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ABSTRACT
Commercial aviation transportation is on the rise and has
become a necessity in our increasingly global world. There
is a societal demand for more options, more traffic, more
efficiency, while still maintaining safety in the airspace. To
meet these demands the Next Generation Air Transporta-
tion System (NextGen) concept from NASA calls for tech-
nologies and systems offering increasing support from auto-
mated decision-aiding and optimization tools. Such systems
must coordinate with the human operator to take advan-
tage of the functions each can best perform: The automated
tools must be designed to support the optimal allocation of
tasks (functions) between the system and the human oper-
ators using these systems. Preliminary function allocation
methods must be developed (and evaluated) that focus on
the NextGen Airportal challenges, given a flexible, changing
Concept of Operations (ConOps).

We have begun making steps toward this by leveraging
work in agents research (namely Adjustable Autonomy) in
order to allow function allocation to become more dynamic
and adjust to the goals, demands, and constraints of the
current situation as it unfolds. In this paper we introduce
Dynamic Function Allocation Strategies (DFAS) that are
not static and singular, but rather are represented by allo-
cation policies that vary over time and circumstances. The
NextGen aviation domain is a natural fit for agent based
systems because of its inherently distributed nature and the
need for automated systems to coordinate on tasks maps
well to the adjustable autonomy problem. While current ad-
justable autonomy methods are applicable in this context,
crucial extensions are needed to push the existing models to
larger numbers of human players, while maintaining critical
timing. To this end, we have created an air traffic control
system that includes: (1) A simulation environment, (2) a
DFAS algorithm for providing adjustable autonomy strate-
gies and (3) the agents for executing the strategies and mea-
suring system efficiency. We believe that our system is the
first step towards showing the efficacy of agent supported
approach to driving the dynamic roles across human oper-
ators and automated systems in the NextGen environment.
We present some initial results from a pilot study using this
system.
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1. INTRODUCTION
This paper is describing an application of agents and agent

research to an ongoing NASA research project named Air-
portal1 Function Allocation Reasoning (AFAR). The main
focus of this project is to understanding the roles and respon-
sibilities of automation in the Next Generation Air Trans-
portation System (NextGen). While we are currently in the
first year of AFAR’s 3 year effort, the project already shows
potential for the commercialization of agent technologies.

The core components of the AFAR project include:

• AFAR Agent Framework - for monitoring and adjust-
ing workflow;

• Dynamic Function Allocation Strategies (DFAS) - for
determining the best role for automation over time;

• Comprehensive Metrics for Function Allocation (CMFA)
- for quantifying the impact of these novel roles for au-
tomation and

• AFAR Simulation - for modeling and visualizing air
traffic that is to be controlled by both human and au-
tomation.

All of these components are leveraged to conduct human in
the loop experiments in order to explore the roles of automa-
tion in NexGen. Currently the AFAR project has just com-
pleted building the initial system which allows for human-
agent interaction. The focus of the scenarios currently are on
the East Tower of the Dallas Fort Worth Airport (DFW) and
the air traffic controller position of ground controller. We
have just completed our first pilot study experiment with
actual air traffic controllers and are beginning to analyze

1Airportal refers to the area in and around an airport, which
is the most congested and dangerous section of the National
Airspace (NAS)
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the results. Furthermore, the implementation of the sys-
tem has led us to identifying extensions to recent work in
Adjustable Autonomy in order to improve the performance
of DFAS. The rest of the paper documents our approach,
progress and insights. We begin by providing an overview
of some of the aspects of AFAR industrial relevance.

• Importance: Commercial aviation transportation is on
the rise and has become a necessity in our increasingly
global world. There is a societal demand for more op-
tions, more traffic, more efficiency, while still maintain-
ing safety in the airspace. This is not possible unless
dramatic investments are made in automation and in-
frastructure. Automation will be playing a larger role
to meet these needs, but automation designers need
new tools to allow for greater and more flexible roles
for the automation.

