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Rheumatoid arthritis (RA) is a systemic and heterogeneous autoimmune disease with
symmetrical polyarthritis as its critical clinical manifestation. The basic cause of
autoimmune diseases is the loss of tolerance to self or harmless antigens. The loss or
functional deficiency of key immune cells, regulatory T (Treg) cells, has been confirmed in
human autoimmune diseases. The pathogenesis of RA is complex, and the dysfunction of
Tregs is one of the proposed mechanisms underlying the breakdown of self-tolerance
leading to the progression of RA. Treg cells are a vital component of peripheral immune
tolerance, and the transcription factor Foxp3 plays a major immunosuppressive role.
Clinical treatment for RA mainly utilizes drugs to alleviate the progression of disease and
relieve disease activity, and the ideal treatment strategy should be to re-induce self-
tolerance before obvious tissue injury. Treg cells are one of the ideal options. This review
will introduce the classification, mechanism of action, and characteristics of Treg cells in
RA, which provides insights into clinical RA treatment.
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INTRODUCTION

Rheumatoid arthritis (RA) is a systemic inflammatory autoimmune disease. Musculoskeletal pain,
joint swelling and stiffness are its common clinical symptoms, that seriously damage body function
and reduce the quality of life of patients (1–3). Patients with RA are more likely to develop
osteoporosis, infection, cardiovascular diseases, respiratory diseases, cancer and other diseases than
the general population (2–4). More women than men are diagnosed with RA, and the proportion is
approximately 3:1 (5). Early diagnosis, the emergence of new treatment methods, and the
application of new effective treatment strategies significantly improve the long-term prognosis of
the joints of patients with RA (3–6). The pathogenesis of RA is complex and includes synovial cell
proliferation and fibrosis, vascular membrane formation, cartilage and bone erosion (2, 3). Naive
CD4+ T cells can differentiate into different cells types under antigen presenting cell (APC)
stimulation. An imbalance in the function and/or the number of these cells will lead to the abnormal
cellular and humoral immunity (7, 8). Abnormal humoral immunity often leads to excessive
activation of autoantigenic T and B cells, resulting in the abnormal production of antibodies, such as
rheumatoid factor (RF) and anti-cycle citrullinated peptide (anti-CCP) antibodies, and the
deposition of immune complexes in synovial tissue, resulting in persistent synovitis and joint
org April 2021 | Volume 12 | Article 6261931
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destruction (4, 9, 10). Innate immune cells, including mast cells,
dendritic cells (DCs), innate lymphocytes and adaptive immune
cells, such as B cells, plasma cells, follicular regulatory T (TFR)
cells and helper T (Th) cells mediate the systemic autoimmune
inflammatory response (11). Abnormal activation of these cells
may result in the excess production of pro-inflammatory
cytokines such as IL-6, TNF and IL-17, which eventually lead
to the destruction of bone tissue and cartilage (11–13). Th17 cells
(T cell subsets characterized by secretion of IL-17) produce
various pro-inflammatory cytokines to promote synovitis,
while Treg cells inhibit inflammation and maintain immune
tolerance (14–16).
CLASSIFICATION OF TREG CELLS

Initially, Treg cells were divided into three categories according
to their origin and differentiation: they are produced by
immature T lymphocytes during thymus development, and
with a phenotype is CD4+CD25+Foxp3+ T cells, which are
called natural Treg (nTreg) cells that constitutively express
CD25 and express the specific nuclear transcription factor
Foxp3. Upon peripheral antigen stimulation or immuno
suppressive factor induction, mature CD4+CD25- T cells are
transformed into acquired Treg (iTreg) cells, including Tr1 and
Th3 subsets; the former mainly secretes IL-10 and TGF-b, while
the latter mainly produces TGF-b. In addition to regulatory
CD4+ T cells, regulatory CD8+ T cells also exist in CD8+

T cells (17).
Some scholars also recommend distinguishing two primary

Treg cell groups according to their origin. nTreg cells are called
thymus-derived Treg (tTreg) cells, which originate from the
thymus and have a relatively high self-affinity T cell receptor
(TCR) (18). In the periphery, CD4+ effector cells begin to express
Foxp3, under the influence of TCR signal transduction or other
factors, such as TGF-b and IL-2. These cells are called pTreg cells
and are most commonly found in peripheral barrier tissues and
prevent local inflammation (19). Since naive CD4+Tconv cells
and Treg cells have non-overlapping TCR sequences, the TCR
libraries of tTreg cells and pTreg cells are also quite different (20).
The TCR libraries of tTreg cells are biased toward self-
recognition, while the TCRs of pTreg cells identify foreign
antigens with high affinity (21).

