservation

of their genomic resources are vital for studying and pre-

serving fungal diversity [2]. However, identification of speci-

mens that lacked morphological character is often difficult

[3]. In this direction, molecular technique like DNA bar-

coding [4] has been successfully employed in the recent

years for species identification [5–7]. In this technique, a

standard genomic region is used to distinguish species

based on barcode-gap [8]. The COI (cytochrome c oxidase

subunit I) gene of mitochondrial DNA was first accepted as

the barcode by the CBOL (consortium for barcode of life)

[9] for prediction of animal species [3]. Later on, the matK

and rbcL genes of chloroplast region were adopted by

CBOL as barcodes for identification of plant species [10].

As far as fungus is concerned, the ITS of rDNA that

includes ITS1 and ITS2 separated by 5.8S genic region (Fig.

1a), has been accepted by almost all the mycologists as the

molecular region for species identification [11–13].

Considering the importance of barcoding in the pres-

ervation of species diversity as well as for other applica-

tions, the CBOL has been continuously emphasizing on
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the development of new approach(s) for identification of

unknown species based on its barcode sequence [14, 15].

However, reference datasets having barcode sequences

with known species labels are essential for the prediction

of unknown species. For fungal species identification,

two important ITS reference databases namely UNITE

[13] and Warcup [16] have been developed. Besides, the

BOLD (barcode of life data) [9] system also provides

taxonomic information for fungal species identification.

As far as prediction of fungal species is concerned, few

computational approaches namely RDP classifier [16,

17], SINTAX [1], Mycofier [18] and MOTHUR [19]

were proposed in the past. The RDP classifier employed

naïve Bayes algorithm for taxonomy assignment, based

on k-mer (k=8) similarity features [17]. Similar k-mer

(k=8) features were also utilized in the SINTAX algo-

rithm for taxonomy prediction by using a non-Bayesian

classifier [1]. The k-nearest neighbor (kNN) algorithm

was implemented in MOTHUR for taxonomy classifica-

tion, based on k-mer (k=8) similarity measures [19]. In

Fig. 1 (a) Diagrammatic representation of ITS region of rDNA that includes ITS1 and ITS2 separated by 5.8s gene. (b) Venn diagram showing the

number of sequences of this work present in other databases. c Diagrammatic representation of the computation of gapped base pair features of

di-nucleotide AA. d Flow diagram showing the steps of training and testing involved in prediction using RF classifier. During training, tree-based

classifiers are constructed on bootstrap samples of the training dataset, whereas in testing the test instance is dropped in every constructed

classifier for predicting its label based on majority voting scheme
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Mycofier, naïve Bayes classifier coupled with k-mer (k=5)

features was adopted for identification of fungi at genus

label [18].

Though concerted efforts have been put for the devel-

opment of above mentioned tools and techniques that

have advanced our knowledge for species identification

using DNA barcode, still there is a room for further im-

provement. The 8-mer similarities have been adopted in

RDP classifier, SINTAX and MOTHUR, where the num-

ber of features are large (i.e., 48). So, prediction with

same accuracy using less number of features is one of

the aims of this study. Further, tool like PROTAX [7] de-

pends upon the output of third party software BLAST

[20], which itself takes longer time for performing se-

quence alignment for larger size dataset. Thus, the other

aim of this work is to develop an alignment free tool for

prediction of fungal species. Furthermore, the supervised

machine learning techniques such as naïve Bayes classi-

fier, kNN, Bayesisn regression model have been success-

fully employed for taxonomy assignments of fungal

species, as evidenced from the above mentioned studies.

Keeping above in mind, we have proposed a supervised

learning-based prediction model for identification of

fungal species, by analyzing their barcode sequences. In

the proposed model, gapped base-pair compositions [21]

were used as features and Random Forest (RF) [22]

methodology as predictor. The performance of the de-

veloped model was not only evaluated with fungal spe-

cies but also for the prediction of other species as well.

We believe that the developed approach will supplement

the existing tools and techniques for species identifica-

tion using DNA barcode.

Methods

Barcode sequences of fungal species

The Warcup dataset (17878 sequences belonging to

8551 species) was used to test the predictive ability of

the RDP classifier [16] and SINTAX algorithm [1]. Be-

sides, the RDP classifier was also evaluated with UNITE

dataset (145019 sequences belonging to 10297 species).

