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In this paper, we study a statistical property of classes of real-valued functions that we call

approximation from interpolated examples. We derive a characterization of function classes

that have this property, in terms of their ‘fat-shattering function’, a notion that has proved

useful in computational learning theory. The property is central to a problem of learning

real-valued functions from random examples in which we require satisfactory performance

from every algorithm that returns a function which approximately interpolates the training

examples.

1. Introduction

In the problem of learning a real-valued function from examples, a learner sees a sequence

of values of an unknown function at a number of randomly chosen points. On the basis

of these examples, the learner chooses a function – called a hypothesis – from some class

H of hypotheses, with the aim that the learner’s hypothesis is close to the target function

on future random examples. In this paper we require that, for most training samples, with

high probability the absolute difference between the values of the learner’s hypothesis and

the target function on a random point is small.

A natural learning algorithm to consider is one that chooses a function in H that is

close to the target function on the training examples. This poses the following statisti-

cal problem: For what function classes H will any function in H that approximately

interpolates the target function on the training examples probably have small absolute
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error? More precisely, we have the following definition of approximation from interpolated

examples.

Definition. Let C,H be sets of functions that map from a set X to R. We say that H
approximates C from interpolated examples if, for all η, γ, ε, δ ∈ (0, 1), there is an m0(η, γ, ε, δ)

such that, for every t ∈ C and for every probability measure† P on X, if m > m0(η, γ, ε, δ),

then with Pm-probability at least 1− δ, x = (x1, x2, . . . , xm) ∈ Xm has the property that, if

h ∈ H and |h(xi)− t(xi)| < η for 1 6 i 6 m, then

P
({x ∈ X : |h(x)− t(x)| > η + γ}) < ε.

We say that m0(η, γ, ε, δ) is a sufficient sample length function for H to approximate C
from interpolated examples.

Two cases of particular interest are those in which C =H and C = RX , the set of all

functions from X to R. IfH approximatesH from interpolated examples, we simply say

that H approximates from interpolated examples. The main aim of this paper is to find

characterizations of classes which approximate from interpolated examples and which

approximate RX from interpolated examples.

This problem can be interpreted as a learning problem in which we require satisfactory

performance from every algorithm that returns a function that approximately interpolates

the training examples. If, instead of requiring that all algorithms in this class be suitable,

we require only the existence of a suitable algorithm, no necessary and sufficient conditions

on the function class H are known. Because an arbitrary amount of information can be

conveyed in a single real value, it is possible to construct complicated function classes in

which the identity of a function is encoded in its value at every point, and an algorithm

can take advantage of this (see [3]). We can avoid this unnatural ‘conspiracy’ between

algorithms and function classes in two ways: by requiring that the algorithm be robust in

the presence of random observation noise, as was considered in [3], or, contrastingly, by

requiring satisfactory performance of every algorithm in a class of reasonable algorithms,

as we consider here. Another reason for studying the problem of this paper is that it

has implications for learning in the presence of malicious noise, in which the labels on

the training sample can be any real numbers within η of the true value of the target.

This will be discussed later in the paper, but for the moment simply observe that, if h

is β-close to a training sample where the labels have been corrupted to a level of at

most β, then h is certainly 2β-close to the target on the sample. If H approximates from

interpolated examples, we can then deduce that if the sample is large enough then (with

high probability) h is within 2β + γ of the target on ‘most’ of X.

Alon, Ben-David, Cesa-Bianchi and Haussler [1] have analysed a model of learning in

which the error of a hypothesis is taken to be the expected value of (h(x)− t(x))2. Their

† More formally, one has a fixed σ-algebra on X: when X is countable this is 2X , and when X ⊆ Rn, it is the

Borel σ-algebra. Then, by ‘any probability measure on X’, we mean ‘for any probability measure on Σ’, where

Σ, the fixed σ-algebra, is understood. The classH must have some fairly benign measurability properties; we

refer to [12, 8] for details.



