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The prevalence of type 2 diabetes (T2D) is increasing worldwide, with many 
patients developing long-term complications that affect their cardiovascular, 
urinary, alimentary, and other systems. A growing body of literature has reported 
the crucial role of gut microbiota in metabolic diseases, one of which, Akkermansia 
muciniphila, is considered the “next-generation probiotic” for alleviating metabolic 
disorders and the inflammatory response. Although extensive research has been 
conducted on A. muciniphila, none has summarized its regulation in T2D. Hence, 
this review provides an overview of the effects and multifaceted mechanisms of 
A. muciniphila on T2D and related diseases, including improving metabolism, 
alleviating inflammation, enhancing intestinal barrier function, and maintaining 
microbiota homeostasis. Furthermore, this review summarizes dietary strategies 
for increasing intestinal A. muciniphila abundance and effective gastrointestinal 
delivery.
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1. Introduction

Diabetes mellitus (DM) refers to a group of metabolic disorders characterized by 
hyperglycemia, insulin resistance, obesity, and low-grade inflammation (Zimmet et al., 2001). 
The prevalence of diabetes is increasing at an alarming rate worldwide. In 2017, the International 
Diabetes Federation estimated that there were 451 million patients with diabetes and 374 million 
people with impaired glucose tolerance worldwide (Cho et al., 2018). If there is no radical 
therapy to reverse this expansion, the total number of people with diabetes could increase to 693 
million by 2045 (Cho et al., 2018). Type 2 diabetes (T2D) would account for more than 90% of 
cases in this population (Chatterjee et al., 2017). T2D is a heterogeneous disease, and various 
factors may contribute to its development, such as unhealthy lifestyle and diet, genetic heritage, 
aging, and environmental factors (Chatterjee et al., 2017). Due to the long duration of diabetes, 
T2D patients have higher risks of macrovascular and microvascular damage, as well as other 
severe complications, such as diabetic nephropathy, diabetic cardiomyopathy, non-alcoholic 
fatty liver disease (NAFLD), diabetic retinopathy, cognitive impairment, that cause mortality 
(Gregg et  al., 2014). The high incidence of T2D indicates that previous preventive and 
therapeutic approaches are ineffective. Recent studies have examined the effects of gut 

OPEN ACCESS

EDITED BY

Hao Zhong,  
Zhejiang University of Technology, China

REVIEWED BY

Munhyung Bae,  
Gachon University, Republic of Korea
Xiaoshuang Dai,  
Beijing Genomics Institute (BGI), China

*CORRESPONDENCE

Xin Jiang  
 jiangx@jlu.edu.cn

Ying Xin  
 xiny@jlu.edu.cn

RECEIVED 27 February 2023
ACCEPTED 30 May 2023
PUBLISHED 15 June 2023

CITATION

Li J, Yang G, Zhang Q, Liu Z, Jiang X and 
Xin Y (2023) Function of Akkermansia 
muciniphila in type 2 diabetes and related 
diseases.
Front. Microbiol. 14:1172400.
doi: 10.3389/fmicb.2023.1172400

COPYRIGHT

© 2023 Li, Yang, Zhang, Liu, Jiang and Xin. This 
is an open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic practice. 
No use, distribution or reproduction is 
permitted which does not comply with these 
terms.

TYPE Review
PUBLISHED 15 June 2023
DOI 10.3389/fmicb.2023.1172400

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2023.1172400&domain=pdf&date_stamp=2023-06-15
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1172400/full
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1172400/full
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1172400/full
mailto:jiangx@jlu.edu.cn
mailto:xiny@jlu.edu.cn
https://doi.org/10.3389/fmicb.2023.1172400
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2023.1172400


Li et al. 10.3389/fmicb.2023.1172400

Frontiers in Microbiology 02 frontiersin.org

microbiota on metabolic diseases, including T2D (Cani, 2018; Gurung 
et  al., 2020). Furthermore, diabetes treatments that target the gut 
microbiota have become a growing area of investigation.