Further, performance of another machine learning-based

classifier i.e., Mycofier [18] was tested on fungal ITS se-

quences from the NCBI GenBank (https://www.ncbi.

nlm.nih.gov/). None of the above studies have used fun-

gal barcode sequences of BOLD systems (http://

www.boldsystems.org/), which is one of the most wide

spread endeavor in the field of barcode-based species

identification [23]. Therefore, we preferred the BOLD

database for collecting the fungal ITS sequences for our

study. At first, 68565 barcode sequences belonging to

4182 species (at least 3 sequences per species), across all

the 7 phyla of fungal kingdom were collected. Excluding

sequences with non-standard nucleotide bases, 60348 se-

quences confined to 4100 species were obtained. Further

excluding 330 species with 1 or 2 sequences, 3770 spe-

cies with 59847 barcode sequences were retained for

the analysis. Among 59847 sequences, more than

56000 are from ITS regions and rests are from other

genomic portions (Table 1). Out of 59847 sequences,

1485 (2.481% of 59847) and 17549 (29.32% of 59847)

sequences are found common with the Warcup and

UNITE datasets respectively (Fig. 1b). So, the prepared

dataset consists of ~70% non-redundant (with Warcup

and UNITE) sequences (excluding the 18038 common

sequences present in Warcup and UNITE datasets,

which is 30.14% of 59847).

Feature generation

Feature generation is a crucial step in computational

predictions using biological sequences [24]. Since the

biological sequences are the strings of alphabets, they

should be transformed to numeric vectors before being

employed as input in supervised learning-based predic-

tors [25]. As far as barcode-based species identification

using machine learning predictors is concerned, sparse

encoding technique was adopted by Weitschek et al.

[15]. In another study, Meher et al. [26] encoded the

barcode sequences based on the composition of contigu-

ous k-mer, for species identification using RF [22] ma-

chine learning technique. Specific to fungal species,

k-mer features [26] were employed in RDP classfier, SIN-

TAX algorithm and Mycofier for encoding barcode se-

quences into numeric vectors. Recently, Brinda et al.

[27] shown that the spaced k-mer [21] provides signifi-

cantly higher accuracy as compared to the contiguous

k-mer. Therefore, in the present study, the g-spaced base

pair features [21] were used to encode the barcode se-

quences into numeric feature vectors. Five kinds of

g-spaced features namely 1-spaced (g=1), 2-spaced (g=2),

3-spaced (g=3), 4-spaced (g=4) and 5-spaced (g=5) were

computed. This is similar to the di-nucleotide composi-

tions with skips of 1, 2, 3, 4 and 5 nucleotides respect-

ively [21]. For any nucleotide sequence of length N, each

g-spaced feature set results in 16 descriptors. The fre-

quency of the di-nucleotide s and t with g-gap (g-spaced

feature value) is given by Dg(s, t)/(N − 1), where s, t =A, T,

Table 1 Distribution of collected fungal barcode sequences over different genomic regions. It can be seen that >56000 sequences

out of 59847 sequences are from ITS (including ITS1 and ITS2) region. These 59847 barcode sequences are belonged to 3770

species, where at least 3 sequences are present for each species.

Genomic region 18S 28S 5.8S AOX-fmt atp6 COI-5P COII COXIII ITS ITS1 ITS2

# Sequences 5 6 2418 79 3 595 3 3 51886 2428 2421
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G, C; g = 1, 2, 3, 4, 5 and Dg(s, t) represents the counts of

di-nucleotide s and t with g-gap. An example of comput-

ing different g-spaced descriptors for the di-nucleotide AA

is shown in Fig. 1c. The g-spaced base pair features were

computed by using BioSeqClass R-package [28], where the

function featureCKSAAP was executed to generate the

features.

Supervised learning technique

Supervised learning methods are promising for DNA

barcode-based species identification [15]. For instance, su-

pervised learning techniques namely SVM (with sequential

minimal optimization) [29], C4.5 (J48) [30], RIPPER [31]

and Naïve Bayes [32] were employed by Weitschek et al.

[15] for species identification based on DNA barcode. In

SPIDBAR [26], RF supervised learning technique was ap-

plied for prediction of species using barcode sequences.

Specific to the fungal species identification, Naïve Bayes al-

gorithm was employed in RDP [16], SINTAX [1] and

Mycofier [18], whereas kNN was used in MOTHUR [19].

