
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3046005, IEEE Access

YI DING et al.: Function-level dynamic monitoring and analysis system for smart contract

.

VOLUME 4, 2020 1



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3046005, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2020.DOI

Function-level dynamic monitoring and
analysis system for smart contract

YI DING1, CHENSHUO WANG1, QIONGHUI ZHONG1, HAISHENG LI2,3*,JINJING TAN1, JIE LI1*

1
Beijing Wuzi University, Beijing, China

2
School of Computer Science and Engineering, Beijing Technology and Business University, Beijing, China

3
National Engineering Laboratory for Agri-Product Quality Traceability, Beijing, China

*Corresponding author: Jie Li (e-mail: lijiebwu@163.com), Haisheng Li (e-mail: lihsh@th.btbu.edu.cn).

This work was supported by National Key Research and Development Program of China under Grant 2018YFB1402703, Science and

Technique General Program of Beijing Municipal Commission of Education under Grant KM201910037003, Research Base Project of

Beijing Municipal Social Science Foundation under Grant 18JDGLB026 and 20GLB026, Open Project of National Engineering

Laboratory for Agri-product Quality Traceability under Grant AQT-2020-YB5, Project of 2020 "Shipei Plan" of Beijing Wuzi University,

Beijing Key Laboratory under Grant BZ0211, and Beijing Intelligent Logistics System Collaborative Innovation Center under Grant

PXM2018_014214_000009.

ABSTRACT The close integration of blockchain and smart contract technology has become an important

foundation for current trusted applications. High-quality, high-efficiency and high-security codes have be-

come basic requirements for smart contract applications because they are not easy to be modified after being

deployed on blockchain. This paper proposes a function-level dynamic monitoring and analysis method

for smart contract, and implements a prototype system. The method adds a "shadow stack" and related

data structures to virtual machine of testing blockchain platform by analyzing the principle of function

management with original stack, then monitors the bytecode after code instrumentation, records the function

calling relationships as well as the relevant metrics of time, instruction number and gas consumption.

The prototype system identifies contract inefficient behaviors using visualization and intelligent analysis

methods, then forms a smart contract optimization closed loop through iterative improvement. Finally, the

paper verified the high feasibility and applicability of the monitoring and analyzing method as well as

prototype system’s performance through experiments.

INDEX TERMS smart contract; blockchain; dynamic monitoring; code instrumentation

I. INTRODUCTION

I
N 2009, Satoshi Nakamoto proposed Bitcoin [1] and its

implementation technology, which is called Blockchain

1.0 and triggers the vigorous development of blockchain.

Nowadays, blockchain has become one of the most popular

technologies and been widely applied in many fields such as

finance, copyright, logistics and so on [2]. Smart contract was

presented by Nick Szabo [3] in 1995, which is earlier than

blockchain and has built a close relationship with it naturally.

Blockchain promotes smart contract development effectively

while the integration of smart contract has become a typical

feature of Blockchain 2.0. Based on blockchain, smart con-

tract turns to be open and transparent to all participants and

does not rely on third-party platform. Once being deployed,

smart contract will not be easy to be modified, leading to

higher correctness and security requirements compared to

traditional programs [4-5].

Smart contract can be used for the application of asset

transfer and it is vulnerable to be invaded. With the growing

number of smart contract, security risks are also growing,

which may cause irretrievable loss [6]. Researchers discov-

ered that 34,200 of 1 million smart contracts have security

risks [7], while the DAO attack in June 2016 lost about

50 million US dollars in damage because of smart contract

unreliable design [8]. In addition, the Parity wallet smart

contract caused severe accidents: Ethers valued approximate

30 million US dollars were stolen [9]. The critical reason for

these is the defects in smart contract codes. Therefore, deep

understanding, pre-deployment testing and then optimization

of smart contract program is essential work.

The Ethereum platform [10] is a typical representative of

Blockchain 2.0 and Solidity has become one of the main-

stream smart contract languages. This paper takes Solidity as

an exemplary case, and introduces a smart contract function-

level dynamic monitoring and analysis system named SC-

Mon based on source code instrumentation technology. The

2 VOLUME 4, 2020



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3046005, IEEE Access

YI DING et al.: Function-level dynamic monitoring and analysis system for smart contract

function calling relationships as well as the relevant met-

rics of time, instruction number and gas consumption can

be recorded by the instrumented code running on the test

blockchain environment, then displayed through visualiza-

tion or intelligent analysis in order to assist users to quickly

understand program execution behaviors and discover var-

ious problems such as performance, operation, and defect.

The system can iteratively optimize smart contract before

final deployment on productive blockchain by checking the

availability, legitimacy and efficiency to reduce the security

risk, and strengthen its robustness and credibility.

The major contributions of the paper are described as

follows:

(1) A set of source code instrumentation method for smart

contract is proposed. The traditional program performance

monitoring and analysis methods are applied to smart con-

tract codes to dynamically monitor smart contract at function

level. The instrumented code running on test blockchain

environment can accurately record the dynamic execution

behaviors of the smart contract, which provides a novel

technical method for the development of optimization and

defect identification of smart contract program.

(2) The SCMon system can acquire rich measurement

metrics. Beside traditional function calling relationships and

execution time, it also extends the metrics of execution

instruction number, the cost of resources, the classification

of instruction, etc.

(3) The system provides various visual analysis diagrams

to help users understand the execution characteristics and

calling relationships of functions. An intelligent interface is

also introduced to assist users in automatically identifying

inefficient and defective behaviors of smart contract, and then

improving them.