In the human body, microbial cells outnumber human cells by 
approximately 10-fold and contribute significantly to host metabolism 
and immunity (Cani, 2018). As per observational studies in humans, 
the genera of opportunistic pathogens (i.e., Ruminococcus, 
Fusobacterium, and Blautia) were enriched in T2D patients, while the 
genera Bifidobacterium, Bacteroides, Faecalibacterium, and 
A. muciniphila were negatively associated with T2D (Gurung et al., 
2020). Akkermansia muciniphila is a gram-negative, strictly anaerobic, 
oval-shaped, non-spore-forming mucin-degrading bacterium that 
belongs to the division Verrucomicrobia and was first isolated from the 
feces of healthy adults in 2004 through the use of mucin as the only 
source of carbon and nitrogen (Derrien et al., 2004; Ouwerkerk et al., 
2016; Machado et  al., 2020). A. muciniphila mostly colonizes the 
intestinal tract and accounts for approximately 1–3% of the total 
microbiota (Derrien et al., 2008). The bacteria have been detected in 
fecal samples of healthy adults of all ages, at levels ranging from 5.00 
to 8.80 log cells/g, but their population is reduced among most elderly 
individuals (Collado et  al., 2007). Research on Akkermansia is of 
growing interest, many animal experiments have determined the 
positive effects of A. muciniphila supplementation on diabetes and 
related diseases (Cani and de Vos, 2017). Similarly, the administration 
of A. muciniphila improved the metabolic parameters of obese patients 
(Depommier et al., 2019). However, the exact mechanism underlying 
these positive effects remains unclear. Herein, we summarize research 
progress on A. muciniphila and describe its role in T2D and related 
diseases, from its mechanism of action to its therapeutic application.

2. The diversity of Akkermansia 
muciniphila strains

In light of the known benefits of A. muciniphila, researchers have 
attempted to determine its genome and the functions of the encoded 
proteins. A. muciniphila belongs to the phylum Verrucomicrobia and 
displays significant diversity among the different strains (van Passel 
et  al., 2011). Guo et  al. (2017) constructed the genomes of 39 
A. muciniphila strains isolated from adult humans and laboratory 
mice and identified three major phylogroups using maximum 
likelihood phylogenetic analysis. Later, Kirmiz et al. (2020) reclassified 
A. muciniphila isolates into four species-level phylogroups based on a 
predecessor (defined as AmI, AmII, AmIII, AmIV). Becken et al. 
(2021) suggested that the AmI phylogroup can be phylogenetically 
divided into two subclades, AmIa and AmIb. At present, the 
commonly used strain in most researches is A. muciniphila MucT 
(=ATCC BAA-835T = CIP 107961T), belonging to AmIa. Differences 
among these four phylogroups include intestinal abundance, 
physicochemical properties, metabolic characteristics, and immune 
activation capacity. In a study of 1617 human fecal samples (Karcher 
et  al., 2021), AmI accounted for the highest proportion (47%), 
followed by AmII and AmIII (27 and 24%, respectively). AmII and 
AmIII are currently only observed in humans, whereas AmI and 
AmIV are common in humans and mice in different proportions. 
Another metagenomic analysis showed that AmIV is mainly 
distributed in western populations, while AmIII is mainly found in 
China (Lv et al., 2022).