• Rationale: An agent based technology is a natural fit
to the aviation transportation domains for the follow-
ing reasons: (1) Airspace operations are inherently
distributed; (2) Problems are often communications
and coordination focused; (3) Agent based solutions
provide more timely and integrated responses and (4)
they increase the amount of humans and automated
systems that can be simultaneously coordinated. In
addition, existing research in agents (namely in Ad-
justable Autonomy) can be directly applied to aid in
human-automation transfer of control.

• Barriers: The primary barrier to adoption of this tech-
nology is rigorous human in the loop evaluation of
these methods to show feasibility and usefulness. In
order to address this, AFAR is focused on not only de-
velopment, but evaluation of these systems using ac-
tual air traffic controllers.

• Financial: Since development and evaluation is in the
early stages, the exact value is difficult to quantify.
However, DFAS holds great potential to industry de-
signers of automated system in the flight deck and air
traffic control towers and government customers wish-
ing to evaluate said designs. In order to convey the eco-
nomic need for NextGen, it is best to quote the FAA:
“By 2022, FAA estimates that [the lack of NextGen]
would cost the U.S. economy $22 billion annually in
lost economic activity. That number grows to more
than $40 billion by 2033 if the air transportation sys-
tem is not transformed.”

2. MOTIVATION
The responsibilities and privileges bestowed upon National

Airspace (NAS) stakeholders are expected to dramatically
evolve as the demand for the use of airspace continues to rise
[5]. To meet these growing demands and provide the level
of service, safety and security needed to sustain future air
transport, the Next Generation Air Transportation System
(NextGen) concept calls for technologies and systems offer-
ing increasing support from automated systems that provide
decision-aiding and optimization capabilities. The automa-
tion must be designed to enable the human operators to
access/process a myriad of information sources, understand
heightened system complexity, and maximize capacity and
throughput in the Airportal environment.

While NextGen promotes the introduction of advanced
technologies to support these specific needs, fundamental to
the Joint Planning and Development Office (JPDO) defini-
tion of the NextGen concept is the notion that such auto-
mated systems must coordinate with the human operator
to ”take advantage of the functions each can best perform”
[5]. Under this specification, such automated tools must be
designed to support the optimal allocation of tasks between
the system and the human operators using these systems.
That is, preliminary function allocation methods among op-
erators and automated systems must be studied early in the
design process, to ensure that the impact of these function
allocations can be fully realized in an implemented system.
This becomes even more important because NextGen will in-
volve changing concepts of operations to meet future needs.
Any function allocation methodology cannot be static, but
must be capable of adjusting seamlessly and appropriately
as required to meet technology developments as they arise.

There are three critical challenges that need to be ad-
dressed in supporting the early design of systems that al-
low for optimal, context-sensitive function allocation. First:
preliminary function allocation methods must be developed
that focus on the NextGen Airportal challenges, given a
flexible, changing Concept of Operations (ConOps). Be-
cause the NextGen ConOps involves new classes of functions
and responsibilities, with relatively unstudied consequences,
methods for assessing the allocations must be adaptable to
previously unplanned-for scenarios.

Second, the Human Systems Integration (HSI) community
is in need of robust methods for evaluating the effectiveness
of total system performance, where a system is defined as
the humans and automated tools working collaboratively to
meet productivity and performance goals. While traditional
metrics (e.g., accuracy, completion time) can be used for as-
sessing total system performance, these methods have gener-
ally been extended from human performance measurement
approaches and often lack sensitivity for assessing the com-
plex performance of the collaborative human/automation
team.

Finally, such methods must leverage the extensive work
that has been done in the last decade to evaluate the intri-
cate relationship between automation and the human opera-
tor(s) [8, 9]. These solutions must capture the complexities
of that empirical work in clear, concise, and intuitive de-
sign guidelines to support designers in developing systems
and policies to exploit the capabilities of both human oper-
ators and automated systems. In addition to design guide-
lines that follow from empirical human-automation research,
computational and formal models are also important tools
that can be delivered to designers. Examples of these include
formal models for automation verification [3], Bayesian mod-
eling approaches (Inagaki, 1999), and mathematical models
of automation reliance and compliance (Wickens & Dixon,
2006). A combination of both guidelines and more formal
models is needed to support objectives as described by Safe
and Efficient Surface Operations (SESO) and Coordinated
Arrival/Departure Operations Management (CADOM) tech-
nical areas of Airportal.