Function Learning from Interpolation 215

results can be used to provide guarantees of small expected absolute error. However, the

results of this paper provide conditions under which we can (with high probability) have

small ‘pointwise’ absolute error almost everywhere on the domain, and these results do

not follow from those of Alon and co-workers.

In the next section, we define a measure of the complexity of a class H of functions

(the fat-shattering function), and we state the main result: that the fat-shattering function

is the key quantity in this problem. In Sections 3 and 4 we give upper and lower bounds

on the number of examples necessary for approximation from interpolated examples.

Section 5 describes the implications for learning with malicious noise.

2. Definitions and the main result

A number of ways of measuring the ‘expressive power’ of a classH of functions have been

proposed. This power is quantified by associating a ‘dimension’ to the class. Sometimes this

is simply one number depending onH. Sometimes – in what is known as a scale-sensitive

dimension – it is a function depending on H.

An important example of the first type of dimension is the pseudo-dimension [8, 12].

We say that a finite subset S = {x1, x2, . . . , xd} of X is shattered if there is an r =

(r1, r2, . . . , rd) ∈ Rd such that, for every b = (b1, b2, . . . , bd) ∈ {0, 1}d, there is a function

hb ∈ H with hb(xi) > ri if bi = 1 and hb(xi) < ri if bi = 0. The pseudo-dimension of H,

denoted Pdim(H), is the largest cardinality of a shattered set, or infinity if there is no

bound on the cardinalities of the shattered sets.

Perhaps the most important scale-sensitive dimension that has been used to date in

the development of the theory of learning real-valued functions is the fat-shattering

function. This is a scale-sensitive version of the pseudo-dimension and was introduced by

Kearns and Schapire [9]. Suppose that H is a set of functions from X to [0, 1] and that

γ ∈ (0, 1). We say that a finite subset S = {x1, x2, . . . , xd} of X is γ-shattered if there is an

r = (r1, r2, . . . , rd) ∈ Rd such that, for every b = (b1, b2, . . . , bd) ∈ {0, 1}d, there is a function

hb ∈ H with hb(xi) > ri + γ if bi = 1 and hb(xi) 6 ri − γ if bi = 0. Thus, S is γ-shattered

if it is shattered with a ‘width of shattering’ of at least γ. We define the fat-shattering

function, fatH : R+ → N0 ∪ {∞}, as

fatH(γ) = max {|S | : S ⊆ X is γ-shattered by H} ,
or fatH(γ) = ∞ if the maximum does not exist. (Here, N0 denotes the set of nonnegative

integers.) It is easy to see that Pdim(H) = limγ→0 fatH(γ). It should be noted, however,

that it is possible for the pseudo-dimension to be infinite, even when fatH(γ) is finite for

all γ. We shall say that H has finite fat-shattering function whenever it is the case that,

for all γ ∈ (0, 1), fatH(γ) is finite.

The fat-shattering function plays an important role in the learning theory of real-

valued functions. Kearns and Schapire [9] proved that if a class of probabilistic concepts

is learnable, then the class has finite fat-shattering function. (A probabilistic concept

f is a [0, 1]-valued function. In this model, the learner sees examples (xi, yi), where

Pr(yi = 1) = f(xi).) Alon, Ben-David, Cesa-Bianchi and Haussler [1] proved, conversely,

that, if a class of probabilistic concepts has finite fat-shattering function, then it is
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learnable. The main result in [3] is that finiteness of the fat-shattering function of a class

of [0, 1]-valued functions is a necessary and sufficient condition for learning with random

observation noise.

Our main result is the following.

Theorem 2.1. Suppose thatH is a set of functions from a set X to [0, 1]. Then the following

propositions are equivalent.

(1) H approximates from interpolated examples.

(2) H approximates RX from interpolated examples.

(3) H has finite fat-shattering function.