Genome sequencing has revealed the genes differentially 
expressed among the four phylogroups, AmI, AmII, AmIII, and 
AmIV. According to the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analysis, genes in the A. muciniphila genome encode 
proteins involved in membrane transport, drug resistance, and various 
metabolic activities (Guo et al., 2017). Metabolism-related genes have 
attracted attention due to their function in improving host 
metabolism. Several studies have reported differential expression of 
genes related to glycolipid metabolism and amino acid metabolism 
among A. muciniphila phylogroups. A principal component analysis 
of the KEGG pathway showed greater similarities between the AmII 
and AmIII genomes, whereas AmI genomes differed significantly. 
Specifically, all four A. muciniphila phylogroups encoded glycoside 
hydrolases (GHs) and glycosyltransferases (GTs), but the copy 
numbers of the GH and GT families differed from one another 
(Becken et  al., 2021; Luna et  al., 2022). The genomes of the AmI 
phylogroup contained fewer genes encoding fucosidases (GH29 and 
GH95) than the other phylogroups that potentially act on the terminal 
fucose residues that decorate mucin and human milk oligosaccharides 
(Wu et al., 2021). Notably, AmIb had fewer GH29 genes than AmIa 
and no GH18 genes (Luna et al., 2022), and galactosidase GH110 was 
hardly expressed in AmIV (Becken et al., 2021). Similarly, the four 
phylogroups varied in the proportions of GT2 and GT4, suggesting 
that they differ in their carbohydrate metabolic levels, especially the 
ability to synthesize polysaccharides (Karcher et  al., 2021). 
Furthermore, cobalamin (vitamin B12) is an essential cofactor for 
short-chain fatty acid metabolism. Kirmiz et al. (2020) found that 
vitamin B12 synthesis genes were absent in AmI. This finding suggests 
that the vitamin B12 biosynthesis genes were originally present in all 
strains and were lost by some isolates in the human gut (Karcher et al., 
2021). Considering that several intestinal microbes require vitamin 
B12 as a metabolic substrate (Degnan et al., 2014), these genetic losses 
may explain the diversity of A. muciniphila and its interactions with 
the host and other intestinal microbes. Genes for assimilatory sulfate 
reduction (ASR) were absent in AmII and AmIV. This resulted in the 
absence of hydrogen sulfide, a critical substrate for cysteine and 
methionine synthesis, and led to a low growth rate in the mucin 
medium (Becken et al., 2021). Additionally, AmIV’s high sensitivity 
to oxygen may be attributed to a deficiency in siderophores (Becken 
et al., 2021). These results explain the observed differences in the 
distribution and oligosaccharide utilization of A. muciniphila 
phylogroups (Luna et al., 2022), and may also explain the reason for 
AmI and AmII to have different therapeutic efficacies in alleviating 
metabolic syndrome (Deng et al., 2020).

The relationship between A. muciniphila and colitis is 
controversial. Several lines of evidence have shown that A. muciniphila 
administration can ameliorate inflammatory bowel diseases (IBD) or 
delay colitis-associated tumorigenesis in mice (Wang et  al., 2020; 
Wade and Su, 2021), whereas certain oral treatments for colitis have 
enriched the abundance of A. muciniphila (Ke et al., 2021). While 
some studies have suggested that A. muciniphila aggravates IBD 
(Ganesh et al., 2013), Ring et al. (2019) proposed that ingestion of the 
A. muciniphila strain ATCC BAA-835 did not exacerbate intestinal 
inflammation in interleukin (IL)-10-deficient mice. Notably, 
Cekanaviciute et al. (2017) found increased A. muciniphila levels in 
MS patients. The investigators hypothesized that this difference might 
be  due to strain specificity (Ring et  al., 2019), and Liu’s findings 
substantiated their hypothesis (Liu Q et al., 2021). A. muciniphila 
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displayed strain-dependent effects on ulcerative colitis in mice. AmII 
and AmIV exerted stronger immune activation than AmI in 
HEK-TLR reporter cell lines (Becken et al., 2021). In summary, strain 
specificity of the gut microbiota is vital for phenotypic studies (Geva-
Zatorsky et al., 2017), and A. muciniphila also exhibited strong strain 
specificity. Most current studies have focused on the strain ATCC 
BAA-835T (=CIP  107961T), and further investigation should 
be conducted to gain deeper insights into the interactions between the 
host and A. muciniphila.

3. The role of Akkermansia muciniphila 
in T2D and related diseases

Typical manifestations of diabetes include obesity, insulin 
resistance, impaired glucose tolerance, abnormal lipid metabolism, 
and low-grade systemic inflammation (Weir and Bonner-Weir, 2004). 
Furthermore, human gut microbial sequencing revealed a decline in 
A. muciniphila abundance in T2D patients as early as 10 years ago 
(Zhang et  al., 2013). Numerous studies have also found reduced 
A. muciniphila levels associated with not only diabetes (Yassour et al., 
2016; Chelakkot et al., 2018; Medina-Vera et al., 2019), but also its 
related diseases, including hyperlipidemia (Yu et  al., 2021), 
non-alcoholic fatty liver disease (Kim et al., 2020; Zhang et al., 2022), 
and chronic kidney disease (Hsu et al., 2020). Since Everard et al. 
(2013) discovered the effect of A. muciniphila on alleviating metabolic 
disorders, researchers have conducted many investigations on this 
next-generation microorganism, as summarized in Table 1. Several 
cohort studies have revealed the beneficial effects of A. muciniphila on 
glucose and lipid metabolism and inflammatory responses in humans 