Motivated by the successful application of machine learning

techniques in earlier studies, we preferred to use RF super-

vised learning model for identification of fungal species in

the present study. Here, the class labels are the species

names of fungi and the number of classes is same as the

number of distinct species present in the dataset. Also,

there are other advantages of using RF i.e., it is non-para-

metric (independent of the probability distribution of the

dataset), robust to noise and can handle large datasets [27].

Since there were more than two species of fungus, a multi-

class RF [33] model was built for prediction of species.

Random Forest (RF)

RF [22] is an ensemble learning method, consisting of

several classification trees [34], where each classifier

(classification tree) is constructed on a bootstrap resam-

ple of the learning dataset. Since each classifier is built

upon a bootstrap sample, on an average 36.8% of obser-

vations do not play any role in the construction of each

classification tree and are called Out-Of-Bag (OOB) in-

stances [35]. In other words, each classifier in RF is built

on 2/3rd of the learning data and tested on the 1/3rd

OOB sample. These OOB samples are the source of data

for measuring the prediction error of RF. More clearly,

the error for each classifier in RF is measured based on

its OOB samples (called as OOB error) and these OOB

errors are averaged over all the decision trees to com-

pute the OOB error of the forest. As far as prediction of

test instance is concerned, each classifier of RF votes

each test instances to one of the pre-defined K classes

and the test instance is predicted by the label of winning

class [35]. There are two important parameters in RF

i.e., mtry (number of variables to choose at each node

for splitting) and ntree (number of decision trees to con-

struct in the forest), tuning of which is required to

achieve maximum prediction accuracy. For tuning of

ntree, the RF was trained by using the feature set g=1,

g=1+2, g=1+2+3, g=1+2+3+4 and g=1+2+3+4+5 with

varying number of decision tress (1 to 500) and default

mtry (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

no:of variables
p

¼ ffiffiffi

p
p

). The number of trees

after which the OOB-error rate got stabilized was con-

sidered as the optimal ntree. With the optimum ntree,

RF was again trained with the same datasets with varying

mtry values (1,
ffiffi

p
p

2
;

ffiffiffi

p
p

; 2
ffiffiffi

p
p

; 3
ffiffiffi

p
p

; p
2
; p ). The mtry that

generated the lowest OOB-error rate was considered as

the optimal mtry. A flow chart describing the process

involved in prediction using RF method is shown in Fig.

1d. For implementing RF methodology, the function

randomForest available in the R-package “randomForest”

[36] was used.

Training and validation

At least four sequences per species (class) are required to

train the supervised learning classifier for species identifi-

cation using DNA barcode [15]. However, we have consid-

ered those species for which at least three sequences were

also available. Here, seven different datasets were prepared

with 3, 4, 5, 6, 7, 8 and 9 sequences per species respect-

ively. The sequences in these datasets were randomly

drawn from the original dataset. Number of sequences

and species for each category are given in Table 2. For the

dataset with k sequences per species, a k-fold CV proced-

ure [37] was employed to evaluate the species identifica-

tion success rate (SISR) of the proposed model. For k-fold

CV, k subsets were prepared by randomly splitting the

whole dataset in such a manner that one sequence of each

species was present in each subset. In the k-fold CV pro-

cedure, k-1 subsets were utilized for training of the model

and the rest one subset was utilized for validating the

Table 2 Number of sequences, species, sequences/species for the considered seven categories of datasets. For instance, in the first

category there are 3770 species with 11210 sequences, where each species has 3 sequences. Further, in the category with k

sequences per species, a k-fold cross validation was adopted where k-1 sequences per species were used to train the model

and rest one sequence was used to assess the model accuracy.

#Sequence/Species 3 4 5 6 7 8 9

#Species 3770 3461 2777 2328 1998 1773 1498

#Sequence 11210 13844 13885 13968 13986 14184 13482
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corresponding trained model in each fold. In this proced-

ure, all the k subsets were provided equal opportunity to

be used as validation set, where the accuracy was mea-

sured in terms of SISR averaged over k folds of the CV.

The SISR is defined as follows:

Let Nh be the number of query sequences belong to the

hth species (class) and nh be the number of query instances

correctly classified into hth class, where h=1, 2, …, H. Then

the SISR can be computed as
P

h¼1

H

nh =
P

h¼1

H

Nh.