1732



3. AIRPORTAL FUNCTION ALLOCATION
REASONING (AFAR)

To address these challenges we present the Airportal Func-
tion Allocation Reasoning (AFAR) project. AFAR’s ap-
proach has three key components: (1) Leverages recent work
on human-agent allocation to develop novel methods for
function allocation, particularly the Dynamic Function Allo-
cation Strategies (DFAS); (2) Provides Comprehensive Mea-
surements for Function Allocation (CMFA), encompassing a
multi-source measurement approach for evaluating function
allocations among complex networks of distributed human-
automation interactions, and (3) Establishes a clear path
to engage NASA researchers throughout the process, from
selecting critical research issues to use case generation, ex-
perimental design and execution, and finally transitioning
to useful guidelines.

These guidelines are generated to help designers grasp the
implications of allocating functions between humans and au-
tomation in the NextGen Airportal, whether those designers
seek to develop design aid tools or augment existing ConOps.
To accomplish this objective, we employ an iterative, recur-
sive approach of development and evaluation. In addition,
we leverage previous work from the human factors commu-
nity in the understanding of human-automation interaction
to drive both design and assessment. Thus, as CMFA is con-
structed to critically assess DFAS performance in human in
the loop simulation, it concurrently provides an opportunity
to evaluate the adequacy of the performance metrics and
provides opportunities to improve CMFA for future eval-
uations of even other methods of function allocation. By
spiraling this process up from lower fidelity environments
(e.g., Distributed Dynamic Decision-making (DDD) simula-
tor) to more sophisticated testbeds (e.g., NASA facilities,
such as the Airspace Operations Lab (AOL) and Advanced
Concepts Flight Simulator (ACFS)), we can make incremen-
tal improvements to both DFAS and CMFA, and manage
risk as the simulations better approximate a real world en-
vironment. This provides the best opportunity to generating
guidance that will be useful to NextGen stakeholders.

We are developing, evaluating and transition methods for
human-automation function allocation to guide designers
of NextGen technologies and procedures as they consider
the critical issues of human-automation interaction. The
AFAR project involves collaboration with NASA personnel
throughout the 3-year effort. This approach leverages re-
cent advances in artificial intelligence (namely Adjustable
Autonomy) in order to allow function allocation to become
more dynamic and adjust to the goals, demands, and con-
straints of the current situation as it unfolds. Consequently,
AFAR introduces Dynamic Function Allocation Strategies
(DFAS) that are not static and singular, but rather are rep-
resented by allocation policies that vary over time and cir-
cumstances. By casting function allocation as a problem of
adjusting autonomy between human-automation (and even
human-human) links, we can leverage the current techniques
for optimizing both strategy selection and strategy timing
(i.e., the how and when). The adjustable autonomy ap-
proach incorporates aspects governed by two vital factors:
performance capability and deadline. In determining the op-
timal allocation between human and agent, adjustable au-
tonomy considers not only the capability, availability, and
appropriateness of an actor to perform a function, but the

overall system state and temporal implications regarding the
overall planning of higher level goals. Thus, an adjustable
autonomy approach brings rigorous, testable methods for
understanding how function allocation will need to adjust
to the requirements of future concepts.

We expect multiple iterations of evaluation to occur to
continually refine the Dynamic Function Allocation Strate-
gies (DFAS) and the Comprehensive Measurements of Func-
tion Allocation (CMFA) methods based on the progression
of the various simulations. The CMFA results from the
combination of measures from three different sources: (a)
observer-based data from trained individuals recorded in
real time; (b) self-report data from operators collected dur-
ing or after testing runs; and (c) system-based data derived
directly from the test scenario.