Treg cells are distributed in the T cell region of lymphoid
organs and in the B cell region TFR, controlling the production
and maturation of antibodies (22). According to their location,
these cells have been divided into peripheral lymphoid tissue
Treg cells and non-lymphoid tissue-resident Treg cells, including
central (cTreg) cells and effector (eTreg) cells (23). cTreg cells
account for the majority of Treg cells in secondary lymphoid
organs and express CCR7 and CD62L at high levels (24), while
eTreg cells express surface markers, such as ICOS or CD44 (25).
Non-lymphoid tissues where Tregs have been found include
visceral adipose tissue (VAT), skin, the lamina propria of the
colon, lung and skeletal muscle. Tissue-specific homing receptors
such as GPR15 direct Treg cells to the colon, CCR4 promotes the
Frontiers in Immunology | www.frontiersin.org 2
migration of Treg cells to the skin to control tissue homeostasis
(26–28). Significant differences between Treg cells in non-
lymphoid tissues and lymphoid organs have been identified.
The former has a tissue-specific phenotype and is functional (29).
For example, VAT-Treg cells are functional specialized tissue
resident cells that depend on the transcription factor PPAR-g,
limit inflammation of the skin, intestines and central nervous
system and improve the sensitivity of adipose tissue to insulin
(30). According to a recent study, significant differences in the
transcriptional landscape, phenotype and chromatin accessibility
of VAT-Treg cells exist between sexes (31). Tissue adaptation
changes occur when Treg cells transfer from lymph nodes to
barrier tissue (32). These dynamic adaptations lead to the co-
expression and phenotypic acquisition of transcription factors
associated with other pedigrees (for example, T-bet, GATA-3,
IRF-4, BCL6 or STAT3) (33).
IMMUNOSUPPRESSIVE MECHANISM OF
TREG CELLS

The specific inhibitory effect of Treg cells on T cells is related to
the expression of these transcription factors. The ITIM domain
protein (TIGIT) on the surface of Treg cells binds to CD155 on
dendritic cells (DCs), resulting in an increase in IL-10 expression
and a decrease in IL-12 expression in DCs, thus inhibiting the
activation of effector T cells (34, 35). T-bet, a transcription factor
associated with Th1 cells, is related to the expression of TIGIT.
The T-bet+TIGIT+ Treg phenotype selectively inhibits the pro-
inflammatory immune response mediated by Th1 and Th17 cells
(36, 37). TheTh2-related transcription factor IRF-4 induces the
expression of co-stimulatory molecules CTLA-4 and ICOS in
Treg cells and cooperates with RBPJ and JUNB to limit the
immune response mediated by Th2 cells (38–40). The expression
of STAT3 (a typical Th17 transcription factor) in Treg cells is
closely related to the Th17-mediated immune response, which
increases the expression of the Ebi3, IL-10, and perforin-1 and
granzyme B (41). Treg cells exert their inhibitory function
through various mechanisms. Their mechanism of action is
summarized below (Figure 1).