Prediction for other species

To check the suitability of the proposed approach for

the prediction of other species (other than fungi), its

performance was assessed on five different taxonomical

entities namely Inga, Drosophila, Cypraiedae, Fish and

Bat. The barcode sequences for these entities were re-

trieved from http://dmb.iasi.cnr.it/blog.php, which have

also been utilized in earlier developed species identifica-

tion methods [15, 38]. The numbers of sequences for the

reference and query datasets for these entities are given

in Table 3.

Prediction with simulated datasets

To assess the robustness of the proposed model, its per-

formance was also evaluated using simulated datasets

that were generated by Weitschek et al. [15]. There were

three datasets with effective population sizes (Ne) 1000,

10000 and 50000, where 100 sets were present in each

dataset and the sequences in each set were belonged to

50 species. These datasets can be accessed at http://

dmb.iasi.cnr.it/blog.php.

Comparison with existing approaches for prediction of

species other than fungi

The SISR of the proposed model was also evaluated

against the existing similarity, tree and diagnostic- based

[15] methods, for species identification other than fungi.

In tree-based approaches, the labels of an unknown spe-

cies are decided based on the cluster membership of their

barcode sequences with that of reference dataset, where

the clusters are formed by Parsimony (PAR) [39] or Neigh-

bor joining (NJ) [40] method. The similarity-based ap-

proach assigns an unknown specimen to that species of

reference library with the barcode of which maximum

number of nucleotides of query barcode match, where the

nucleotide matches are measured by using nearest neigh-

bor (NN) [41] or BLAST [42] technique. Diagnostic-based

methods namely DNA-BAR [43], BLOG [44] assign spe-

cies label to an unknown specimen depending upon the

presence/absence of certain nucleotides in DNA barcode,

without relying on all the characters [40]. The comparison

was made by using a diverged dataset consisting of bar-

code sequences of Inga from Plantae, Cypraeidae from

Mollusca and Drosophila from Arthropoda kingdom,

which were retrieved from http://dmb.iasi.cnr.it/blog.

php. The sequences of Inga, Cypraeidae and Drosophila

also belonged to COI, trnTD and ITS genomic regions

respectively. The collected dataset contains 1654, 497 &

736 sequences in the reference set, and 354, 118 & 172

sequences in the query set for Cypraeidae, Drosophila

and Inga respectively.

Comparison with existing fungal taxonomy prediction

method

The proposed computational model was further com-

pared with the existing fungal species identification

methods namely RDP classifier, SINTAX and MOTHUR.

We used the executable code of the MOTHUR (https://

github.com/mothur/mothur/releases/tag/v1.40.5), RDP

classifier (https://sourceforge.net/ projects/rdp-classifier/)

and SINTAX (http://www.drive5.com/ usearch/manual/

cmd_sintax.html) for implementing the corresponding al-

gorithms in our fungal datasets. The performances of the

methods were evaluated with a dataset of 1363 species (10

sequences per species). Accuracies were computed over

10-fold CV, where one sequence of each species was

present in each fold. We preferred to use 10 sequences per

species, because the datasets upto 9 sequences/species

were utilized for assessing the SISR of the proposed com-

putational model (see subsection Training and validation).

Results

Parameter optimization analysis

In all the five model representations (g=1, g=1+2, g=1+2

+3, g=1+2+3+4 and g=1+2+3+4+5) the OOB-error rates

are seen to be stabilized after ntree=400 (Fig. 2a), for all

the seven datasets (3-9 fold). It can also be seen that the

OOB-errors are lower for the dataset with larger number

of sequences per species. For instance, OOB-error rates

are lower for all the model representation with 9 se-

quences per species than that of others (Fig. 2a). It is

further observed that the OOB-error is lowest for g=1+2

+3+4+5, as compared to the other model representation

(Fig. 2b). Though, the errors are getting stabilized

around ntree=400 (Fig. 2a), the optimum value of ntree

was kept as 500 anticipating further improvement. With

the optimum value of ntree (=500), it is further observed

Table 3 Summary of the training and test datasets for five

different taxonomical entities.

Dataset Taxonomical entity

Drosophila Inga Fish Bat Cypraiedae

#Train (reference) 419 791 515 682 1656

#Test (query) 116 122 111 144 352

#Train: Number of sequences in the training set

#Test: Number of sequences in the test set
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that OOB-errors are minimum for the dataset with 9

sequences per species for all the seven mtry values and

five model representations (Fig. 2c). Further among the

five model representations, OOB-error is seen to be

lowest for g=1+2+3+4+5 and that is with mtry=
ffiffiffi

p
p

,

which is the default mtry value (9 in the present study)

in RF (Fig. 2d). Thus g=1+2+3+4+5 is the best model

representation with lowest OOB-error, and the optimum

values of RF parameters ntree and mtry are 500 and 9

respectively.