3. The upper bound

In this section, we prove that finite fat-shattering function is a sufficient condition for

approximation from interpolated examples and we provide a suitable sample length

function m0(η, γ, ε, δ).

We first need the notion of covering numbers NA(α, d), as used extensively in [8, 1, 6],

for instance. Suppose that (A, d) is a pseudo-metric space and α > 0. Then, a subset N of

A is said to be an α-cover for a subset B of A if, for every x ∈ B, there is an x̂ ∈ N such

that d(x, x̂) 6 α. The metric space is totally bounded if there is a finite α-cover for A, for

all α > 0. When (A, d) is totally bounded, we shall denote the minimal cardinality of an

α-cover for A by NA(α, d) for α > 0. A subset M of A is said to be α-separated if, for all

distinct x, y ∈ M, d(x, y) > α. We shall denote the maximal cardinality of an α-separated

subset of A by MA(α, d). It is easy to show that

MA(2α, d) 6NA(α, d) 6MA(α, d)

(see [10]), so MA(α, d) is always defined if (A, d) is totally bounded. Suppose now that H
is a set of functions from a set X to [0, 1] and that x = (x1, x2, . . . , xm) ∈ Xm, where m is a

positive integer. We may define a pseudo-metric l∞x on H as follows: for g, h ∈ H,

l∞x (g, h) = max
16i6m

|g(xi)− h(xi)|.

(This metric has been used in [6, 1], for example.) Alon, Ben-David, Cesa-Bianchi and

Haussler [1] obtained (essentially) the following result bounding the l∞x -covering number

of H in terms of the fat-shattering function of H.

Lemma 3.1. Suppose that H is a set of functions from X to [0, 1] and that H has finite

fat-shattering function. Let m ∈ N, and x ∈ Xm. Then the pseudo-metric space (H, l∞x ) is

totally bounded. Suppose α > 0. Let d = fatH(α/4) and

y =

d∑
i=1

(
m

i

)(⌈
2

α

⌉)i
.
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Then, provided m > log y + 1,

NH(α, l∞x ) < 2

(
m

⌈
2

α

⌉2
)log y

.

Here, as elsewhere in the paper, log denotes logarithm to base 2. We then have the

following result.

Theorem 3.2. Suppose thatH is a class of functions mapping from a domain X to the real

interval [0, 1] and that H has finite fat-shattering function. Let t be any function from X to

R and let γ, η, ε > 0. Let P be any probability distribution on X and define B to be the set

of functions h ∈ H for which P
({x ∈ X : |h(x)− t(x)| > η + γ}) > ε. Let d = fatH(γ/8)

and let

y =

d∑
i=1

(
2m

i

)(⌈
4

γ

⌉)i
.

Then, for m > max
(
8/ε, log y + 1

)
, the probability that some h in B has |h(xi)− t(xi)| < η

for 1 6 i 6 m is at most

4

(
2m

⌈
4

γ

⌉2
)log y

2−εm/2.

Proof. The proof is based on a technique analogous to that used in [13, 5, 8], where we

‘symmetrize’ and then ‘combinatorially bound’. The first step – symmetrization – relates

the desired probability to a ‘sample-based’ one. Fix t, P , m, the parameters γ, η, ε, and

hence the set B. It is easy to show using standard techniques that

Pm {x ∈ Xm : ∃h ∈ B, |h(xi)− t(xi)| < η (1 6 i 6 m)} 6 P 2m(R),

where

R =
{

xy ∈ X2m : ∃h ∈ B, |h(xi)− t(xi)| < η (1 6 i 6 m)

and |{i : |h(yi)− t(yi)| > η + γ}| > εm/2} ,
and xy ∈ X2m denotes the concatenation of x, y ∈ Xm.