Treg cells share some surface markers with activated effector
T cells, such as glucocorticoid-induced TNFR-related protein
(GITR), cytotoxic T lymphocyte associated antigen-4 (CTLA-4),
programmed death-1 (PD-1) and its ligand (PD-L1) (42). CTLA-
4 binds to CD80 and CD86 on APCs (especially DCs), inhibits
the antigen presentation and maturation function of APCs (43),
and increases the expression of IDO in DCs, reducing the
concentration of tryptophan necessary for effector T cell
proliferation (44). PD-1 (CD279) binds to PD-L1 and PD-L2
ligands on DCs to inhibit effector T cells (45), and synergistically
enhances the transactivation of Smad3 by TGF-b (46). LAG-3
binds to MHC-II, negatively regulates the function of T cells (47),
and preferentially inhibits the response of T cells to the stable
MHC complex (pMHC-II) (48). Neuropilin-1 (NRP1) is the
receptor of vascular endothelial growth factor (VEGF). Its role
differs in human and mouse, and the exact inhibitory mechanism
April 2021 | Volume 12 | Article 626193
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remains to be confirmed (49). Galectin (Gal)-1 is a b-galactose-
binding lectin that regulates the Treg/Th17 balance induced by
DCs through the NF-kB/RelB-IL-27 pathway (50). The
transmembrane protein GARP(LRRC32)/latency-related
peptide (LAP) is related to the ability of Treg cells to activate
TGF- b after stimulation by TCR (51). Down-regulation of
GARP expression weakens the inhibitory function of Treg cells
(52). TNF-related apoptosis-inducing ligand (TRAIL) is
expressed when Treg cells are activated, while CD4+ effector
cells express its ligand death receptor 5(DR5). The TRAIL/DR5
interaction activates caspase-8 to induce the apoptosis of effector
lymphocytes (53, 54). CD25, also known as interleukin IL-2
receptor (IL-2R) is expressed at high levels on the surface of Treg
cells. IL-2 is an important signal that induces cell proliferation in
vivo. Treg cells compete with effector cells for IL-2 in the process
of the immune response to prevent effector cells from acquiring a
sufficient amount of IL-2 to proliferate (55). Treg cells exert their
functions through soluble intermediates. The extracellular and/
or pericellular accumulation of adenosine causes an
immunosuppressive response (56). CD39/CD73 expressed on
Treg cells degrade ATP into adenosine, and the increase in the
adenosine concentration in the microenvironment will inhibit
antigen presentation by DCs (57). The cellular lysis factors
granzyme-A, granzyme-B and perforin (58, 59), anti-
Frontiers in Immunology | www.frontiersin.org 3
inflammatory cytokines IL-10, TGF-b, IL-35 and others also
play a role in the immune regulation of Treg cells (60). TCR
diversity was recently shown to be conducive to the expansion of
Treg cells; if the specificity of TCR is the same but the affinity is
different, the inhibition mechanism of Treg cells will be different
(61). High-affinity receptor cells mainly express TCR-dependent
mediators such as CTLA-4, GITR, IL-10 and TIGIT, in contrast,
low-affinity receptor cells express more Ebi3,which is responsible
for IL-35-mediated inhibition, indicating that affinity determines
different inhibition mechanisms (20).
TREG CELLS IN RA

An increase in the number or enhancing the inhibitory function
of Treg cells may be helpful in the treatment of autoimmune
diseases while reducing the number of Treg cells or inhibiting
their function enhances immunity toward tumors and chronic
infectious pathogens. RA is characterized by long-term chronic
synovitis, cartilage necrosis, and eventually joint destruction that
lead to loss of function. Many studies have recently shown that
Treg cells inhibit the autoimmune response. When the number
and/or function of these cells are abnormal, related antigens and
DR molecules cause immune cascade amplification, which leads
FIGURE 1 | Mechanisms of Treg suppression. CTLA-4 binds to CD80/CD86 on DCs, inhibits the maturation and antigen presentation function of DCs and
increases the expression of IDO in DCs, resulting in T effector incompetence. PD-1 binds to PD-L ligands on DCs and T cells to inhibit effector T cells, and
synergistically enhance the transactivation of Smad3 by TGF-b.TIGIT increases IL-10 expression and decreases IL-12 expression in DCs by binding to CD155 on
DCs and inhibits the activation of effector T cells. Tregs selectively inhibit the proinflammatory immune response mediated by Th1 and Th17 cells. The Th2-related
transcription factor IRF-4 activates Treg expression through ICOS and CTLA-4, which restricts the Th2-mediated immune response. STAT3 increases the expression
of the IL-10, Ebi3, and perforin-1 genes.
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to the rapid increase in the levels of various cytokines in the
body, such as IL-2, and activates macrophages in the synovium
of bones and joints to produce many inflammatory cytokines,
such as IL-1, IL-6 and IL-8. These inflammatory reactions
destroy articular cartilage and eventually lead to joint
deformities, leading to the occurrence of RA. However, many
studies have reported contradictory results. The number of Treg
cells in the peripheral blood of patients with RA is increased (62,
63), unchanged (64–66)or decreased (67–71),and contradictory
results were also reported for the functional characteristics of
Treg cells from RA patients, namely enhancement or attenuation
(72, 73)(Table 1).