Fig. 2 (a) Line graphs showing the trend of OOB-error rates with respect to different number of classification trees (ntree) in RF. b The OOB-error

rates for different model representations with default values of mtry at ntree=500. c Heat maps of the OOB-error rates at ntree=500 with different

values of mtry for different model representations. d Heat map of the OOB-error rate for the dataset with 9 sequences per species for different

mtry values and model representations. It can be seen that the OOB-error got stabilized after reaching 400 classification trees, whereas mtry=
ffiffiffi

p
p ð9)

was observed optimum due to less OOB-error rates as compared to the other values of mtry
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Analysis of g-spaced base pair features

Although the OOB error rate is found to be lowest for

the model representation g=1+2+3+4+5, cross validation

analysis was performed in all the five model representa-

tions (feature sets) to have a comprehensive comparative

analysis. The SISRs for different number of sequences

per species and for different combinations of g (i.e.,

model representations) are shown in Fig. 3. The SISRs

are observed to be gradually increased while numbers of

sequences per species are increased, for all the combina-

tions of g (Fig. 3v). In particular, SISR reached 80%,

when 4 sequences per species are used to train the

model (Fig. 3a). The success rates are observed to be

higher for g=1+2+3+4+5 as compared to g=1, g=1+2,

g=1+2+3 and g=1+2+3+4. Also, it is seen that the SISRs

are ≥80% for all the model representations, when ≥5 se-

quences per species are used for training (Fig. 3b).

Though ≥80% success is achieved even for 4 sequences

per species in the training dataset, that is only for g= 1

+2+3+4 and 1+2+3+4+5. Further, SISRs are increased

upto 7 sequences per species in the training set, and

almost stabilized thereafter (Fig. 3a). The success rates

are also found to be more stable, when the prediction

model is trained with a large number of sequences

(Fig. 3a). The SISRs are further observed to be more

stable, when more combinations of g-spaced base-pair

features are used in the prediction model (Fig. 3b).

Performance analysis based on k-mer features

In one of our recent studies [26], RF classifier along with

k-mer feature was found performing better than the

existing machine learning and rule-based approaches

[15] for species identification, other than fungi. Thus, we

compared the performance between g-spaced and k-mer

features. Four different compositions of k-mer (k=1, 2, 3

and 4) features were employed here for fungal species

identification using RF classifier. Since SISR reached

~80% when 4 sequences per species were used to train

the prediction model (Fig. 3a), the datasets with 5 and 6

sequences per species were only used to compare the

SISR of k-mer feature vector with that of model repre-

sentation g=1+2+3+4+5. The results of the comparison

in terms of SISRs are given in Table 4. The SISRs are ob-

served to be higher for larger combinations of k-mer fea-

tures. At the same time, the accuracies were also found

to be more stable both for k-mer and g-spaced features,

when large number of sequence per species were in-

cluded for training. Though the accuracies for k-mer

and g-spaced feature sets are observed at par, the num-

ber of features for k-mer are larger than that of g-spaced

feature sets. For instance, the number of features for

k-mer 1+2+3+4 is 340 which is much larger than that of

g=1+2+3+4+5 feature set (Table 4). Thus, it may be said

that g-spaced features are more efficient in capturing the

variability of the nucleotide distribution present in the

barcode sequences of fungal species.

Performance analysis in other species

The SISRs of the proposed approach (RF with feature

set g=1+2+3+4+5) are shown in Fig. 3c. From the figure,

it can be seen that the SISRs for other species are much

higher (>92%) as compared to that of fungi (<90%). It is

further observed that the SISR is low in plant (Inga) than

that of others, and this may be due to the fact that ex-

cept Inga, others are from animal kingdom [45]. It is fur-

ther noticed that the SISRs in animal and plant species

are higher than that of fungi and this may be due to the

fact that in fungi ITS regions are used as barcodes which

are not highly conserved as that of COI or trnTD [12].

Nevertheless, the SISRs are observed between 92-99%,

and thus the proposed approach may be efficiently

employed for identification of species other than fungi

based on DNA barcode.