(Depommier et al., 2019; Perraudeau et al., 2020). Furthermore, a few 
animal experiments have also demonstrated multiple benefits of 
A. muciniphila in liver disease, cardiovascular disease, cognitive 
impairment, and aging (Grajeda-Iglesias et al., 2021). The diseases 
related to A. muciniphila and several classes of oral supplements, 
including polyphenols, saccharides, and flavonoids, that increase the 
abundance of A. muciniphila are outlined in Figure 1. Furthermore, 
pasteurized A. muciniphila has been confirmed to be safe and was 
approved for use by the European Food Safety Authority in 2021 [Efsa 
Panel on Nutrition, Novel Foods and Food Allergens (NDA) 
et al., 2021].

4. Regulatory mechanisms of 
Akkermansia muciniphila in T2D and 
related diseases

4.1. Akkermansia muciniphila treatment 
improves host metabolism

Insulin resistance and metabolic syndrome are the most 
prominent characteristics of T2D, and A. muciniphila alleviates 
metabolic syndrome by improving glucose, lipid, and bile acid 
metabolism. Glucagon-like peptide-1 (GLP-1) is a pleiotropic 
hormone that has a broad role in metabolism regulation, including the 
stimulation of insulin secretion and appetite suppression (Muller 
et  al., 2019), both of which contribute to diabetes treatment. 
Propionate, an A. muciniphila metabolite, has been shown to stimulate 
GLP-1 secretion (Chambers et  al., 2015; Psichas et  al., 2015). 
Furthermore, Yoon et al. (2021) proposed a new GLP-1 activator, 

TABLE 1 The efficacy of oral Akkermansia muciniphila in T2D and related diseases.

Disease Efficacy Mechanism References

Type 2 diabetes 

(hyperglycemia)

Blood glucose, insulin resistance, glycosylated hemoglobin↓

Insulin secretion, glucose tolerance ↑

GLP-1↑

FGF15/19↑

Depommier et al. (2019, 2020), Everard et al. 

(2013), Hanninen et al. (2018), Org et al. 

(2015), Perraudeau et al. (2020), Plovier et al. 

(2017), Yang et al. (2020), Zhao et al. (2017)

Type 2 diabetes (low-

grade inflammation)

Metabolic endotoxemia, pro-inflammatory factors↓

Tight junction, intestinal barrier function, anti-inflammatory factors, 

goblet cells, Treg cells↑

Wnt3↑

AhR↑

Mucin2↑

Depommier et al. (2019), Everard et al. (2013), 

Grander et al. (2018), Plovier et al. (2017), 

Yoon et al. (2021)

Hyperlipidemia and 

obesity

Body weight, triglyceride, total cholesterol, chylomicrons, fat mass↓

Adipose thermogenesis↑

UCP1↑

FGF15/19↑

PLIN2↓

Deng et al. (2020), Katiraei et al. (2020), Shen 

et al. (2016)

Liver disease Alanine aminotransferase, alanine transaminase, hepatic apoptosis, liver 

steatosis, adipogenesis, myeloperoxidase-positive neutrophils↓

Intestinal barrier function, lipid transportation and oxidation, hepatic 

L-aspartate↑

LKB1↑

FGF15/19↑

Everard et al. (2019), Juarez-Fernandez et al. 

(2021), Kim et al. (2020), Rao et al. (2021), Wu 

et al. (2017), Xia et al. (2022)

Cardiovascular disease Atherosclerotic lesion formation, metabolic endotoxemia↓ Gut barrier 

function↑

Li et al. (2016)

Cognitive impairment Hippocampal function, cognitive deficits, impaired spatial working 

memory, novel object recognition↓

Neuronal development and synapse plasticity↑

Unknown Higarza et al. (2021), Wu et al. (2020), Yang 

et al. (2019)