The explanation for the discrepancy is the persistent
problems in the recognition of Treg cells. In most studies, the
expression of Foxp3 is used to define Treg cells, but Foxp3
requires intracellular staining and the expression levels in Treg
cells in the resting state and activated state are different (74).
Tconv cells also express a low level of Foxp3 upon TCR
stimulation (75, 76). CD25 is also a marker for activated
Tconv, and Tconv also expresses low levels of CD127. Cell
surface markers such as CD4+CD25+/high, CD127low/-, CD62
ligand, integrin Ea (CD103), GITR (TNFRSF18), CTLA-4
(CD152), CD45RO and neuropilin have been used as
supplementary markers to identify Treg cells in clinical
practice in addition to intracellular Foxp3 staining (77, 78).
Among these markers, CD45RA and CD45RO are used to
distinguish immature Treg cells (CD45RA+Foxp3low) from
activated memory Treg (CD45RA-Foxp3high) cells (79).
Currently, the CD3+CD4+CD25highCD127low phenotype is
most commonly isolated from Treg population through flow
cytometry or immunomagnetic bead separation. The
determination of inhibitory activity and demethylation of
Foxp3 CNS2 are considered to be the gold standard methods
for Treg identification (80, 81), specially Treg-specific DNA
hypomethylation, which distinguishes Treg cells from activated
Tconv cells at the genetic level. Some scholars have performed a
meta-analysis on the number and proportion of Treg cells in
patients with RA. The conclusion is that the use of a more
stringent method to define Treg cells will reveal decreased
number of Treg cells in peripheral blood and increased
number in synovial fluid (82). Do Treg cells in the synovial
fluid function normally?

Treg cells from patients with RA lack CTLA-4 expression in
an inflammatory environment or show ineffective function due
Frontiers in Immunology | www.frontiersin.org
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to the overexpression of IL-6 (83, 84). These Foxp3-cells are
called “exTreg cells”, and a large number of exTreg cells with no
inhibitory activity circulate in synovial fluid (85). However, these
Treg cells show normal inhibitory activity in vitro, which proves
that an essential disorder in these cells is not responsible for RA,
rather it is caused by the inflammatory environment (67). Tregs
isolated from peripheral blood might limit the proliferation of
Teff cells but do not prevent the secretion of cytokines (86). Teff
cells in an inflammatory environment are resistant to Treg-
mediated inhibition (87). The sensitivity of CD4+CD25- T cells
and APCs (most notably DCs) to Treg cell inhibition is also
decreased (62, 88). In mice with collagen-induced arthritis
(CIA), CD25loFoxp3+CD4+ T cells are transformed into Th17
cells (arthritic synovial fibroblasts promote this transformation).
These cells, called exFoxp3Th17 cells, accumulate in
inflammatory joints and show a stronger ability to induce
osteoclast production than any other T cell subset (89).
Another characteristic of RA is the anoxic microenvironment
of synovial tissue, neovascularization and cell exudation lead to
synovial oxygen deficiency (90). During hypoxia, immune-
inflammatory cells make adaptive response and activate pro-
inflammatory signal pathways, and hypoxia-inducible factor-1a
(HIF-1a) pathway is activated under hypoxia condition (90, 91).
HIF-1a is expressed at high levels in synovial fibroblasts and
macrophages from individuals with RA (92). HIF-1a can not
only induce RORgt transcription to promote Th17 differentiation
at the mRNA level, but also cooperate with RORgt protein to
regulate downstream Th17 related genes. HIF-1a can also
ubiquitinate and proteasome degradation by binding to Foxp3,
resulting in the decrease of Foxp3 gene transcriptional activity
and down-regulation of Foxp3 expression (93). Therefore, HIF-
1amay be a potential target for RA therapy (94, 95). In addition,
synovial fibroblasts (SFSs) also induce T cell differentiation in a
hypoxic environment, resulting in a decrease in the number of
Treg cells and an increase in the number of Th17 cells (96).
Synovial hypoxia also changes the metabolic environment, while
hypoxia also stimulates osteoclast-mediated bone resorption and
aggravates joint injury (97). In addition, knock-out of the PD-1
gene in mice will cause a delayed in the development of specific
autoimmune diseases, indicating that PD-1 plays a role in
maintaining immune tolerance in immune regulation (98). Li
et al. showed that the expression of PD-1 on the surface of CD4+