The next step is to bound the probability of R using combinatorial techniques. For

this, let Γ be the ‘swapping group’ [12] of permutations on the set {1, 2, . . . , 2m}. This is

the group generated by the transpositions (i, m+ i) for 1 6 i 6 m. The group Γ acts in a

natural way on vectors in X2m: for σ ∈ Γ and z ∈ X2m, we define σz to be

(zσ(1), zσ(2), . . . , zσ(2m)).

Let Γ(R, z) = |{σ ∈ Γ : σz ∈ R}| be the number of permutations in Γ taking z into R. It

is well known that, since P 2m is a product distribution, we have

P 2m(R) 6
1

2m
max
z∈X2m

Γ(R, z).

Now, let us fix z ∈ X2m and consider the pseudo-metric space (B, l∞z ). Since H has finite
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fat-shattering function, so does B and Lemma 3.1 implies that this pseudo-metric space is

totally bounded. Let N = {ĥ1, ĥ2, . . . , ĥn} be a minimal γ/2-cover for B. From Lemma 3.1,

n < 2

(
2m

⌈
4

γ

⌉2
)log y

.

Since N is a γ/2-cover, given h ∈ B, there is an ĥ ∈ N such that l∞z (ĥ, h) < γ/2, which

means that, for 1 6 i 6 2m, |ĥ(zi)− h(zi)| < γ/2. Suppose that σz = xy ∈ R. Then, by the

definition of R, there is some h ∈ B such that |h(xi) − t(xi)| < η for 1 6 i 6 m and such

that, for more than εm/2 of the yi, |h(yi)− t(yi)| > η+ γ. But (taking ĥ to be, as described

above, a function in the cover γ/2-close to h) this implies that there is an ĥ ∈ N such

that, for 1 6 i 6 m, |ĥ(xi)− t(xi)| < η + γ/2, and such that, for more than εm/2 of the yi,

|ĥ(yi) − t(yi)| > η + γ/2. It follows from this that, if σz ∈ R, then, for some l between 1

and n, σz belongs to the set R̂l , defined by

R̂l = {xy ∈ X2m : |ĥl(xi)− t(xi)| < η + γ/2 (1 6 i 6 m),

and |{i : |ĥl(yi)− t(yi)| > η + γ/2}| > εm/2}.
Let Γ(R̂l , z) be the number of σ in Γ for which σz ∈ R̂l . Since σz ∈ R implies σz ∈ R̂l for

some l, we have

Γ(R, z) 6
n∑
l=1

Γ(R̂l , z).

Consider a particular l between 1 and n and suppose that Γ(R̂l , z) 6= 0. Let k be the number

of indices i between 1 and 2m such that |ĥl(zi)− t(zi)| > η+ γ/2. Then εm/2 < k 6 m. The

number of permutations σ in Γ for which σz belongs to R̂l is then equal to 2m−k , which

is less than 2m(1−εm/2). (The zi which can be ‘swapped’ are precisely those m− k satisfying

|ĥl(zm+i)− t(zm+i)| < η + γ/2.) It follows that

P 2m(R) <
1

2m

n∑
i=1

2m(1−ε/2) 6 n2−εm/2 6 2

(
2m

⌈
4

γ

⌉2
)log y

2−εm/2.

The statement of the theorem now follows.

We thus obtain the following corollary, which shows that finiteness of fatH implies that

H approximates RX from interpolated examples, and hence H approximates H from

interpolated examples. The proof is an easy calculation.

Corollary 3.3. Suppose that H is a set of functions from X to [0, 1] and that H has finite

fat-shattering function. ThenH approximates RX from interpolated examples. Furthermore,

there is a positive constant K such that a sufficient sample length function is

m0(γ, η, ε, δ) =
K

ε

(
log

(
1

δ

)
+ d log2

(
d

γε

))
,

where d = fatH(γ/8).
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4. The lower bound

In this section, we give lower bounds on the number of examples necessary for H
to approximate RX from interpolated examples and for H to approximate H from

interpolated examples. The bounds are in terms of fatH, the fat-shattering function of

H. To prove them, we consider a discretized version of H. We then consider a number

of notions of dimension for classes that map to these discrete sets, and show that a

large family of these dimensions consists of closely related members. This family includes

a version of the Natarajan dimension – see [11] – for which it is easy to prove lower

bounds. Since the fat-shattering function is also a member of this family of closely related

dimension, we obtain the lower bound. This broad outline is similar to the approach

adopted by Ben-David, Cesa-Bianchi, Haussler and Long [4], who consider learning

[n]-valued functions.