Research subject: Depommier et al. (2019) and Perraudeau et al. (2020) chose humans as the research subject, the rest chose mice as the research subject. Adopted A. muciniphila strains: Yang 
et al. (2020) and Wu et al. (2020) used strains newly isolated from human fecal samples; Deng et al. (2020) chose AmI (GP01) and AmII (GP25) separately, the rest used A. muciniphila MucT 
(=ATCC BAA-835 T = CIP 107961 T). Plovier et al. (2017) and Depommier et al. (2019, 2020) also used pasteurized A. muciniphila. Oral administration: By gavage or added A. muciniphila to 
sterile drinking water. GLP-1, glucagon-like peptide-1; FGF15/19, fibroblast growth factor 15/19; AhR, aryl hydrocarbon receptor; UCP1, uncoupling protein 1; PLIN2, perilipin2, LKB1, liver 
kinase B1.

https://doi.org/10.3389/fmicb.2023.1172400
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Li et al. 10.3389/fmicb.2023.1172400

Frontiers in Microbiology 04 frontiersin.org

intercellular adhesion molecule 2 (ICAM-2), which is an immune cell 
integrin (Iannacone, 2016). ICAM-2, when directly combined with 
A. muciniphila-derived protein P9, induced GLP-1 secretion and 
ameliorated hyperglycemia. Additionally, Xia et al. (2022) observed 
the activation of the phosphatidylinositol 3-kinase (PI3K)-Akt 
pathway in mouse liver upon gavage of A. muciniphila. Notably, 
PI3K-Akt signaling plays an important role in glucose and lipid 
metabolism (Huang et al., 2018).

Scientists have reported that A. muciniphila regulates lipid 
metabolism in many ways in mice and organoids (Lukovac et al., 2014; 
Katiraei et al., 2020), mainly in the liver, small intestine, and adipose 
tissue. In the intestine, A. muciniphila degrades mucin and produces 
a variety of bioactive metabolites, such as polysaccharides, short-chain 
fatty acids (SCFA), and indole derivatives. Propionate modulates the 
expression of genes involved in fatty acid uptake and oxidation, such 
as Fiaf, Gpr43, peroxisome proliferator-activated receptor gamma 
(PPARγ), and histone deacetylases (HDACs) (Lukovac et al., 2014; 
Yoon et  al., 2021). In mouse adipose tissue, A. muciniphila 
administration reduces white adipose tissue (WAT) volume and 
enhances thermogenesis by upregulating the uncoupling protein 1 
(Ucp1)(Deng et al., 2020; Yoon et al., 2021), and downregulating the 
expression of lipid-droplet regulator associated protein perilipin2 
(Depommier et al., 2020; Juarez-Fernandez et al., 2021). Increased 
colonization of A. muciniphila regulated a network of genes involved 
in lipid transportation and oxidation in hepatocytes. Shen et al. (2016) 
found that the reduction in hepatic low-density lipoprotein (LDL) 
receptor and apolipoprotein E levels in response to treatment with 
A. muciniphila contributed to the clearance of the plasma triglyceride-
rich lipoprotein and chylomicron remnants in mice. Additionally, 
both Zhao et  al. (2017) and Rao et  al. (2021) reported altered 
expression of fatty acid translocase (FAT) with different trends. 
Notably, Rao et al. identified several significant differential metabolites 

in the mouse liver between groups with or without the administration 
of A. muciniphila. L-aspartate displayed a high fold-change (Rao et al., 
2021). Additional research has shown that A. muciniphila facilitates 
L-aspartate transportation in the gut-liver axis for the activation of the 
liver kinase B1 (LKB1)-AMPK pathway and increases lipid oxidation, 
thereby ameliorating liver steatosis (Rao et al., 2021).

Bile acids (BAs) are steroid molecules that are synthesized from 
cholesterol in the liver and act as metabolic regulators via the nuclear 
farnesoid X receptor (FXR) and takeda G protein-coupled receptor 5 
(TGR5)(Sonne, 2021). After the administration of the synbiotic of 
A. muciniphila and quercetin, plasma primary bile acids to secondary 
bile acids ratio was significantly increased in mice (Juarez-Fernandez 
et al., 2021). Besides, the elevated ratio of free to conjugated BA (CA/
GCA + TCA) denoted the enhanced activity of bile salt hydrolase 
(BSH) (Juarez-Fernandez et  al., 2021), which promoted the 
deconjugation of conjugated BA and conversion to free BA. However, 
BSH activity has been detected in various other gastrointestinal 
bacteria but not in A. muciniphila (Horackova et  al., 2018). The 
increased BSH activity was probably due to the regulatory action of 
A. muciniphila on other intestinal bacteria. An observational study 
discovered a positive relationship between the proportion of primary 
and conjugated BAs with NAFLD (Puri et al., 2018); therefore, the 
changes in BAs induced by synbiotic treatment might have a 
paradoxical role in NAFLD.