T and CD8+ T cells and the level of soluble PD-1 (soluble PD-1,
sPD-1) in serum were significantly decreased in patients with RA
(99). According to recent studies, T cells and pathogenic PD-1+ B
cells accumulate in RA joints, and the expression of CXCR3 and
GM-CSF in PD-1+ B cells is higher than in PD-1- B cells (100).
TREG CELLS FOR TREATMENT OF RA

Patients with autoimmune diseases often require lifelong
immunotherapy, which is usually accompanied by serious
adverse reactions and side effects. In recent years, the
treatment of RA has gradually changed, and previous “step
pyramid” treatment has been gradually replaced as guidelines
have advocated the use of rheumatoid arthritis drugs such as
TABLE 1 | The frequency of Treg cells and associated cytokine levels in
individuals with RA.

Class Ref. PB SF IFN-g TNF-a TGF-b IL-10

62 ↑ ↑ * ↑ nd *
63 ↑ nd ↓ ↑ nd ↑
64 — ↑ ↑ ↑ nd ↑
67 ↓ ↑ ↑ ↓ nd ↓
68 ↓ ↑ nd ↑ ↓ nd
”↑” represents an increase compared to the normal control; “↓” represents a decrease
compared to the normal control; “—” indicates similar to the normal control; “*” indicates a leve
below the detection limit; “nd” indicates not detected. PB, peripheral blood; SF, synovial fluid.
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disease-modifying anti-rheumatic drugs (DMARDs,
methotrexate) at the early stage of the disease. For patients
with a poor response to traditional DMARDs, biological
DMARDs, such as TNF-a, CTLA-4 or small-molecule targeted
DMARDs, such as the Janus kinase (JAK) inhibitor drugs
facitinib and baracitinib, are recommended (4). Starting drug
treatment in the early stage can effectively prevent the
progression of the disease and reduce the rate of disease
development. Because a large number of reports on the
regenerative function of Treg cells have been published and the
ideal treatment strategy is to induce self-tolerance before obvious
tissue damage occurs, researchers have designed various
strategies ways to increase the number of Treg cells and restore
their function (101–107), by enhancing the function of Treg cells
in vivo, including reducing the pro-inflammatory environment
and enhancing the response of effector cells to inhibition (108–
113) (Table 2). Specific Treg cell-specific targeted gene
proliferation stimulators were used to promote the expansion
of Treg cells, or Treg cells were induced and expanded in vitro
following the addition of immune complexes, and then injected
into patients (114). The adoptive transfer of Treg cells increased
the survival of Scurfy mice and prevented autoimmune diseases,
and the removal of Treg cells before the disease increases the
incidence and severity of the disease (115). At the same time, the
transfer of Treg cells can slow the disease process, confirming
that these cells have the potential to treat autoimmune
diseases (116, 117). Adoptive cell therapy (ACT) uses Treg
cells isolated from blood based on the cell surface labeling of
CD4+CD25+CD127- that are then expanded by treating them
with anti-CD3, anti-CD28 and IL-2, followed by injection into
the body (114). Expanded Treg cells have been used to treat a
mouse autoimmune disease model before being used in the
clinic. Early trials have been conducted in patients with type 1
diabetes and graft-versus-host disease after bone marrow
transplantation showing a stable effect without serious adverse
reactions (118–122). Models of CIA also showed inhibition,
which significantly prevent the development of CIA (123).
Importantly, when arthritis is inhibited in these models, not
Frontiers in Immunology | www.frontiersin.org 5
only are T and B cells inhibited by Treg cells but osteoclast-
mediated bone destruction is also directly inhibited, preventing
joint injury (124–127).