II. RELATED WORK

In recent years, researchers have made many efforts to detect

security vulnerability in smart contract, and proposed some

frameworks and tools based on static or dynamic analysis

[11-12].

For the security vulnerability detection in smart contract,

Slither, SmartCheck, Serurify, Zeus, and SIF are based on

static analysis. Slither [13] is a security analysis framework

for smart contract, which could convert Solidity code into

an intermediate representation called SlithIR. SlithIR can

automatically detect contract’s vulnerability, and help user

to understand as well as examine smart contract codes.

SmartCheck is an extensible analysis tool proposed by

Tikhomirov et al. [14], which compares the intermediate

form XML converted from smart contract with XPath mode.

The tool’s purpose is main to detect common problems in So-

lidity code. Securify proposed by Tsankov et al. [15] extracts

the semantic information by analyzing contract’s dependency

graph, then proves whether the contract is safe or not. In ad-

dition, Zeus presented by Kalra et al. [16] introduces a frame-

work that uses abstract interpretation and symbolic model

checking to analyze source code of the contract. The tool

cannot detect "divide by zero" error. A general framework

SIF [17] can query, analyze and detect the abstract syntax tree

(AST) of smart contract to generate reliable codes. It could

build 7 tools as well to analyze smart contract codes, which

help users to do customized operation for smart contract, and

then to understand, analyze and improve the codes better.

Additionally,the calling relationship graph is static and can-

not show dynamic behaviors. Slither, SmartCheck, Securify,

and Zeus all detect security vulnerability by analyzing source

code. Slither and SmartCheck convert the contract source

code into intermediate forms, while Securify and Zeus are to

analyze semantic information of the contract. SCMon in this

paper employs the technology of source code instrumentation

and then deploys it on Ethereum Virtual Machine (EVM) to

be executed. The calling relationships between the functions

and the relevant metrics can be obtained dynamically to

understand the running smart contracts better.

Sereum[18], ECFChecker[19] and EasyFlow[20] are secu-

rity tools using dynamic analysis technology. Sereum pro-

posed by Michael Rodler et al. can protect existing deployed

contracts from re-entry attacks, which is based on runtime

monitoring and validation. Grossman et al. studied the de-

cidability of dynamically or statically checking if an object

is an Effectively Callback Free (ECF) objects and developed

a prototype implementation called ECFChecker. EasyFlow

published by Gao et al. utilizes track technology based on

taint analysis. It establishes additional stack and space in

memory to store the marked tainting data by extending go-

ethereum to detect overflow flaws in smart contract. The

trace log in JSON can detect whether there are flaws by

the log analyzer. The E-EVM proposed by Robert Norvill

et al. [21] is a prototype tool that dynamically simulates

and visualizes the execution of Solidity contract on EVM.

It primarily simulates the operations of compiled bytecodes

to help users optimize smart contract and understand how

EVM and smart contract work, which covers 88.2% of the

codes. Fuchen Ma, Ying Fu et al. [22] presents a method

for the problem of contract code vulnerability detection by

strengthening EVM. EVM will automatically stop unsafe

transactions to prevent economical losses, but the types of

covered errors are limited. SCMon is not only for security

detection, but also to provide useful information for devel-

opers to optimize smart contract by monitoring the dynamic

execution behaviors and consumptions, which could support

a wider range of applications.

In summary, the smart contract function-level dynamic

monitoring and analysis system based on code instrumen-

tation is devoted to improving the execution efficiency and

resources usage of smart contract code in addition to vul-

nerability security detection. The bytecodes compiled from

instrumented contract codes are performed on blockchain

testing system, and then the dynamic function calling re-

lationships and relevant metrics will be required to help

developers and researchers to understand the contract better.

VOLUME 4, 2020 3



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3046005, IEEE Access

YI DING et al.: Function-level dynamic monitoring and analysis system for smart contract

FIGURE 1: The procedure of smart contract optimization loop.

III. SMART CONTRACT MONITORING AND ANALYSIS

SYSTEM

This paper presents a smart contract function-level dynamic

monitoring and analysis system based on Solidity source

code instrumentation. This system can obtain dynamic func-

tion calling relationships and relevant metrics through smart

contracts running on dedicated monitoring virtual machine,

which also provides functions of intelligent automatic analy-

sis and data visualization.

Smart contract is difficult to be upgraded and modified

once it is deployed on the blockchain system. The character-

istic is conflict with the requirements of iterative optimiza-

tion. Therefore, smart contract is designed to be deployed on

blockchain testing environment in this paper. Then it can be

executed, monitored, and iteratively improved. In addition,

the blockchain testing environment is often configured simi-

lar to productive system for smooth transition. The procedure

of smart contract optimization loop is shown as figure 1:

(1)Smart contract developer writes Solidity code;

(2)Smart contract code is instrumented by script IntSC.

Then an instrumented Solidity code as well as a file contain-

ing all the function names are generated;

(3)The instrumented contract code is compiled to bytecode

by SOLC compiler and deployed on blockchain testing envi-

ronment composed of multiple distributed nodes;

(4)The smart contract is executed on the blockchain testing

environment, then the functions’ calling relationships and

relevant metrics such as instruction execution number, time

and gas consumption, are acquired;

(5)The monitoring data is transmitted to the analysis serv-

er;

(6)User can visualize the monitoring data and do intelli-

gent analysis on the contract’s behaviors;

(7)The smart contract developer optimizes and revises the

contract according to the feedback;

(8)The operations above are repeated iteratively until the

quality of smart contract satisfies the execution requirements;

(9)The optimized smart contract is deployed on real pro-

ductive blockchain runtime environment for execution.