Throughout this process, we focus on use cases to iden-
tify function allocation challenges relevant to the NextGen
Airportal, to iteratively address both DFAS and CMFA is-
sues. Indeed, design decisions which require strong human-
automation integration are best validated by both empir-
ical human performance testing combined with computa-
tional/mathematical model testing. Such evaluations are
essential because prior research has shown that automated
systems in many domains, including aviation, are not al-
ways used by human operators in the ways that designers
intended [8]. In particular, human operators may not use au-
tomated aiding appropriately. While such automation dis-
use and misuse can be minimized through careful design and
application of AFAR, human performance evaluation is nec-
essary to ensure appropriate automation use [9]. This will
enable AFAR’s function allocations (DFAS) and evaluation
methods (CMFA) to lead to more feasible and useful guide-
lines for automation and policy designers for the NextGen
Airportal.

Critical to any program success is the assurance of a sound,
disciplined systems engineering process that ties program el-
ements and human-automation collaboration together. Our
activities in the first year have centered on developing ap-
propriate function allocations to foster NextGen Airportal
initiatives. We are working with NASA to develop use cases
that will highlight the challenges brought about by function
allocation in the future NextGen Airportal. These use cases
serve as scenarios to be carried throughout all three years
of the AFAR effort, providing a common framework for our
DFAS and the CMFA components.

4. DYNAMIC FUNCTION ALLOCATION
STRATEGY (DFAS)

One of the most fundamental challenges of building a
human-multiagent team is that of ”adjustable autonomy”
[11, 15, 12, 16, 17, 18]. AFAR builds upon this recent work
on adjustable autonomy to create novel Dynamic Function
Allocation Strategies (DFAS). In particular DFAS’ human-
agent automation allocation strategies are expanded to han-
dle increased dynamics and agent workload.

Conventionally, adjustable autonomy refers to the ability
of an agent to dynamically adjust its own autonomy, thereby
altering the amount of control a human has over the agent
at a particular time and context. Given the changing state
of the environment and the team, it is beneficial for an agent
to be flexible in its autonomy and not be forced to act either
with full autonomy or with zero autonomy. The key to ad-
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justable autonomy is to answer a question ”when and where
to transfer the control of a decision”.

Figure 1 shows the AFAR multiagent proxy architecture
applied to an example Airportal scenario that allows for
dynamic, reactive function allocations (DFAS). This sce-
nario has three human operators and three components of
automation that all must coordinate in the context of the
Airportal. The human operators are the Pilot, Air Traffic
Controller and the Dispatcher, whereas the automation en-
compasses the Flight Management Computer (FMC), the
Aeronautical Telecommunications Network (ATN), and the
Center/TRACON Automation System (CTAS). Inside the
dashed box are the proxy agents that represent the mem-
bers (human operator or automation) of the overall Airpor-
tal team. The proxies each negotiate and react to allow for
a function allocation to shift from a human operator to the
automation, or even to another human operator. Figure 2
shows the internal structure of an individual proxy agent.

Each AFAR proxy agent has a number of modules that
are guiding its reasoning over the functional allocation. In
order to shape the functions and their respective desired al-
locations, a Beliefs Module keeps track of the state of the
represented human or automation, the state of the external
world and a list of required functions. The other modules
read and write to the Beliefs Module as necessary. For ex-
ample, the model of a represented human operator would in-

clude factors such as capabilities to perform given functions,
estimates on how long it would take that human to perform
a function, and the estimated quality of performance for
each function. These models of human performance can be
implemented in a variety of ways ranging from simple dis-
tributions to complex computational model of the human
(eg., ACT-R or SOAR). The Adjustable Autonomy Module
hence determines the Dynamic Function Allocation Strategy
(DFAS) over time of which Airportal member (human oper-
ator or automation) should be allocated for a given function.