Before the implementation of ACT, some key technical
problems must be solved. Since Treg cells identify specific
antigens, the first problem to be solved is the method used to
isolate specific Treg cells in vitro. Both CD4+CD127low/- and
CD4+CD127low/-CD25+ T cells have been used for Treg
amplification. The expansion of CD4+CD127low/- cells requires
the addition of rapamycin to maintain the purity of their lineage.
CD4+CD127low/-CD25+ T cells, particularly the expansion of
CD45RA+ subsets, produces a high yield of Treg cells that
maintain high Foxp3 expression in the absence of rapamycin
(128, 129). In the presence of anti-CD3/anti-CD28 and IL-2, this
scheme can increase the number of cells up to thousands of times
without losing the inhibitory activity of Treg cells (130). Since IL-
2 is a key cytokine required for T cell activation and proliferation
and nTregs express CD25 at high levels, they are highly sensitive
to IL-2 stimulation. IL-2 (especially low-dose IL-2) preferentially
amplifies Treg cells (131, 132). Although low-dose IL-2 directly
increase the number of Treg cells in vivo, this effect is short-lived,
once the treatment is stopped, the effect will be significantly
reduced, and the effect of IL-2 itself on other effector cells must
be considered.

The second problem is how to effectively expand antigen-
specific Treg cells without losing their specificity or inhibitory
function. Some studies have shown that amplified Treg cells tend
to express IL-17, and CD4+CD25+Foxp3+ Tregs may be able to
transform into pathogenic Th17 cells after repeated amplification
(133–135). These studies show that the epigenetic stability of
Tregs is unstable, and further studies have shown that the use of
CD45RA+ as an additional marker for Treg isolation minimizes
epigenetic instability due to amplification and avoids the increase
in inflammation associated with Treg cell conversion into Th17
cells (135, 136).

The in vivo environment is complex, and in vitro cell therapy
is inevitably time-consuming and expensive. Researchers have
not clearly determined whether the expansion of Treg cells in
TABLE 2 | The mechanisms by which the number or function of Treg cells is regulated.

Class Mechanism underlying the effect Effects on regulatory T cell Ref.

VIP Factors induce the inhibition of soluble protein secretion by increasing the
expression of Foxp3 and TGF-b 1

Increases in the number and inhibitory activity of Treg cells changed
the immune response to Th2 subsets

(100)

Anti-TNF-a Induce Foxp3 expression Increases in the number of circulating Treg cells (101)
CTLA-4-Ig Blocking T cell activation by binding to CD80/CD86 ligands Induction of new iTreg cell populations

Increase in the proportion of Treg cells
Activate existing Treg cells

(102,
103)

TGF Induction of Foxp3 expression Induction of the differentiation of resistant Treg cells (104)
IL-2 Activate the transcription factor STAT5 Promotes the activation and expansion of Treg cells (105,

106)
Rapamycin Blocking the AKT–mTOR-SMAD3 signaling axis

Inducing Foxp3 expression
Inhibition of Teff cell proliferation
Induction of the differentiation of Treg cells

(107)

Anti-IL-6 Rebalance the ratio of Foxp3/Ror-gt expression Increases the Treg/Th17 ratio by suppressing Th17 generation (108–
110)

IgD-Fc-Ig Restore the Th17/Treg cell subset balance Reverse the imbalance of Th1/Th2 and Th17/Treg cell subsets (111)
Anti-IL-17 Increase the Treg/Th17 ratio Inhibition of the pro-inflammatory Th17 pathway (112)
April 2021 | Volume 12 | Article
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vivo is better than in vitro expansion, and thus they have
attempted to combine the two approaches, such as the
application of autoantigen in an incomplete adjuvant (137),
and the combination of tolDCs and Treg-induced peptide,
which inactivate effector cells and promote the function of
Treg cells (138).
STABILITY OF TREG CELLS