The smart contract optimization loop is over.

A. SMART CONTRACT INSTRUMENTATION AND

MONITORING MODULE

The research method in this paper is to instrument the source

code of smart contract, then monitor and record the dynamic

process relied on the EVM mechanism. Figure 2 is the flow

chart of monitoring mechanism. The developer utilizes a

script IntSC to finish the instrumentation of smart contract

source code, and then an instrumented contract code and a

file containing all the function names of the contract are gen-

erated. The instrumented contract is compiled and deployed

on the blockchain testing environment. The bytecode, trans-

action data, and files containing function names are executed

on EVM of the testing environment. At the same time, a

"shadow stack" and relevant data structures, which simulate

the original EVM stack structure and execution policy, are

created to record function names and related data such as

function dependency relationship, execution time, instruction

number, and gas consumption. The recorded monitoring data

is stored in form of JSON and fed back to the user through

4 VOLUME 4, 2020



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3046005, IEEE Access

YI DING et al.: Function-level dynamic monitoring and analysis system for smart contract

FIGURE 2: Flow chart of monitoring mechanism.

visualization and intelligent analysis.

Algorithm 1 INSTRUMENTATION

1: variables file and funcNames are initialized

2: for scLine in smart contract code do

3: regular expression is used in this line to get the func-

tion name after "function"

4: funcName = function name

5: if funcName is not NULL then

6: funcNames <- funcName

7: file <- scLine

8: file <- "bytes32 funcName="+funcName+";"

9: else

10: file <- scLine

11: end if

12: file_inst <- file

13: file is set NULL

14: end for

15: file_names <- funcNames

1) SMART CONTRACT CODE INSTRUMENTATION

METHOD

Based on instrumentation algorithm, an instrumented smart

contract named file_inst (function names are inserted) and

an independent file (file_names) containing all the function

names are created. It is displayed as Algorithm 1. The

contract source code is loaded and examined line by line

automatically. First, a variable file of string type is initialized

to store the instrumented contract code, and an array variable

funcNames is generated to retain all function names of the

contract. Then, for each line in the source code, the function

name after the keyword "function" is obtained by regular

expression and is stored into funcNames. Variable scLine

represents the content of this line, while variable funcName

is utilized to indicate local function name. Symbol "=" rep-

resents assignment, and "<-" means addition. If funcName is

not empty, it will be pushed into the array funcNames. Then

scLine and funcName in form of bytes32 type (the contract

function is created in form of bytes32 type, so it is designed

the same in the monitoring system) will be added into file

respectively. If funcName is empty, scLine will be inserted

into file directly. Then the content of file will be resolved and

pushed into the file file_inst and set empty. The organization

of file_inst including the instrumented part is similar to

the source code. The function names in funcNames will be

flushed into file_names after the recycling structure. The core

procedure is shown in lines 2-11 of Algorithm 1. When the

traversal process is finished, the code of file_inst has included

the function names. It could be applied to judge the start

and end position of the function at the time of pushing and

popping the inserted function name in the stack structure.

Meanwhile, these positions are helpful for calculating the

instruction number and gas consumption of specific function.

One demonstration of code instrumentation is shown as Fig-

ure 3. The codes colored with red are the illustration content

of instrumentation. After that, the instrumented contract code

could be deployed on the testing blockchain environment for

monitoring work.

2) SMART CONTRACT CODE DEPLOYMENT

Besides the characteristic of codes, smart contract represents

a special transaction after being deployed on blockchain. The

procedure is shown as figure 4. If one transaction address to

VOLUME 4, 2020 5



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3046005, IEEE Access

YI DING et al.: Function-level dynamic monitoring and analysis system for smart contract

FIGURE 3: Demonstration of code instrumentation.

FIGURE 4: Schematic diagram of smart contract deployment.

is empty (i.e. nil), it indicates that a smart contract is created.

Then, the instrumented code is compiled by SOLC to gen-

erate two files: one file takes bin as its suffix while the other

one uses the suffix of abi. The special transaction is converted

into a Message object, which includes the transaction’s hash,

the from address (user account address), the to address (i.e.

nil or 0), and the file suffixed with bin. Furthermore, the

EVM bytecode is sent to the Ethereum network through RPC

interface. The deployment of instrumented smart contract is

described as follows. The smart contract address is generated

when the block is packaged, then the contract is verified

by all the blockchain nodes through Ethereum network. The

contract code related to its address will be stored on the

blockchain system and the deployment of instrumented code

is finished.

3) BLOCKCHAIN VIRTUAL MACHINE DYNAMIC

MONITORING MODULE

EVM is a stack-based virtual machine in nature. Smart con-

tract code could be acquired according to its address, and

then is loaded on local EVM for execution. The illustration

of smart contract calling and EVM execution is displayed

as figure 5. There are four main items in smart contract

transaction data: the first one TxHash is transaction hash

value, the second one from address indicates user account

address, the third one to address means contract address, the

last one data is the function name and related parameter. The

6 VOLUME 4, 2020



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3046005, IEEE Access

YI DING et al.: Function-level dynamic monitoring and analysis system for smart contract

FIGURE 5: Illustration of smart contract calling and EVM execution.

caller takes advantage of the contract address and file suffixed

with abi to acquire stored contract code from the blockchain

database, then obtains the contract function bytecode through

the called function name and related parameter. Essentially,

the smart contract code is also a transaction. When this

special transaction is packaged and a block is generated,

then the called function will be executed on local EVM

environment. Meanwhile, the block result will broadcast to

other nodes on Ethereum for verification. If successful, the

EVM on these nodes will be invoked for code execution and

the block will be stored on blockchain.