We first define the discretization we shall use. For a ∈ [0, 1], let Dγ(a) = da/γe. For a

function f : X → [0, 1], let Dγ(f) : X → {0, 1, . . . , d1/γe} be defined as the composition of

Dγ and f. Let Dγ(H) denote {Dγ(f) : f ∈ H}. Functions in Dγ(H) map to {0, 1, . . . , n},
where n = d1/γe. Let [n] denote {0, 1, . . . , n}.

From the definition of the fat-shattering function,

fatH(α) 6 fatDγ(H)

(
1

2

⌊
2α

γ

⌋)
for α, γ ∈ R+.

We consider the following notions of dimension, defined using classes of {0, 1, ∗}-valued

functions on [n].

Definition. If F is a class of [n]-valued functions defined on X and Ψ is a class of

{0, 1, ∗}-valued functions defined on [n], we say that F Ψ-shatters x = (x1, . . . , xd) ∈ Xd if

there is a sequence (φ1, . . . , φd) ∈ Ψd such that

{0, 1}d ⊆ {(φ1(f(x1)), . . . , φd(f(xd))) : f ∈ F} .
The Ψ-dimension ofF, denoted Ψ-dim(F), is the size of the largest Ψ-shattered sequence,

or infinity if there is no largest sequence.

We can express the fat-shattering function fatF(k) as a dimension of this type, for

k > 2. Define Ψfat(k) = {ψi : i ∈ {0, . . . , n− k}}, with

ψi(z) =


1, z > i+ k,

∗, i < z < i+ k,

0, z 6 i,

for z ∈ [n]. Then fatF(α) = Ψfat(b2αc)-dim(F) for all classes F of functions from X

to [n].

The Ψgnat-dimension (a ‘gapped’ version of the Natarajan dimension) will be useful,

since it is easy to prove lower bounds using this dimension.
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Definition. Let Ψgnat(k) be the following set of {0, 1, ∗}-valued functions defined on [n],

where k ∈ {2, 3, . . .}:
Ψgnat(k) = {ψi,j : i, j ∈ [n], |i− j| > k} ,

with

ψi,j(α) =


1, α = i,

0, α = j,

∗, otherwise.

The following result and its proof (which we omit) are similar to the key result in [1],

Lemma 15, which bounds covering numbers of F in terms of fatF(1). We will see later

that it generalizes that lemma, since the Ψgnat(2)-dimension is the smallest of a family of

dimensions that includes fatF(1).

Lemma 4.1. Let k > 2 and n > 1 be integers. Suppose that F is a class of [n]-valued

functions defined on X satisfying Ψgnat(k)-dim(F) 6 d, and that m > log y + 1, where

y =

d∑
i=0

(
m

i

)
n2i.

Then

max
x∈Xm

MF(k, l∞x ) < 2(2mn2)log y.

The ‘k-gapped distinguishers’ correspond to a family of dimensions that includes the

Ψgnat(k)-dimension and the fat-shattering function at a certain scale.

Definition. Let k > 2. A set Ψ of functions from [n] to {0, 1, ∗} is a k-gapped distinguisher

if it satisfies:

(1) for all i ∈ {0, 1, . . . , n − k} and j ∈ {i + k, . . . , n}, there is a function ψ ∈ Ψ and a bit

b ∈ {0, 1} such that ψ(i) = b and ψ(j) = 1− b;
(2) min {|i− j| : i, j ∈ [n], ∃ψ ∈ Ψ, ψ(i) = 0, ψ(j) = 1} = k.