Zhang J. et al. (2021) reported that treatment with A. muciniphila 
promoted insulin secretion by limiting the availability of 
3β-chenodeoxycholic acid (βCDCA) in mice. CDCA was shown to 
be a high-affinity FXR agonist synthesized in the liver (Makishima 
et  al., 1999), whereas βCDCA was derived from CDCA and had 
different configurations and functions. CDCA-mediated FXR 
stimulation occurs in ileal enterocytes and hepatocytes and mediates 
the expression of fibroblast growth factor 15/19 (FGF 15/19) and small 

FIGURE 1

Oral measures to improve the abundance of Akkermansia muciniphila and the consequent improvement of T2D and its complications.
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heterodimer protein (SHP) (Sonne, 2021). The FXR-FGF15/19 and 
FXR-SHP pathways are critical for maintaining metabolic homeostasis. 
Interestingly, FXR agonists and inhibitors displayed beneficial effects 
on metabolic disorders, requiring more in-depth research. Zhang 
J. et al. (2021) observed that treatment with A. muciniphila limited 
βCDCA synthesis in mice, thereby triggering FGF19 signaling and 
insulin secretion. Of note, the content of CDCA is low in mice, but the 
authors also found that serum βCDCA negatively correlated with the 
relative abundance of A. muciniphila in clinical studies.

These results illustrate that A. muciniphila regulates the host 
metabolism of glucose, lipids, and bile acids through multiple 
signaling pathways, thereby alleviating insulin resistance, 
hyperglycemia, and lipid deposition in various organs, as outlined in 
Figure 2.

4.2. Akkermansia muciniphila treatment 
protects the host from endotoxemia

Previous research has found that patients with diabetes were more 
susceptible to metabolic endotoxemia than healthy people because of 
the increased infiltration of lipopolysaccharide (LPS) from the 
intestine into circulation. Notably, LPS infiltration exacerbated insulin 
resistance and diabetes and led to various diabetic complications 
(Cani et al., 2007; Gomes et al., 2017). Improved gut permeability and 

reduced LPS infiltration after treatment with A. muciniphila have been 
confirmed in many animal studies (Li et al., 2016; Zhao et al., 2017; 
Shi et al., 2021; Guo et al., 2022). The intact gut barrier consists of 
three main interconnected layers: the mucus, gut epithelial, and inner 
mucosal immune layers. Immunohistochemical staining of colon 
sections has shown that the colonic mucus layer is significantly thicker 
in A. muciniphila-treated mice than in vehicle-treated mice (Hanninen 
et al., 2018; van der Lugt et al., 2019), this may be due to the increased 
goblet cell count and reduced crypt depth. Furthermore, as a chemical 
barrier, the mucus layer contains mucin, antimicrobial peptides 
(AMP), immune cytokines, and digestive secretions. Mucin2 (Muc2) 
is a basic gel-forming mucin present in the mucus barrier (Johansson 
et al., 2011). Both in vivo and in vitro experiments have reported that 
the elevated Muc2 gene expression upon treatment with A. muciniphila 
corresponds with morphological changes and strengthens mucus 
barrier function (Ganesh et al., 2016; Ke et al., 2021).