The module proposed in this paper collects the information

of current execution function in the contract by monitoring

local EVM. One obstacle is that the entrance and exit of

contract bytecode function are difficult to be acquired. Since

the function execution on EVM is based on stack structure,

we construct a "shadow stack" and related data structures to

simulate the function management policy for monitoring. At

the same time, the function information could be recorded.

Figure 6 is the graph of monitoring architecture, which

is composed of execution area, shadow area, Decision En-

gine, Recording Engine,record_file,etc. According to this, the

monitoring principle is clear. The function bytecode is called

through data and to address. An array funInfo is created to

store all the function’s instructions and their gas values, and

a gas mapping table can be designed to query instruction’s

gas consumption. More important, a "shadow stack" is es-

tablished for identifying the function execution cycle, and an

array fun_names is constructed for function name retrieving

(fun_names contains all the function names of the contract

after instrumentation and the data is from file_names). The

procedure is presented as follows:

(1) Initialization phrase. Two variables (I and pc) are

initialized. I is utilized to count the executed instruction and

is set to zero, while pc points to current instruction and is

configured to the address of initial instruction in this smart

contract;

(2)During the process of code execution, we can acquire

the instruction op from variable pc with the function GetOp

(op=GetOp(pc));

(3)Then the instruction enters Decision Engine;

(4)If the metric of gas consumption is required, the gas

value will be obtained from gas mapping table by op;

(5) Decision Engine stores the variables of I,op,gas into

funInfo;

(6) Decision Engine judges whether op is PUSH32. If

it is, the following 32-bit data (the data is generated from

intrumentation and the type is bytes32) next to PUSH32

instruction will be sent to fun_names for query. When one

element in the array is matched, a signal "yes" will be

returned. Otherwise, the signal is "no" and the operation will

jump to (8). If op is not PUSH32, the operation will jump to

(8) as well;

(7)The function name, current time and current instruc-

tion number I (i.e. funName,startTime and startInst) will be

pushed into "shadow stack";

(8)op is pushed into the stack in the execution area. If op is

a POP instruction, the operation will jump to (9). Otherwise,

it will jump to (2);

(9)Decision Engine sends a signal to Recording Engine.

Meanwhile, the stack top element (POP operation) of execu-

tion stack is popped and sent to Recording Engine. Recording

Engine receives it and compares it with the stack top element

of "shadow stack"(obtained from Peek method, and the top

stack element is still in the stack). If the two elements are

not equal, the operation jumps to (2). If they are equal, it

means this function is completed. I at this point is equal to

endInst, while the current time is endTime. Then the stack

top element of "shadow stack" (POP operation) is popped,

and funcName, startTime and startInst are acquired. Further,

a function name, i.e. parent function name fatherName, can

be obtained from the stack top element of "shadow stack"

with Peek method. Subsequently, the total gas consumption

value sumGas is acquired from summary of instruction’s

VOLUME 4, 2020 7



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3046005, IEEE Access

YI DING et al.: Function-level dynamic monitoring and analysis system for smart contract

FIGURE 6: Schematic diagram of EVM monitoring architecture.

FIGURE 7: Schematic diagram of "shadow stack" operation.

8 VOLUME 4, 2020



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3046005, IEEE Access

YI DING et al.: Function-level dynamic monitoring and analysis system for smart contract

TABLE 1: Description Of Output Content

Parameter Name Explanation

funcName function name

fatherName the function father’s name

sumTime function timing

sumInst the function execution time

sumGas the gas cost of the function

gas consumption in the area of funInfo array determined

by the sign of startInst and endInst. Similarly, the function

execution instruction number sumInst is obtained by subtrac-

tion of instruction numbers at the two positions (i.e.sumInst

=endInst-startInst) referred above. The method to acquired

execution time is the same;

(10) Finally, funcName, fatherName, sumGas, execution

time and sumInst are outputted in form of Json, and it is

stored into record_file. Then the operation jumps to (2) till

the program finishes.

Figure 7 is a schematic diagram of "shadow stack" oper-

ation. The calling relationships between function 1, function

2 and function 3 are depicted as follows: when function 1

is executed, function 1 calls function 2, and then function 2

calls function 3. It obeys the regulation of stack.

The system not only monitors the function calling relation-

ship, but also records execution time, instruction number, and

the gas cost. Generally, there are five primary elements stored

in form of JSON, as shown in Table 1: funcName is current

function name; sumTime is the function execution time; fath-

erName is the upper-level function name, that is name of the

function which calls the current one. If the current function is

the first one, the value of fatherName is nil; sumInst is used

to calculate all the instruction number of current function;

sumGas is the gas cost of the function. However, the system

can be configured with different metrics. If the gas is not

required, the step (4) will removed and relevant variable will

be discarded. The flexible mechanism will help the system to

be more effective.

B. MONITORING SYSTEM ANALYSIS MODULE

After instrumentation, monitoring and recording, the smart

contract’s behaviors are required to be analyzed. This part

primarily introduces two analysis methods: visual display

and intelligent analysis.

1) VISUAL DISPLAY

(1) Call tree graph analysis

This paper monitors the dynamic execution of smart

contract and records related data for analysis. The calling

relationships between functions can be visually displayed

through a call tree graph.