Recent work in adjustable autonomy [13], generalizes it
to a process in which the control over a decision is dynam-
ically transferred between a human and an agent in order
to find the teammate (agent or human) that is best fit for
making the decision. The choice of the best fit teammate
depends on the state of the world, the locality of information
among team members, the priority of the decision, and the
availability of the teammate. At the same time, adjustable
autonomy also factors in policy or doctrine to guide the al-
location decision [2]. For example, if the nature of the de-
cision involves lethality (e.g., firing a weapon) then only a
human would be able to have autonomy. In addition, all
of these factors change continuously over time and conse-
quently, the best teammate to make a decision may change
over time as well. In an example of a possible function al-
location strategy for this context, the Traffic Flow Manager
(Human Operator 1) determines that there is a need to go
to super density operations for an arrival. This alters the
allocation (autonomy) over the function of Landing Proce-
dure over the Aircraft Flight Deck (Automation 1), which
activates the autolanding system due to limited visibility.
At that point, the allocation is switched to the Air Traf-
fic Management Systems (Automation 2) that compute and
transmit the taxi clearance to the aircraft before landing.
After touchdown, the locus of control is transferred again,
this time to the human operator piloting the aircraft (Hu-
man Operator 2). The pilot executes the necessary taxi to
avoid runway incursions and arrive safely at the gate. In
the above case, instead of having a single, predetermined
function allocation that statically assigns roles and respon-
sibilities to the automation or the human, there can be a
dynamic function allocation strategy that suggests points in
time to alter the allocation. In addition, there can be a re-
active updates to this strategy as uncertainties decrease and
events arise.

Consider the following example DFAS: H1T1AT2H3T3AT4.
In the example, times at which the allocation should trans-
fer to the next function performer (human/automation) are
labeled as T1,T2,T3 and T4 respectively. Optimization algo-
rithms for the DFAS determine not only the order of the
allocation changes, but also the timings. Transitions of con-
trol between agents (human/automation) must be carefully
orchestrated to avoid automation surprises. AFAR focuses
on applying adjustable autonomy to the complex, dynamic
domain of NextGen-Airportal operations where human au-
tomation function allocation must adapt due to changes in
the aspects of the functions themselves.

5. DFAS SOLUTION
Early work on mixed-initiative and adjustable autonomy

assumed that transfer of control was one-shot and perma-
nent. Since such rigid transfer of control decisions are prob-
lematic, particularly in time-critical domains, researchers
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have since focused on multi-stage adjustable autonomy strate-
gies [12, 18, 4, 16], effectively allowing for transfer of con-
trol to go back-and-forth between the agents and the hu-
mans. Due to their ability to handle the uncertainty about
the availability of humans, Markov Decision Process (MDP)
based methods for adjustable autonomy in particular have
received a lot of attention [18, 15]. However, in order to
ensure high-quality decisions, these works have used very
fine-grained discretization of time, resulting in large MDP
state spaces, and prohibitive algorithm runtimes. To remedy
that, [13, 14] was the first to employ continuous time MDP
solvers [1, 6, 7] to compute adjustable autonomy strategies.
Yet, the strategies in [13, 14] assumed that only two actors,
a human or an agent team, could at any point in time be
in possession of decision making. Furthermore, these works
assumed that human responsiveness (specified by a given
probability distribution that does not change as the human
accepts to make more and more decisions.

These two shortcomings of [13, 14], the inability to han-
dle multiple human operators and the lack of implicit mod-
eling of their changing responsiveness, need to remedied to
address the requirements of the DFAS component. In the
remainder of this section we show exactly that can be ac-
complished. We begin by recalling the formalism of Time
Dependent Markov Decision Processes.

5.1 Time Dependent Planning
In many aviation situations, agents execute actions whose

durations are uncertain and can only be characterized by
continuous probability density function. A common ap-
proach to model such domains with continuous time char-
acteristics has been to use the framework of semi-Markov
Decision Process [10]. However, semi-MDP policies are not
indexed by the current time and as such, might not have
the desired expressivity when dealing with time-critical do-
mains. For such domains, one can use the Time dependent
MDP (TMDP) framework [1]. TMDP’s approach to model-
ing continuous time is to create a finite, hybrid state-space
where each discrete state has a corresponding continuous
time dimension. This allows TMDP policies to be both ac-
curate and conditioned on time limits, as required in our do-
mains. To model its strategies, DFAS employs Interruptiple-
TMDPs [14], a framework that extends TMDPs by allowing
the actions to be interrupted.