The second layer of the gut barrier is composed of a monolayer of 
intestinal epithelial cells and intercellular tight junction (TJ) proteins, 
with a scattered distribution of functionally specialized cells (e.g., 
Paneth, goblet, and enteroendocrine cells) (Ghosh et al., 2021). After 
treating chickens with A. muciniphila, Zhu et al. (2020) found the 
Wnt/β-catenin signaling pathway to be activated in the intestinal stem 
cells, which is vital for developing and renewing the intestinal 
epithelium. Kim et  al. (2021) further revealed that Wnt signaling 
activation was mediated by Paneth cells that secreted Wnt3 in the 

FIGURE 2

Effects of Akkermansia muciniphila and its derived parts on ameliorating metabolic disorders. (1) A. muciniphila-derived protein P9 directly combined 
with ICAM-2 and activated the GLP-1 secretion in intestinal L cells, propionate was the metabolite of A. muciniphila and also activated the GLP-1, 
thereby enhancing insulin secretion and alleviating hyperglycemia. (2) A. muciniphila modulated the expression of genes involved in lipid metabolism, 
including PPARγ, PLIN2, UCP1, ApoE, LDL. (3) A. muciniphila facilitated the transportation of L-aspartate from gut to liver, L-aspartate upregulated the 
LKB1-AMPK pathway and ameliorated liver steatosis. (4) A. muciniphila decreased the level of βCDCA, which was one of the FXR inhibitors, thus 
increasing the intestinal FGF15/19 secretion. FGF15/19 acted on multiple tissues, improved hyperlipidemia and liver steatosis. Upward aspects are 
indicated in black, downward aspects are indicated in red. ICAM-2, intercellular adhesion molecule 2; GLP-1, glucagon-like peptide-1; FGF15/19, 
fibroblast growth factor 15/19; βCDCA, 3β-chenodeoxycholic acid; FXR, farnesoid X receptor; L-asp., L-aspartate; LKB1, liver kinase B1; HDAC, histone 
deacetylases; UCP1, uncoupling protein 1; PLIN2, perilipin2; PPARγ, peroxisome proliferator-activated receptor gamma; LDL, low-density lipoprotein; 
ApoE, apolipoprotein E.
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crypt, thereby accelerating intestinal stem cell proliferation. 
A. muciniphila increase the expression of tight junction proteins in 
mice, including zonula occludens-1 (ZO-1), occludin, claudin-3, 
junctional adhesion molecules-3 (jam-3) (Li et al., 2016; Wade and Su, 
2021). These proteins form a complex of intercellular junctions that 
act as an intercellular barrier that separates luminal contents from the 
subepithelial interstitium (Slifer and Blikslager, 2020). However, the 
change in claudin-2 expression remains controversial: Liu J. H. et al. 
(2020) reported increased intestinal expression of claudin-2  in 
A. muciniphila-treated mice, while several studies found claudin-2 
expression to be inhibited (van der Lugt et al., 2019; Wade and Su, 
2021). Notably, all these studies confirmed the positive effects of 
A. muciniphila on intestinal permeability and inflammation. 
Claudin-2 is a pore-forming claudin that functions as a paracellular 
channel and increases epithelial layer permeability (Günzel and Yu, 
2013). Claudin-2 expression is more likely to have declined 
considering the improvement in barrier function, but the precise 
mechanism through which A. muciniphila regulates claudin-2 
expression remains to be elucidated.

The last line of defense consists of numerous immunocytes and 
immunoreactive substances. Several animal experiments have 
reported that A. muciniphila supplementation induced variations in 
immune cell composition (Katiraei et  al., 2020), and enhanced 
peritoneal leukocyte functions, including chemotactic activity, 
phagocytic efficacy, natural killer activity, and lymphoproliferative 
capacity (Cerro et  al., 2022). The known reason may be  that 
A. muciniphila alleviates the intestinal barrier dysfunction through 
TLR2 activation (Shi et  al., 2022), or maintains the function of 
intestinal barrier by activating alpha kinase 1 and downstream Nuclear 
Factor-Kappa B (Martin-Gallausiaux et  al., 2022). Some anti-
inflammatory cytokines, such as IL-10 (Ottman et al., 2017b; Katiraei 
et al., 2020; Yaghoubfar et al., 2020), α-tocopherol, and β-sitosterol 
(Zhao et al., 2017), positively correlate with A. muciniphila abundance. 
In contrast, the levels of several pro-inflammatory factors, such as 
IL-1β, IL-6, IL-8, and leptin (Ke et  al., 2021; Cerro et  al., 2022), 
displayed a downward trend. Ottman et al. (2017b) calculated the 
ratio of the pro-inflammatory factor TNF-α levels to the anti-
inflammatory cytokine IL-10 levels in mice, which is an important 
parameter for estimating the inflammatory regulation capacity of gut 
microbiota. Compared to F. prausnitzii and L. plantarum, 
A. muciniphila showed the lowest ratio, implying it has high anti-
inflammatory activity. Aryl hydrocarbon receptor (AhR) is a 
transcriptional regulator widely expressed in the intestinal epithelium 
and mediates antimicrobial immunity. Furthermore, impaired AhR 
agonist activity and lower AhR ligand concentrations are associated 
with metabolic disorders and intestinal barrier dysfunction (Natividad 
et al., 2018). AhR ligands include several indole derivatives, such as 
indoleacetic acid (IAA), indole-3-ethanol, and indole acrylic acid (IA), 
produced by tryptophan (Trp) metabolism (Gu et al., 2021; Shi et al., 
2021). Gu et al. (2021) noted that A. muciniphila raised the plasma 
concentrations of IAA and IA in mice, both of which combine with 
AhR and activate its downstream signals. This was evidenced by 
increased CYP1A1, interleukin-10 (IL-10), and IL-22 levels that 
consequently alleviate metabolic syndrome and inflammation.