It is supposed that a smart contract is deployed on the

blockchain test environment composed of four nodes. Figure

8 is a diagram of call tree instance. Each square represents

a function, and the arrows represent the calling relationships

between functions. The function monitoring information in-

cludes function name, instruction number, gas cost as well as

the execution time for all the blockchain nodes. For instance,

if function 1 calls function 5 multiple times, it will be marked

in the figure. The graph also supports to display multi-level

function invoking.

FIGURE 8: The diagram of call tree instance.

(2) Function classification statistics

Smart contract is compiled into bytecode and executed on

EVM. At present, the number of instructions are approxi-

mate 142 in the instruction set, which includes computation

instruction, operation instruction (stack, memory and stor-

age), information acquisition instruction (blocks and smart

contract relevant information) and system instruction, etc.

According to instruction classification of Ethereum project

yellow paper [10], the instruction could be classified in sum-

mary as follows: computation, environmental information de-

scription, storage and system operation. And this categories

are actually applied for the function in smart contract. The

regulation can be configured as the percent of instruction

number or execution time in the function for one specific type

of instruction. As shown in Table 2, it can be seen in the table

that the number of storage instruction is the most, and the

instructions for system operation are focus on call, callcode,

and delegatecall.

2) INTELLIGENT ANALYSIS

In addition to visualization, another method could be chosen

that is intelligent analysis. We use an instance of gas con-

sumption analysis for demonstration.

The gas consumption is an indispensable indicator to en-

sure the transaction’s normal execution on Ethereum. Most

instructions in smart contract require a certain gas fee. It is

supposed that the number of gas consumption exceeds the

VOLUME 4, 2020 9



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3046005, IEEE Access

YI DING et al.: Function-level dynamic monitoring and analysis system for smart contract

TABLE 2: Instruction Classification Table

Instruction category Function description instruction illustration

computation instruction that performs arithmetic and logic oper-
ation

ADD, MUL, SUB, DIV, LT, EQ, SZERO, AND,
OR, NOT etc.

environment information description instruction which is used to print smart contract’s
environment, block information and logs

ADDRESS, BALANCE, CALLER, LOCK-
HASH, TIMESTAMP, LOG, etc.

storage stack, memory, storage, replication, and swap oper-
ation

PUSH1 PUSH32, POP, SSTORE, SLOAD, M-
LOAD, DUP, SWAP, etc.

system operation system operation CALL, CALLCODE, DELEGATECALL, etc.

TABLE 3: Instruction List of Problem Prone

Problem prone Instruction Cause of the problem Contract optimization proposal

reentrancy vulnerability CALL the CALL method is used for
transfer

check if gas limit is set as the parameter of
CALL

gas consumption SSTORE, SUICIDE, etc. a lot of gas costs reduce or avoid the use of this type of
instruction

integer overflow ADD, MUL, ADDMUL, etc. beyond the maximum integer
range

build a rule to determine if there is an
overflow

logical error CALL, CALLCODE, DELE-
GATECALL

improper use of call instruction intelligent discovery and reminder

account’s gas maximum(i.e. gas limit), then all the operations

of current transaction will be stopped and the smart contract

will roll back to original state. Moreover, the account may

need to pay a certain extra fee to the miner (consensus

protocol), which could be avoided.

Before deploying the contract on productive blockchain,

each bytecode is expected to be understood and

used correctly. There are three methods for transfer:

address.transfer(amount), address.send(amount) and ad-

dress.gas(gas_value).call.value(amount). The gas limit of the

first two methods is determined, which can effectively pre-

vent the occurrence of reentrancy vulnerability (the attacker

uses fallback function of smart contract to repeat transfer and

cause economic loss). However, the third method does not

have gas limit. The "call" instruction is prone to generate

reentrancy vulnerability. When the monitoring system iden-

tifies the "call" instruction, more attention should be paid for

reentrancy vulnerability. The following rule can be defined to

automatically detect the security of "call" instruction: check

whether there is a gas limit value in the first parameter of

"call" command. When the gas consumption exceeds the

limit, transfer operation will be prevented, then repeated

transfer is avoided. If the first parameter is not set, the risk

of economic loss (extra gas consumption) is also very high.

Therefore, a reasonable gas limit is required for the transfer

operation.

The objective of high quality contract code emphasizes on

security and effectiveness. The developer should consider it

and do the code optimization cautiously. In addition to the

"call" instruction related above, we summarize four types

of problem prone instructions displayed in Table 3. The

first one is the "call" instruction problem about reentrancy

vulnerability. The second category is gas consumption prone

as well, frequent use of which will cause gas exhaustion

warnings. For instance, SSTORE instruction and SUICIDE

instruction, both of which consume lots of gas. It is not

recommended to employ them frequently. The third category

refers to computation operation instruction, such as ADD,

MUL, SUB, etc., which may cause the problem of integer

overflow. The final type is also from the calling instruction

including CALL, CALLCODE and DELEGATECALL, caus-

ing logic error. The warning rules based on the problem prone

instructions above are prepared and developed in the analysis

module, it will play a significant role for problem identifying

and optimization suggestions.

IV. EXPERIMENTAL ANALYSIS

In this section, two experiments were designed to verify

the performance overhead and the analysis method for the

monitoring and analysis system SCMon. The experimental

environment is a test blockchain system.

A. PERFORMANCE ANALYSIS OF MONITORING

MODULE

Performance overhead is an important criterion for monitor-

ing system, which is directly related to the disturbance of

program behavior. If the overhead is too large, it will affect

the monitoring result, normal execution of the program, and

even the program’s correctness.