In addition to the set Ψgnat(k), another important example of a k-gapped distinguisher

is the class

Ψg(k) =
{
ψ ∈ {0, 1, ∗}[n] : min {|i− j| : i, j ∈ [n], ψ(i) = 0, ψ(j) = 1} = k

}
.

In fact Ψg(k) is the largest k-gapped distinguisher, in the sense that it contains any other

k-gapped distinguisher.

Lemma 4.2. Suppose F is a class of [n]-valued functions defined on X, Ψ is a class of

{0, 1, ∗}-valued functions defined on [n], and k > 2. If Ψ is a k-gapped distinguisher then

Ψgnat(k)-dim(F) 6 Ψ-dim(F) 6 Ψg(k)-dim(F).
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Proof. Take a Ψgnat(k)-shattered sequence x ∈ Xd. Since Ψ is a k-gapped distinguisher,

for all ψi,j ∈ Ψgnat(k) there is a φ ∈ Ψ and a b ∈ {0, 1} for which φ(i) = b and φ(j) = 1−b.
It follows that x is Ψ-shattered, which gives the first inequality. The second inequality

follows from the fact that Ψ ⊆ Ψg(k).

It follows from Lemma 4.2 that Lemma 4.1 generalizes Alon, Ben-David, Cesa-Bianchi

and Haussler’s Lemma 15 [1], which gave a similar result for the Ψfat(2)-dimension.

The following result shows that the Ψgnat(k)-dimension, the Ψg(k)-dimension, and the

Ψ-dimension (for any k-gapped distinguisher Ψ) are all closely related.

Lemma 4.3. Let k > 2. Let F be a class of functions that map from X to [n], satisfying

Ψg(k)-dim(F) > d > 2. Then

Ψgnat(k)-dim(F) >
d

3 log2(2dn2)
.

Proof. Suppose x = (x1, . . . , xd) ∈ Xd is Ψg(k)-shattered by F. The definition of

Ψg(k) implies that any (minimal) subset of F that Ψg(k)-shatters x is k-separated, so

MF(k, l∞x ) > 2d.

Suppose Ψg(k)-dim(F) = dN , and let

y =

dN∑
i=0

(
d

i

)
n2i.

If d > log y then, by Lemma 4.1,

2d 6MF(k, l∞x ) < 2(2dn2)log y,

so

d < 1 + log y log(2dn2). (4.1)

Alternatively, if d 6 log y, then (4.1) is obviously true. Clearly, dN = 0 only if d = 0, so

assume dn > 1. Then y 6 2dNd
dNn2dN , so we have

d < 1 + log y log(2dn2)

6 1 + (log(2dN) + dN log(dn2)) log(2dn2)

6 3dN log2(2dn2).

The following result follows easily from [7, Theorem 1], which gives a lower bound

on the number of examples necessary for learning {0, 1}[d] in the probably approximately

correct model (see also [5]).

Lemma 4.4. Let 0 < ε 6 1/8, 0 < δ < 1/100, and d > 1. If

m < max

(
d

32ε
,
1− ε
ε

ln
1

δ

)
,
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then there is a distribution P on [d] and a function t ∈ {0, 1}[d] such that

Pm
{

x ∈ Xm : ∃f ∈ {0, 1}[d] such that f(xi) = t(xi), i = 1, . . . , m and

P {y : f(y) 6= t(y)} > ε} > δ.

We use Lemma 4.4 to prove the following lower bound on the sample length function

for approximating RX from interpolated examples.

Theorem 4.5. Suppose H is a class of [0, 1]-valued functions defined on a set X, 0 < γ <

η < 1, and ε, δ ∈ (0, 1). Then if fatH(γ) > d > 1 and γ2 > 4d2−
√
d/6, any sample length

function m0 for H to approximate RX from interpolated examples satisfies

m0(η, γ, ε, δ) > max

(
1

32ε

(
d

3 log2(4d/γ2)
− 1

)
,
1

ε
log

1

δ

)
.