Performance analysis using simulated datasets

With the feature set g=1+2+3+4+5 and RF classifier

(ntree=500, mtry=9), the median of the prediction accur-

acies are observed to be >96% for the effective popula-

tion sizes 1000 and 10000, whereas it is ~94% for 50000

(Fig. 3d). Further, the prediction accuracies are seen to

be declined with increase in the effective population

sizes (Fig. 3e). Nonetheless, >90% accuracy are observed

in each set for all the three simulated datasets (Fig. 3e).

Comparative analysis for prediction of species other than

fungi

The SISRs of the developed model (RF classifier with

g=1+2+3+4+5 features) are ~10% higher as compared to

that of similarity-based approaches (Fig. 4a). Further,

diagnostic-based method outperformed the similarity-

and tree-based approaches, which is corroborated with

the results of Weitschek et al. [15]. Though the success

rate for the diagnostic-based approach is >90%, it is ~5%

less than that of proposed approach (Fig. 4a). Thus, it is

inferred that the proposed approach can also achieve

higher SISR than that of other ad-hoc methods for pre-

diction of other species.

Comparative analysis for prediction of fungal species

The accuracies of funbarRF and MOTHUR are observed

~89%, which is 2% higher than that of RDP and SINTAX

algorithms (Fig. 4b). Further, the stability of the accuracy

is found to be highest for RDP and lowest for funbarRF

algorithm. It is also seen that 10650 correctly predicted

sequences (out of 13630) are common to all the four

methods (Fig. 4c). Though the SISRs are seen at par for

funbarRF and MOTHUR, number of sequences pre-

dicted by funbarRF (370) that are distinct from the other
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classifiers are higher than that of MOTHUR (141) (Fig.

4c). This implies that the sequences that are not cor-

rectly predicted by MOTHUR are also correctly pre-

dicted by funbarRF. Thus, the funbarRF can be more

efficient than MOTHUR for fungal species identification.

Furthermore, ≥99% of the sequences predicted by RDP

and SINTAX algorithms are found to be predicted either

by MOTHUR or funbarRF or both (Fig. 4c).

Fig. 3 (a) The species identification success rates (SISR) for different combinations of g-spaced base pair features. b The SISR for different number

of sequences per species. c The SISR of the proposed model for taxonomy prediction in Drosophila, Inga, Fish, Bat and Cypraiedae. d Box plots of

the proportion of correctly predicted sequences in 100 sets of each simulated dataset. (e) Heat map of the proportion of correctly predicted

sequence of 100 sets of each simulated dataset
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Prediction software

Software development is an integral part, as far as the

research in the field of computational biology is con-

cerned. Here also, we have established a prediction ser-

ver “funbarRF” (http://cabgrid.res.in:8080/funbarrf/) for

fungal species identification. A snapshot of the server

page is shown in Fig. 5a. The user interface of the server

was designed using HTML, where the PHP and

R-programs were implemented at the back end for exe-

cution of the proposed approach. The user has to submit

both reference and query sequences in FASTA, with the

sequence identifiers in BOLD format. Two result files

are generated pertaining to the reference (training) and

query (test) sets (Fig. 5b). Number of instances observed

and correctly predicted for each reference species are

given in training-result-file, whereas the predicted labels

Table 4 Species identification success rates for different

combinations of k-mer and g-spaced feature sets, where 4

and 5 sequences per species were used to train the prediction

model. It can be seen that though the species identification

success rates for both feature sets are at par, number of k-mer

features used are larger than that of g-spaced features.

Feature-type Feature combination #Features #Sequences/Species

5 6

k-mer 1+2 20 76.37±4.91 79.61±3.33

1+2+3 84 79.21±4.71 82.72±2.81

1+2+3+4 340 80.61±4.03 83.68±2.85

g-spaced g=1+2+3+4+5 96 81.74±2.72 83.49±2.36

Fig. 4 (a) The SISRs of the proposed model, similarity-, tree- and diagnostic-based methods for taxonomy prediction of Drosophila, Inga and

Cypraiedae. b Accuracy of different taxonomy prediction method for prediction of fungal species using DNA barcode. c Number of correctly

predicted fungal species that are common in different taxonomy prediction methods
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Fig. 5 (a) Snapshot of the server page of the funbarRF and (b) result page after execution of an example dataset
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for query sequences are shown in test-result-file (Fig. 5b).

To facilitate prediction using high throughput sequences,

an R-package named as “funbarRF” (https://cran.r-project.

org/web/packages/funbarRF/) has also been developed.