This work evaluates the system’s overhead by comparing

the function execution time between the original and instru-

mented codes. Smart contract is different from traditional

program. Once being deployed, it is not easy to be modified

or interrupted. Then the blockchain test environment was

utilized in our experiment. In addition, the focus was the

function-level disturbance, not the entire system. Therefore,

five typical functions with different execution time were

chosen and the bytecode execution time before and after

instrumentation was measured. The experiment was tested 10

times continuously to calculate the average result for accura-

cy. It can be seen in figure 9 that the smart contract function

runs at millisecond level (the time is converted into the form

of nanosecond for clear display in the figure). By contrast,

the code execution time after code instrumentation increases

approximate 5% compared to the execution time without

10 VOLUME 4, 2020



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3046005, IEEE Access

YI DING et al.: Function-level dynamic monitoring and analysis system for smart contract

��
�
�m
��
��
	

�

m
8�



7

u�f7g

o�f7g

g�f7g

r�f7g

f7P

��������m����
������������
�� ��������� �!��� "����
��� ����
��� ������

FIGURE 9: Comparison graph of function execution time with code instrumentation.

��

��

��

��

��

FIGURE 10: Growth rate of function execution time with code instrumentation.

code instrumentation. Furthermore, what can be clearly seen

in figure 10 is the steady growth of execution time with code

instrumentation. In summary, the instrumentation overhead

is small and acceptable, then the monitoring work can be

effectively finished.

B. SMART CONTRACT ANALYSIS METHODS

To verify the analysis method of SCMon, a voting case

was instrumented by the script IntSC and executed on a

blockchain test environment composed of 4 nodes.

This contract case is described as follows: delegate func-

tion is used to authorize the caller’s voting rights to an agent

’s address to, and some relevant information of to is checked,

such as whether the address has voting rights, whether it has

voted and the voting weight. Then some internal functions

of the contract are invoked, including nulladdress, delega-

tion, setarry, data2, data4, getdata1, getdata4 and assign

functions, to ensure the normal execution and assign relevant

data. First, the agent’s address to is acquired from the getda-

ta4 function. We can use nulladdress function to determine

whether this address is 0, and delegation function can offer

the result whether the address to is the caller’s address. The

conditions of " to! =address (0)" and "to! =msg.sender" are

required for normal contract execution. Either nulladdress

function or delegation function returns true, the delegate

function will stop. Second, data2 function can provide the

result whether the caller has the voting right. If the caller has

the right to vote, data4 function is invoked for agent’s address

assignment. Finally, assign function can be utilized to decide

whether current delegate has voting right and whether it has

already voted. If the voting operation is finished, getdata1

function can supply the caller’s voting weight. Meanwhile,

setarry function is responsible for increasing the voting num-

ber with invoking add function.

1) Function relationship call tree

After monitoring, the smart contract execution information

VOLUME 4, 2020 11



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3046005, IEEE Access

YI DING et al.: Function-level dynamic monitoring and analysis system for smart contract

delegate

sumInst:228 
 sumGas:729
 sumTime:
 node1:67696ns
 node2:69952ns
 node3:70754ns
 node4:68642ns

setarray

sumInst:18
 sumGas:59
 sumTime:
 node1:60599ns
 node2:57585ns
 node3:65118ns
 node4:58206ns

delegation

sumInst:18
 sumGas:53
 sumTime:
 node1:32966ns 
 node2:31003ns 
 node3:29976ns 
 node4:29052ns

data4

sumInst:43
 sumGas:20370
 sumTime:
 node1:54384ns 
 node2:53103ns 
 node3:56131ns 
 node4:55370ns

data2

sumInst:43
 sumGas:20370 
 sumTime:
 node1:58936ns 
 node2:59614ns 
 node3:57813ns 
 node4:58817ns

getdata1

sumInst:26
 sumGas:311
 sumTime:
 node1:37866ns 
 node2:35573ns 
 node3:36439ns 
 node4:35868ns

getdata4

sumInst:35
 sumGas:347
 sumTime:
 node1:52820ns 
 node2:51469ns 
 node3:51531ns 
 node4:53493ns

nulladdress

sumInst:19
 sumGas:57
 sumTime:
 node1:30433ns 
 node2:28319ns 
 node3:28088ns 
 node4:28337ns

assign

sumInst:66
 sumGas:1035
 sumTime:
 node1:59823ns 
 node2:58746ns 
 node3:57472ns 
 node4:57473ns

call the assign
 function four times

add

sumInst:13
 sumGas:245
 sumTime:
 node1:30785ns
 node2:28925ns 
 node3:29560ns 
 node4:29376ns

FIGURE 11: The instance graph of monitoring function in vote contract call tree.

������OW1Lo74

��t12222

�����OWLoU4

��t1U22

����PO2L6H4

��tH1U

���HO2L6P4

��tHH3

����PO2L1H4

��tU21
���� O1LU34

��tU221

FIGURE 12: Gas consumption distribution diagram.

����7S7ArO9.

�����N77A

���S77rO6.

�����NDO

��h�7S5rW3.

�����N35

����9S3r66.

�����N88

���7S8r9D.

�����NAW

h��SArD9.

�����NAO
h��SAr75.

�����NWA

����� �!SWrDA.

�����NW9

���9SWr3D.

�����NWO

����9OSWrAA.

�����N95

"#$��SWArW9.