Maintaining the stability and plasticity of Treg cells in vivo is one
of the bottlenecks of ACT. Foxp3 is the main regulator of
immunosuppression in Treg cells (139), and participates in the
gene expression, function and survival ofTreg cells. Its expression is
regulated by transcriptional regulation, epigenetic regulation and
post-translational regulation and is indispensable for the
maintenance of immune self-tolerance (14, 140–142). The
transcription factors NFAT, STAT5 and Foxo1 directly interact
with the Foxp3 gene promoter to regulate the expression of Foxp3.
The element of the conserved non-coding sequence (CNS) at the
Foxp3 gene site regulates gene expression by recruiting
transcription factors (143–145). The most noteworthy element is
the methylation of CpG islets at the second intron enhancer site,
also known as major TSDR(conserved non-coding sequence 2,
CNS2), which is a region that is specifically demethylated in Treg
cells. CNS2 demethylation stabilizes the expression of Foxp3 (146–
148). Using CRISPR technology, recent studies have shown that
ubiquitin-specific peptidase 22 (Usp22) is a positive regulator of
stable Foxp3 expression, while ring finger protein 20 (Rnf20), an E3
ubiquitin ligase, is a negative regulator of Foxp3 (149).
Phosphorylation, acetylation and ubiquitin are also considered
factors regulating the stability of Foxp3 (145). Foxp3+nTreg cells
are highly proliferative and highly stable. They may be able to
recognize self-antigens or microbial antigens from symbiotic
microorganisms (150–152).

In the past two years, researchers have performed numerous
studies designed to improve the stability and optimize the function
of Treg cells. For example, Chen et al. reported a more stable
function for CD4 + CD126 low/- Foxp3+ cells than CD126highnTreg
cells that remain stable even under inflammatory conditions (153).
Human CD8+ regulatory T cells stimulated with rapamycin and
TGF-b 1 also showed stable inhibitory ability in inflammatory
environment (154). Park et al. found that daurinol, a natural
arylnaphtholide isolated from the medicinal plant Haplo
phyllumdauricum, increases Treg cells stability by inducing DNA
demethylation in the Foxp3 promoter region (155). PTPN2
promotes the stability of the Foxp3 mRNA in RORgt+ Treg cells,
while the deletion or decreased expression of PTPN2 will promote
the pathogenic transformation of Treg cells (156). TNFRII (TNF
receptor type II) + Treg cells stably express Foxp3 through
hypomethylation, and adoptive transfer of TNFRII+ Treg cells
reduces the inflammatory response (157). The deletion of TNF
receptor 2 causes Treg cells to show a Th17-like inflammatory
phenotype (158). In addition, intracellular metabolic intermediates
and environmental metabolites can also regulate the expression of
Foxp3 in Treg cells (14). More interestingly, Treg cells have been
Frontiers in Immunology | www.frontiersin.org 6
modified to produce stable human Treg cells that target homing
receptors, and these Treg cells migrate to specific sites or tissues to
achievemore targeted immunosuppression and epigenetic stability
under inflammatory conditions (159).