Discussion

New species identification (taxonomically) is an inte-

gral part of biodiversity surveys that are essential for

formulating policies to conserve endangered species

[38]. DNA barcoding provides an alternative for mo-

lecular identification of those micro-organisms for which

morphology-based species identification is often difficult

[47–49]. In DNA barcoding, one of the fundamental is-

sues is how best one can assign a correct taxonomy to an

unknown specimen based on the known taxonomy of the

sequences of reference library [15, 46, 50, 51]. Further,

commonly used rule-based methods are dependent upon

the alignment of the barcode sequences [50]. Though the

alignment for coding region like COI is easier, it may not

be that much easier for ITS non-coding region due to lar-

ger variability in length and indels [51]. This study pre-

sents a new computational approach that involves the

feature generation based on g-spaced nucleotide base pairs

and application of RF for identifying species using DNA

barcode, with an emphasis on fungi.

The developed model was evaluated on 3770 fungal

species, where the performance was analyzed based on

cross validation technique. Though the identity between

any two nucleotide sequences in a dataset are generally

kept <80% to avoid over estimation while performing

classification using machine learning techniques, this

pre-processing step is mostly feasible in classification

where large numbers of sequences are present in differ-

ent classes. However, this pre processing step may not

be feasible in the present context, because the numbers

of sequences in each class (species) are very small and

the numbers of classes are also larger (1498 to 3770). In

other words, if such (similar) sequences are excluded,

the size of the dataset will be reduced further by which

the model may not be able to capture the variation

present in different classes (species). We also found the

similarities between sequences of different classes (spe-

cies) at threshold 0.8 (results not reported), when the

similarity check was performed using CD-HIT program

[52]. Thus, we feel that there is a less probability of over-

estimation. To the best of our knowledge, we have also

not found any earlier studies [15, 16, 18, 19, 26] report-

ing such pre-processing step, as far as species identifica-

tion using DNA barcode is concerned.

Five different combinations of g-spaced base pair fea-

tures were used to encode the barcode sequences that

were subsequently used as input in RF classifier for

species identification. Higher SISR was found for the

training dataset with higher number of sequences per

species. This may be due to the fact that with increase

in the number of sequences per species, variability

present between the species in terms of nucleotide dis-

tribution was captured more accurately.

Performances based on g-spaced base pair features

were further compared with that of contiguous k-mer

features, where the accuracies corresponding to 80

g-spaced base pair features were found similar with that

of 340 k-mer features. This implies that, higher number

of k-mer features may be required as compared to that

of g-spaced features to achieve a certain level of accur-

acy. Though more features usually lead to a better per-

formance, redundant features often causes

misclassification and thereby reduction in classification

accuracy [53]. So, one of the probable reasons for the

relatively poor performance of k=1+2+3+4 as compared

to that of g=1+2+3+4+5 may be that the k-mer features

may have induced more redundancy, which may not be

the case in g-spaced base-pair features.

We could not evaluate the proposed model on Warcup

and UNITE datasets due to the constraint of computa-

tional power. However, the developed model was com-

pared against those which were evaluated on these

datasets, and found comparable accuracy for fungal spe-

cies identification. Thus, the proposed model will certainly

supplement the prevailing efforts for prediction of fungal

species. The developed method was not compared against

the Mycofier, as it has been developed for prediction of

fungi at genus label. We also did not evaluate the accuracy

of the developed model against PROTAX, because we

found it difficult to identify the exact feature sets the

PROTAX require. Moreover, the PROTAX depends upon

the result of multiple sequence alignment of barcode se-

quences which itself takes longer time.

The developed approach was also assessed for predic-

tion of other species. While evaluated with 5 different

taxonomical entities, the proposed model achieved >90%

accuracy. Besides, the proposed approach achieved >95%

SISR in three diverged taxonomical entities i.e., Drosoph-

ila, Inga and Cypraidae, and the same was found much

higher than that of rule-based approaches. Furthermore,

the proposed method confirmed >90% accuracy with the

simulated datasets. Therefore, it may be inferred that the

developed technique is not only capable for predicting

the fungal species, but also other species as well.

Conclusion

This study presents a computational model for prediction

of fungal species based on DNA barcode. The developed

web server and R-package “funbarRF” will provide a plat-

form for identification of fungi at species label. Besides, it

can also be useful for identification of other species. So far

so good, the proposed computational model is believed to

be helpful for the taxonomists working on fungal species.
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