Proof. Fix 0 < γ < η < 1, define n = d1/γe, and suppose fatH(γ) > d. Let F = Dγ(H).

Then fatF(1) > d, so Ψgnat(2)-dim(F) > k, where k = d/(3 log2(2dn2)). Consider a

sequence (x1, . . . , xk) ∈ Xk that is Ψgnat(2)-shattered by F. Clearly, there is a subset

H0 ⊆H with |H0| = 2k and a sequence
(
ψa1 ,b1

, . . . , ψak,bk
) ∈ Ψgnat(2)k such that{(

ψa1 ,b1
(f(x1)), . . . , ψak,bk (f(xk))

)
: f ∈ Dγ(H0)

}
= {0, 1}k.

Without loss, we can assume that aj > bj for j = 1, . . . , k.

Now, if m < max((k− 1)/(32ε),
(
(1− ε)/ε) ln(1/δ)) and k > 2 (for which γ2 > 4d2−

√
d/6

suffices), Lemma 4.4 implies that there is a distribution P on {1, . . . , k} and a function

p : {1, . . . , k} → {0, 1} such that

Pm {l ∈ {1, . . . , k}m : ∃p′ : {1, . . . , k} → {0, 1} such that

p(li) = p′(li) for i = 1, . . . , m and

P {y ∈ {1, . . . , k} : p(y) 6= p′(y)} > ε} > δ.
Choose a function t : X → R satisfying

t(xj) =

{
(aj − 1)γ + η, p(j) = 1,

bjγ − η + ∆, p(j) = 0,

for j = 1, . . . , k, where

∆ = 1
2

min {h(xj)− (aj − 1)γ : h ∈ H0 and h(xj) > (aj − 1)γ, j = 1, . . . , k} .
For each function h ∈ H0 define fh = Dγ(h). Let ph : {1, . . . , k} → {0, 1} be defined by

ph(j) =

{
1, fh(xj) = aj ,

0, fh(xj) = bj .

Clearly, if |h(xj) − t(xj)| < η for some h ∈ H0 and some j ∈ {1, . . . , k}, then h(xj) ∈
((aj − 1)γ, ajγ] ∪ ((bj − 1)γ, bjγ] so ph(j) = p(j). Also, if ph(j) 6= p(j) for some h ∈ H,

then |h(xj) − t(xj)| > η + γ. It follows that P {y ∈ {1, . . . , k} : ph(y) 6= p(y)} > ε implies

Q{y ∈ X : |h(y)− t(y)| > η+ γ} > ε, where Q is the discrete probability distribution on X
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satisfying Q(xj) = P (j) for j = 1, . . . , k. So

Qm {y ∈ Xm : ∃h ∈ H such that |h(yi)− t(yi)| < η for i = 1, . . . , m and

Q{y ∈ X : |h(y)− t(y)| > η + γ} > ε} >
Qm {y ∈ Xm : ∃h ∈ H0 such that |h(yi)− t(yi)| < η for i = 1, . . . , m and

Q{y ∈ X : |h(y)− t(y)| > η + γ} > ε} >
Pm {l ∈ {1, . . . , k}m : ∃p′ : {1, . . . , k} → {0, 1} such that

p(li) = p′(li) for i = 1, . . . , m and

P {y ∈ {1, . . . , k} : p(y) 6= p′(y)} > ε} > δ.

We also have the following result which bounds from below the sample length function

for H to approximate H from interpolated examples.