Genome editing technology is also used to enhance the stability
of Treg cells. The expression of these genes is modified by CRISPR/
Cas-9.Knockout of thePD-1gene tomodifyT cells has beenused in
cancer therapy (160), which provides opportunities for the
application of gene editing technology in Treg cells, such as
knock-out of the genes that inhibit the function of Treg cells and
up-regulation of the genes that can stabilize the expression of
Foxp3. For example, knockout of the Stub1 gene increases the
expression of Foxp3, and the up-regulation of CTLA-4, PD-1 and
BACH2 will increase the stability of Treg cells (86). Using CRISPR
technology, recent studies have shown that ubiquitin-specific
peptidase 22 (Usp22) is a positive regulator of stable Foxp3
expression, while ring finger protein 20 (Rnf20), an E3 ubiquitin
ligase, is a negative regulator of Foxp3 (149). In summary, CRISPR/
Cas-9 technology is a new approach for RA therapy. Themolecular
mechanism of Foxp3 has been extensively studied. However,
other studies have shown that the expression of Foxp3 alone is
not sufficient to regulate gene expression in Treg cells (161–163).
For example, an approximately 70% difference in the genomes of
Foxp3+ nTreg cells and Foxp3-overexpressing Tconv cells has been
identified, and the latterdoesnot express someTreg signalinggenes,
such as Ikzf4 (Eos) and Ikzf2 (Helios) (163). However, the gene
expression pattern of Foxp3-deleted Treg cells isolated from Foxp3
gene-deficient mice resembled Foxp3-intact normal nTreg cells
(161, 164). The Treg-specific CpGdemethylation (165) and histone
modification also occurred before the expression of Foxp3 (166).
Based on these findings, the cells that determine cell fate and
differentiation develop long before Foxp3 expression. Therefore,
the expression of Foxp3 alone does not represent the complete
function of mature Treg cells. Foxp3 independent cell typing and
immature tTreg cells differentiation indicate a Foxp3 independent
genetic mechanism that controls the function and differentiation
of early tTreg cells.

These Treg-specific genetic patterns are helpful for us
understanding the function of Treg cells. The ideal strategy to
stabilize the inhibitory function is to transform both initial and
effector/memory Tconv cells into functionally stable Foxp3+ Treg
cells. Foxp3 expression is induced inTconv cells by treatments with
targeting different signal transduction pathways, such as the TCR-
DK8/19 pathway (167), AKT-mTOR pathway (168, 169), TGF-b-
SMAD pathway (170). Continuous stimulation of Tconv cells by
TCR might partially induce Treg-type DNA demethylation (171).
Therefore, continuousTCR stimulation at the appropriate intensity
likely induces the differentiation of developing T cells into
functionally stable tTreg cells and the transformation from Tconv
cells to Treg cells.
CONCLUSIONS

Treg cells use multiple molecular mechanisms to inhibit the
adverse reactions of RA, and their application may significantly
April 2021 | Volume 12 | Article 626193
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control the progression of RA. Treg cells as intelligent “drugs” are
attracting researchers’ interest. The successful application of Treg
cell therapy in autoimmune diseases and transplantation will
encourage clinical application of this method in the treatment of
other non-immune diseases, such as tissue repair and neurological
disorders (172). Although the molecular characteristics of human
andmouseTreg cells are very similar, they are not the same, and the
assessment of animalmodels in vitro is limited to a certain pathway.
However, the in vivo environment is complex, and thusmethods to
better transform and apply the results obtained in animal
experiments to human are worth examining. The identification of
Treg cells in vitro, in addition to the use of more stringent markers,
thedeterminationofwhether thedrugsused for the treatmentofRA
disease will affect the phenotype of Treg cells, and an assessment of
whether the function of Treg cells improves after treatment in a
specific or non-specificmanner is also worthy offurther discussion.
In addition, the time and stage of disease development are related to
the therapeutic effect of ACT, and this treatment will be more
effective in the early stage of the disease (173). Given the ability of
Treg cells to specifically detect antigens through the TCR,
developing an ACT that acts directly on a specific site or detects
an antigenic site may be an ideal approach, Chimeric antigen
receptor (CAR) Treg cells specifically migrate to target sites and
show more obvious antigen-specific inhibitory activity (174).

In addition, in this new era of gene and cell therapy
development, technological advances such as gene therapy-
induced by target specificity or methods for delivering one or
more genes to treat RA (175), single-cell transcriptome sRNA-
seq has been used to analyze the expression of hundreds of genes
in a single cell (176). The development of ATAC-seq has
Frontiers in Immunology | www.frontiersin.org 7
facilitated analyses of the occupancy of transcription factors in
specific cell types (177). CRISPR/Cas-9mediated technology
quickly and effectively generates genetic interference to identify
and regulate the proliferation and function of T cells (178). All of
these findings provide opportunities for the future development
of accurate medical strategies and promote the clinical
application of these treatments.
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