The Interruptible TMDP (I-TMDP) model [1] is defined
as a tuple 〈S, A, P, D, R〉 where S is a finite set of discrete
states and A is a finite set of actions. P is the discrete
transition function, i.e., P (s, a, s′) is the probability of tran-
sitioning to state s′ ∈ S if action a ∈ A is executed in state
s′ ∈ S. Furthermore, for each s, a, s′ there is a corre-
sponding probability density function ds,a,s′ ∈ D of action
duration, i.e., ds,a,s′(t) is the probability that the execution
of action a from state s to state s′ takes time t. (The execu-
tion of actions can be interrupted in which point the agent
reverts to the starting state s without incurring any cost.)
The reward function, too, is time-dependent; R(s, a, s′, t) is
the reward for transitioning to state s′ from state s via action
a completed at time t. Let Δ (referred to as the deadline)
be the earliest time after which no reward can be earned for
any action a ∈ A and any states s, s′ ∈ S. A policy π for
a TMDP is defined as a mapping S × [0, Δ] → A and the
expected utility of following a policy π from state s at time
t is denoted as Uπ(s, t). The policy π∗ which provides the

highest expected utility for any state and time pair is then
referred to as the optimal TMDP policy. Note, that π∗ can
be found efficiently using one of the existing TMDP solvers
[1, 6, 7].

5.2 Adjustable Autonomy using I-TMDPs
We now show how to address the first shortcoming of

[13, 14]: the inability to handle multiple human operators.
DFAS requires that, before a role is performed, a role allo-
cation about that role is made. For example, if the role is
to “land a plane within the next 10 minutes”, then the role
allocation is the decision about who (either some human op-
erator or the Automation2.) will be piloting the plane to be
landed. Note, that both role allocation and role execution
tasks consume time and as such, they both need to be per-
formed in a timely manner (within 10 minutes) for the role
to be completed successfully.

For each new role that arrives, DFAS constructs the ad-
justable autonomy strategy using I-TMDPs as follows: The
set of states is S = {sH1 , sH2 , . . . , sHN , sA, send}. If the
system is in state sA, the Automation has the control over
the role; if the system is in state sHn , human operator n
has the control over the role, for 1 ≤ n ≤ N . The pro-
cess starts in state sA and stops if it transitions to state
send or if the current time is greater than Δ. Whoever
has the control over the role can either execute that role
or transfer it to another entity. That is, A = {aexecute,
atransfer(H1), atransfer(H2), ..., atransfer(HN ), atransfer(HA)}
where aexecute results in the execution of the role, atransfer(A)

results in the transfer of control to the Automation and
atansfer(Hn) results in the transfer of control to human op-
erator n, for 1 ≤ n ≤ N . The transition function is then
defined as P (sA, aexecute, send) = P (sHn , aexecute, send) = 1
for 1 ≤ n ≤ N and P (sx, atransfer(y), sy) = 1 where x, y ∈
{A, H1, ..., HN} and x �= y.

We assume that the transfer of control actions take less
time (=has lower mean) than the role execution actions.
Also, because the human operator can be busy executing
other roles, we assume that the time it takes to execute
the role is smaller for the Automation than for the human
operator. Under these circumstances, what encourages the
system to transfer the control to the human operators (who
on average take longer to respond than the Automation) is
the structure of the reward function. Specifically, we assume
that the reward for executing a role (before the deadline) is
higher if the role is executed by the human operator than
when it is executed by the Automation. The adjustable
autonomy strategy for the role is then identified by the I-
TMDP policy π∗ that prescribes the best action (=execute
a role or transfer of control to some entity) for each state
from the current time until the deadline Δ.