�����N96D

FIGURE 13: Instructions distribution diagram.

will be collected. Then function relationship call tree as

displayed in figure 11 is easy to be considered. When the del-

egate function is executed, the calling relationships between

these functions, each function’s execution time, instruction

number, as well as the amount of gas consumed, can be

clearly seen from the graph. The function execution time on

the 4 blockchain nodes is similar. The red arrow indicates

that calling frequency between delegate and assign function

is the highest, and the function with most gas consumptions

is marked to help users to observe conveniently.

2) Gas consumption distribution and classification

The gas fee on Ethereum is the basis requirement for smart

contract execution. Due to the limited amount, the reasonable

use of gas has become an indispensable factor for contract

optimization.

The SCMon system dynamically monitors the transaction

bytecode (delegate function). When a function costs too

much gas, a deep cause exploration will start. The instruction

which costs most will be identified by intelligent analysis and

it is helpful to optimize the targeted code. In our testing case,

two functions invoked by delegate function cost more than

20,000 gas, which may cause a gas exhaustion warning and

stop the transaction. Figure 12 shows instruction-gas con-

sumption distribution for this transaction. From this figure,

we can see that the gas consumed by SSTORE instruction

is 40,000, while this transaction total gas cost is 47086. It

is easy to infer that the proportion of SSTORE is 84.95%, S-

LOAD is only 8.92%, while others are fewer. From intelligent

analysis, the system will give the developer some suggestions

for code optimization. For instance, more "memory space" in

Solidity is recommended to be utilized instead of "storage

space" (SSTORE and SLOAD), which generally consumes

more gas.

12 VOLUME 4, 2020



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3046005, IEEE Access

YI DING et al.: Function-level dynamic monitoring and analysis system for smart contract

Meanwhile, delegate function incudes 813 instructions in

total and the distribution of instruction number is illustrated

in figure 13. If the instruction numbers are sorted in descend-

ing order, the first five ones will be listed as follows: PUSH1,

POP, SWAP1, PUSH2, and DUP1, which are all stack op-

erations. Among them, there are 114 PUSH1 instructions,

which account for 14.02% of the total amount. According

to the classification criterion, delegate function is attributed

to storage class function and is mainly used to store data.

To conclude this section, the experiments were carried out

to demonstrate that the monitoring and analysis technologies

are useful for contract optimization and the prototype system

is effective with high efficiency.

V. SUMMARY AND OUTLOOK

This paper proposes a function-level dynamic monitoring and

analysis method for smart contract, and implements SCMon

prototype system to form a closed loop on smart contract

optimization. The characteristics are listed as follows:

1) The monitoring mechanism designs a function name

instrumentation algorithm for code instrumentation, and the

monitoring module is integrated into the blockchain test

environment. A "shadow stack" and related data structures

are established in the smart contract virtual machine to

simulate the original stack’s function management policy,

which is used to record function call relationships with low

overhead. It could satisfy the monitoring requirements of

high efficiency and accuracy.

2) The monitoring method supports multi-dimensional

metrics which include not only traditional function execution

time, calling relationship, instruction number, but also smart

contract related metric:gas consumption. These metrics are

valuable for understanding function execution behavior.

3) The combination of visualization and intelligent analy-

sis could help developer understand smart contract profound-

ly, and identify performance bottleneck, security vulnerabili-

ty and abnormal behavior quickly as well.

4) Traditional instrumentation based monitoring and anal-

ysis methods are introduced into the field of smart con-

tract engineering and improved to adapt the characteristics

of blockchain and smart contract. This work enriches and

develops the architecture of smart contract engineering, and

extends smart contract application area.

This research is still in preliminary and experimental

phase. More cases will be tested and more analysis methods

will be explored to improve the system. It is also expected to

be applied into productive environment in the near future.

REFERENCES

[1] S. Nakamoto, "Bitcoin: A peer-to-peer electronic cash system," White

Paper: https://bitcoin.org/bitcoin.pdf, 2008.

[2] V. Buterin, "A next-generation smart contract and decentralized

application platform," White Paper, 2014. [Online]. Available: https://

www.weusecoins.com/assets/pdf/library/Ethereum_white_paper-a_next_

generation_smart_contract_and_decentralized_application_platformvitalik-

buterin.pdf

[3] N Szabo, "Smart contracts: building blocks for digital markets," EX-

TROPY: The Journal of Transhumanist Thought, vol. 18, no. 2, 1996.

[4] D. Chris, Introducing Ethereum and solidity, Berkeley: Apress, 2017.

[5] M. di Angelo and G. Salzer, "A Survey of Tools for Analyzing Ethereum

Smart Contracts," 2019 IEEE International Conference on Decentralized

Applications and Infrastructures (DAPPCON), Newark, CA, USA, pp. 69-

78, 2019, doi: 10.1109/DAPPCON.2019.00018.

[6] M. di Angelo and G. Salzer, "A Survey of Tools for Analyzing Ethereum

Smart Contracts," 2019 IEEE International Conference on Decentralized

Applications and Infrastructures (DAPPCON), Newark, CA, USA, pp. 69-

78, 2019, doi: 10.1109/DAPPCON.2019.00018.

[7] I. NikoliĆ, A. Kolluri, I. Sergey, P.Saxena, A. Hobor, "Finding the greedy,

prodigal, and suicidal contracts at scale," Proceedings of the 34th Annual

Computer Security Applications Conference (ACSAC ’18), 2018, pp. 653-

663.

[8] D. Siegel, "Understanding the dao attack," in Retrieved June, 2016, vol.

13, 2018.

[9] P. McCorry, M. Möser and S. T. Ali, "Why preventing a cryptocurrency

exchange heist isnąŕt good enough," in Cambridge International Workshop

on Security Protocols, Springer, Cham, pp. 225-233, 2018.