Theorem 4.6. SupposeH is a class of [0, 1]-valued functions defined on a set X, 0 < γ < 1,

3γ/2 6 η < 1, and ε, δ ∈ (0, 1). If d satisfies fatH(η + γ) > d > 1 and γ2 > 4d2−
√
d/6, then

any sample length function m0 forH to approximateH from interpolated examples satisfies

m0(η, γ, ε, δ) > max

(
1

32ε

(
d

3 log2(4d/γ2)
− 1

)
,
1

ε
log

1

δ

)
.

Proof. Fix 0 < γ < 1 and 3γ/2 6 η < 1, define n = d1/γe, and suppose d 6 fatH(η + γ).

Let F = Dγ(H). Then

fatF
(

1

2

⌊
2(η + γ)

γ

⌋)
> d,

so Ψfat(b2η/γc + 1)-dim(F) > d, hence Ψgnat(b2η/γc + 1)-dim(F) > k, where k =

d/(3 log2(2dn2)). Consider a sequence (x1, . . . , xk) ∈ Xk that is Ψgnat(b2η/γc+ 1)-shattered

byF. Clearly, there is a subsetH0 ⊆H with |H0| = 2k and a sequence
(
ψa1 ,b1

, . . . , ψak,bk
) ∈

Ψgnat(b2η/γc+ 1)k such that{(
ψa1 ,b1

(f(x1)), . . . , ψak,bk (f(xk))
)

: f ∈ Dγ(H0)
}

= {0, 1}k.
Fix a function t ∈ H0. Any function h ∈ H that has

ψai,bi(Dγ(h)(xi)) = ψai,bi(Dγ(t)(xi))

satisfies |h(xi)− t(xi)| < γ < η. Any function h in H that has

ψai,bi(Dγ(h)(xi)) 6= ψai,bi(Dγ(t)(xi))

satisfies

|h(xi)− t(xi)| >
⌊

2η

γ

⌋
γ

= 2γ +

⌊
2(η − γ)

γ

⌋
γ

> 2γ + η − γ = η + γ,

since (η − γ)/γ > 1/2 and b2αc > α for α > 1/2.
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H approximates RX

from interpolated examples

⇐= m = Ω

(
1

ε

(
fatH(γ/8) log2

(
fatH(γ/8)

γε

)
+ log

1

δ

))
=⇒ m = Ω

(
max

(
fatH(γ)

ε log2
(
fatH(γ)/γ2

) , 1

ε
log

1

δ

))
⇓

H approximates H
from interpolated examples

=⇒ m = Ω

(
max

(
fatH(η + γ)

ε log2
(
fatH(η + γ)/γ2

) , 1

ε
log

1

δ

))

Figure 1 Sample complexity bounds

Using the same argument as in the proof of Theorem 4.5, there is a distribution P on

X such that if m is too small then, with Pm-probability at least δ, some h ∈ H is within

η of t on a random sample, but P (|h− t| > η + γ) > ε.

5. Discussion

Figure 1 shows the sample complexity bounds for approximation from interpolated

examples. (The diagram omits the requirement in the lower bounds that γ is not too small

as a function of fatH(γ) and fatH(η + γ).) These bounds imply Theorem 2.1.

Notice that the upper and lower bounds on the sample length forH to approximateRX

from interpolated examples are within log factors of each other. These sample complexity

bounds are also relevant to the problem of learning real-valued functions in the presence

of malicious noise. Suppose a learner sees a sequence of training examples that correspond

to the values of a target function corrupted with arbitrary bounded additive noise. That

is, each example is of the form (xi, t(xi) + ni), where t ∈ H and |ni| < η. Clearly, any

function h ∈ H that is η-close to the training sample will satisfy

Pr
(|h− t| > 2η + γ

)
< ε,

provided that H approximates from interpolated examples and the training sample is

sufficiently large. In addition, if there is an algorithm that can learn in the presence of

malicious noise (in this sense), then it can certainly learn in the presence of uniformly

distributed random noise (as defined in [3]), which implies fatH is finite ([3, Theorem 3]).

That is, a function class H is learnable with malicious noise if and only if fatH is finite.
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