5.3 Human Operator Responsiveness
The second shortcoming of [13, 14] is that the (elicited

from domain experts) responsiveness of the human opera-
tors used in determining the adjustable autonomy strategies
remains unchanged across different strategies. In essence,
even if according to an adjustable autonomy strategy for
some earlier role there is a non-zero probability that human
operator n will be in control of the role, the responsiveness

2For explanation purposes, we use in the following a single
automation proxy as our formalism can be trivially extended
to multiple independent automation proxies
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of the human operator remains unchanged when the human
operator is being considered to be assigned to some future
role. For example, initial responsiveness of human operator
n when asked to perform a role “land a plane” could be gov-
erned by a normal distribution dsHn ,aexecute,send = N (μ =
4min, σ = 1min). However, if there is e.g. 20% chance
that the human operator will have to land one plane (earlier
role), the responsiveness of the human operator in future
roles will no longer be governed by N (μ = 4min, σ = 1min)
but instead, with some distribution with a higher expected
duration. In determining this updated distribution (new
responsiveness of a human operator) DFAS uses transient
analysis of the Markov processes [10] for the already deter-
mined adjustable autonomy strategies. The updated distri-
bution is then fed into the I-TMDP model constructed to
determine the optimal adjustable autonomy strategy for a
newly arrived role.

6. IMPACT OF AFAR
Inherent to the NextGen concept of operations is the in-

creasing collaboration between human operators and auto-
mated systems, driven by advanced models to support opti-
mal function allocation of flight responsibilities. Optimiza-
tion must be guided by the design of automated systems that
exploit the unique strengths of both human and the systems
they use to ensure productivity and safety. To fully realize
the human-automation systems that will be central to the
NextGen-Airportal, models that support function allocation
must be used to drive design of these technologies early in
the design process. These models must be flexible to the
evolving concept of operations of the near future national
airspace, and must provide innovative methods for defining
function allocation that leverage existing research and tools.

To achieve this result, the AFAR approach is grounded
in a comprehensive understanding of the work domain of
the various NAS users and the proposed capabilities of the
NextGen environment, resulting in novel methods for defin-
ing DFAS that support operationally-relevant function allo-
cation and measurement capabilities. The AFAR approach
leverages an analysis technique to generate a deep and for-
mal understanding of the human operator’s interaction with
system technologies across a rich work domain. This deep
understanding is used to define innovative methods for both
defining and evaluating the functions that will be allocated
between human pilots and automated system. The AFAR
approach leverages existing work on dynamic allocation strate-
gies for human-multiagent interaction. These adjustable au-
tonomy strategies serve as a framework to adapt to both the
needs of human operators and the requirements of NextGen-
Airportal functional allocations.

In addition to providing innovative methods for identify-
ing and developing strategies for function allocation (DFAS),
the proposed approach uses iterative test cycles designed
to increase in fidelity. This approach ensures that these
strategies support human operators in meeting productivity
and safety requirements, and that the DFAS is sensitive to
changes in context due to shifts in operator characteristics,
supporting technologies, flow management goals, or exter-
nal conditions such as weather or other environmental dis-
turbances. Central to these evaluations is the development
of metrics, CMFA, specifically designed to assess human-
automation interaction from a systems viewpoint, consider-
ing the unique and collaborative behaviors of the complex

distributed network of humans and automated agents. The
development of these metrics is expected to largely impact
the NextGen engineering and research community, by pro-
viding valid and sensitive measures of human-automation
interaction performance that extend beyond the application
of traditional performance measures to the unique Airportal
problem space. Finally, the developed models and methods
for measurement are to be shared with NASA researchers
and the NextGen research and engineering community. This
applies data and conclusions drawn from knowledge elicita-
tion sessions with NASA researchers and developers, as well
as empirical evaluations conducted with simulated agents
and human operators at the NASA Ames facility. The re-
fined DFAS and CMFA will serve as a framework for de-
sign recommendations and research thrusts shared with the
NASA community and research community at large.

In particular, NASA’s and FAA’s NextGen concept will
benefit from dynamic allocations of tasks between human
operators and automated systems in accordance with chang-
ing airport terminal situations. This research is expected to
contribute to the NextGen-related goals by 1) developing
system evaluation methods and performance metrics rele-
vant to the Airportal environment, namely CMFA, 2) devel-
oping human-automation function allocation strategies and
timings within an adjustable autonomy framework, namely
DFAS, and 3) providing guidance regarding function allo-
cation strategies and methods for assessing function allo-
cations to designers of NextGen systems. The operational
research questions to be addressed by this work, along with
their associated Airportal and IIFD milestones, include:

• What roles and responsibilities allocated among hu-
mans (e.g., pilots, controllers, dispatchers) and au-
tomated systems are appropriate for the future air-
port environment? (milestones AP.2.A.3, AP.2.A.11,
IIFD.3.1.3)

• What guidance can be provided to automation design-
ers to support the design and evaluation of new opera-
tional concepts involving human-automation function
allocations? (milestones AP.3.A.4, AP.2.A.10)

7. PILOT STUDY
We have recently completed implementation of the system

as seen in Figures 3,4 and 5. The specifications of our latest
pilot study implementation are as follows:

• Two participants

– One current controller from BOS Logan Airport

• Each subject came in for a total of 3 sessions

– First session was for training on the AFAR testbed

– Second session involved 2 training and 2 pilot
study scenarios

– Third session involved 1 training and 2 pilot study
scenarios

• Captured video

• Conducted surveys at the end of each scenario
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Figure 3: Diagram of Dallas Fort Worth Airport

Figure 4: The experimental setup with the partici-
pant (center) and the pseudopilots (left and right).

Figure 4 shows the entire experimental setup with the
three work stations, including 2 psuedopilots and 1 partici-
pant. In addition it shows the video camera recording and
the extra computers necessary to run the server and DFAS.
Figure 5 shows a participant using the system. The partici-
pant’s desk has reference charts on the left, flight strips on
the bottom, and the dynamic display on the right. Interac-
tion with the system was through standard oral communi-
cation messages.

In addition, we have begun analysis of our pilot study
and present a some initial findings here. We evaluate the
comprehensive system and looks at metrics over the AFAR
system and the human participant as well. In the pilot study
the agents were in two conditions, the first where transfer of
control was determined a priori (Static) and second where it
was calculated online using DFAS (Dynamic) as explained

Figure 5: Ground Controller using AFAR.

Figure 6: Step Diagram of Task Load Over Time.

Figure 7: Total number of transfers of control.

previously in Section 5.
Figure 6 shows the peformance of the DFAS algorithm in

the AFAR System. Specifically, Figure 6 shows a step func-
tion of how many tasks occur over time for the human and
the automation. The top graph shows Static configuration
and the bottom graph shows the Dynamic (DFAS) condi-
tion. The circles are isolating points in time that highlight
the differences between the static and the dynamic (DFAS)
setting. DFAS achieves its desired outcome by balancing the
workload between the human and automation. This results
in shifting tasks to the human when the human is not busy
(as seen in the circles), but also making sure that the human
participant does not get overwhelmed.

In order to look further into how big of a role that the
DFAS algorithm was playing, we also looked at how many
transfers of control were executed by DFAS. Figure 7 shows
the total number of allocations to automation and to the hu-
man participant. The departures required less transfers than
the arrivals. However, these dynamic transfers are relatively
balanced across the human and automation, suggesting that
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Figure 8: Trust survey results.

DFAS did not solely take burden off the participant and give
automation more functions to perform. Instead the aim of
DFAS is to have automation play a role when it is better for
overall human-agent performance.

In addition, we studied how these agent configurations af-
fected the participant’s view of the agent automation. Fig-
ure 8 shows the results from surveys that each of the partici-
pants completed looking at issues of trust in the automation
that they were using. Bolded values are the maximum val-
ues. As seen in Figure 8, in most cases the DFAS condition
was the same or better in terms of how much the partici-
pants trusted and understood the automated agent system.
This is a promising result, given that a goal of our work is
to build automated systems that humans will trust and use.

8. CONCLUSIONS
In this paper we have presented the AFAR project which

aims to apply agents facilitate human-automation interac-
tion in order to better define roles in the NextGen aviation
environment. We believe that this technology will be bene-
ficial to industry automation designers and help bring about
more productive human-automation relationships. We have
recently completed the building of the initial version AFAR
system and conducted an initial pilot study. In the near fu-
ture we plan to begin the full experiments and start showing
the feasibility and usefulness of Dynamic Function Alloca-
tion Strategies in the NextGen environment, thereby bene-
fitting NASA and the FAA as well.
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