[10] G. Wood, "Ethereum: A secure decentralised generalised transaction

ledger," Ethereum project yellow paper, 2015.

[11] T. Cook, A. Latham, J. H. Lee, "Dappguard: Active monitoring and

defense for solidity smart contracts," in Retrieved July, 2017, vol. 18, 2018.

[12] A. DIKA, "Ethereum smart contracts: Security vulnerabilities and security

tools," Master’s Thesis. NTNU, 2017.

[13] J. Feist, G. Grieco and A. Groce, "Slither: A Static Analysis Frame-

work for Smart Contracts," 2019 IEEE/ACM 2nd International Workshop

on Emerging Trends in Software Engineering for Blockchain (WET-

SEB), Montreal, QC, Canada, pp. 8-15, 2019, doi: 10.1109/WETSE-

B.2019.00008.

[14] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev, and Y.

Alexandrov. "Smartcheck: Static analysis of ethereum smart contracts,"

In Proceedings of the 1st International Workshop on Emerging Trends in

Software Engineering for Blockchain, pp. 9-16, 2018.

[15] P. Tsankov, A. Dan and D. Drachsler, "Securify: Practical security analysis

of smart contracts," Proceedings of the 2018 ACM SIGSAC Conference on

Computer and Communications Security, pp. 67-82, 2018.

[16] S. Kalra, S. Goel, M. Dhawan, and S. Sharma. "ZEUS: Analyzing Safety of

Smart Contracts," Network and Distributed System Security Symposium,

2018.

[17] C. Peng, S. Akca and A. Rajan, "SIF: A Framework for Solidity Contract

Instrumentation and Analysis," 2019 26th Asia-Pacific Software Engineer-

ing Conference (APSEC), Putrajaya, Malaysia, pp. 466-473, 2019, doi:

10.1109/APSEC48747.2019.00069.

[18] M. Rodler, W. Li, G. O. Karame, and L. Davi, "Sereum: Protecting

existing smart contracts against re-entrancy attacks," arXiv preprint arX-

iv:1812.05934, 2018.

[19] S. Grossman, I. Abraham, G. Golan-Gueta, Y. Michalevsky, N. Rinetzky,

and M. Sagiv, "Online detection of effectively callback free objects with

applications to smart contracts," in Proceedings of the ACM on Program-

ming Languages, vol. 2, no POPL, pp. 23-26, 2017.

[20] J. Gao, H. Liu, C. Liu, Q. Li, Z. Guan and Z. Chen, "EASYFLOW:

Keep Ethereum Away from Overflow," 2019 IEEE/ACM 41st International

Conference on Software Engineering: Companion Proceedings (ICSE-

Companion), Montreal, QC, Canada, 2019, pp. 23-26, doi: 10.1109/ICSE-

Companion.2019.00029.

[21] R. Norvill, B. B. F. Pontiveros, R. State and A. Cullen, "Visual emulation

for Ethereum’s virtual machine," NOMS 2018 - 2018 IEEE/IFIP Network

Operations and Management Symposium, Taipei, pp. 1-4, 2018, doi:

10.1109/NOMS.2018.8406332.

[22] F. Ma, Y. Fu, M. Ren, M. Wang, and X. Shi, "EVM*: From Offline

Detection to Online Reinforcement for Ethereum Virtual Machine," 2019

IEEE 26th International Conference on Software Analysis, Evolution and

Reengineering (SANER), Hangzhou, China, pp. 554-558, Feb. 2019, doi:

10.1109/SANER.2019.8668038.

VOLUME 4, 2020 13



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3046005, IEEE Access

YI DING et al.: Function-level dynamic monitoring and analysis system for smart contract

YI DING received the Ph.D. degree from the

School of Computer Science and Engineering,

Beihang Univerity, Beijing, China. From 2017,

he began to work in the School of Information,

Beijing Wuzi University. His research interests

include blockchain and smart contract technology,

cloud computing, privacy protection, etc.

CHENSHUO WANG was born in Tongzhou Dis-

trict, Beijing, China in 1998. He is currently pur-

suing the B.S. degree in the School of Informa-

tion, Beijing Wuzi University, Beijing, China. His

current research interests include blockchain and

smart contract technology.

QIONGHUI ZHONG was born in Hunan, China

in 1998. She is a M.S. Candidate in the School

of Information, Beijing Wuzi University, Beijing,

China. Her research interests include blockchain

technology, privacy protection, etc.

HAISHENG LI received his Ph.D. degree from

Beihang Univerity, Beijing, China. He is a profes-

sor in School of Computer Science and Engineer-

ing, Beijing Technology and Business University,

China. He is member of China Graphics Society

council and senior member of China Comput-

er Federation etc. His current research interests

include computer graphics, scientific visualiza-

tion, blockchain technology, intelligent informa-

tion processing, etc.

JINJING TAN was born in Anhui, China, in 2000.

She is currently pursuing the B.S. degree in the

School of Information, Beijing Wuzi Universi-

ty, Beijing, China. Her research interests include

blockchain and smart contract technology.

JIE LI was born in Beijing, China in 1983. She

received the M.S. degree from the School of E-

conomics, Anhui University, Anhui, China. She

is a Ph.D. Candidate in the School of Computer

Science and Engineering, Beihang Univerity, Bei-

jing, China. From 2012, she began to work in the

School of Information, Beijing Wuzi University.

Her research interests include blockchain, securi-

ty, etc.

14 VOLUME 4, 2020