The above literature provides important insights into the 
mechanism by which A. muciniphila consolidates the intestinal barrier 
and regulates the balance of pro−/anti-inflammatory factors, thereby 

protecting the host from endotoxemia and metabolic disorders 
(Figure  3). However, the role of A. muciniphila in colitis remains 
controversial. Notably, A. muciniphila cannot be completely classified 
as anti-or pro-inflammatory, but undoubtedly, plays an essential role 
in endotoxemia and diabetes-related chronic inflammation (Everard 
et al., 2013; Plovier et al., 2017; Hanninen et al., 2018).

4.3. Akkermansia muciniphila regulates 
intestinal microbial homeostasis

A wide variety of microbiota colonize the human body and 
constitute a complex ecosystem. Maintaining the homeostasis of this 
ecosystem is essential for human health. Drastic changes in the 
composition or distribution of the microbiota result in intestinal 
microbial dysbiosis, which leads to various metabolic and 
inflammatory diseases. Several studies, having benefited from the 
advent of metagenomic sequencing, described the different 
compositions of gut microbiota between patients with T2D and 
healthy individuals (Qin et  al., 2010). Generally, T2D has been 
correlated with increased levels of opportunistic pathogens (e.g., 
Ruminococcus, Fusobacterium, and Blautia) and decreased levels of 
SCFA-producing bacteria (e.g., Bifidobacterium, Bacteroides, 
Faecalibacterium, A. muciniphila, and Roseburia) (Gurung et  al., 
2020). The lower intestinal abundance of A. muciniphila has been 
demonstrated in both T2D mice and patients (Everard et al., 2013; 
Yassour et al., 2016). Although there is no exact definition of a healthy 
gut microbiome composition, a high level of microbial diversity is 
certainly important. After treating mice with A. muciniphila, the 
α-diversity of their fecal microbiome was found to increase, as 
measured by Shannon’s diversity index, Ace, and Chao1 (Bian et al., 
2019; Kim et  al., 2021; Rao et  al., 2021). These results imply that 
A. muciniphila can improve the richness and diversity of gut 
microbiota, which is a prerequisite for intestinal stability.

Firmicutes and Bacteroidetes are the two most abundant phyla in 
the human intestine (Qin et al., 2010). Human obesity is thought to 
be  associated with an increased ratio of Firmicutes/Bacteroidetes 
(Magne et  al., 2020), which may be  due to differences in energy 
metabolism and inflammatory response (Krajmalnik-Brown et al., 
2012; Bian et al., 2019). Notably, A. muciniphila was found to rescue 
mice with diabetes and NAFLD from Firmicutes/Bacteroidetes 
imbalance (Hanninen et  al., 2018; Perez-Monter et  al., 2022). 
Firmicutes and Bacteroidetes also differ in their SCFA profiles but may 
not be involved in the regulation of SCFA by A. muciniphila (Magne 
et al., 2020). In addition, the abundance of certain potential probiotics, 
such as Lactobacillus and Verrucomicrobia, has increased upon 
colonization with A. muciniphila (Bian et al., 2019; Xia et al., 2022).

However, the changes in intestinal microbiota following 
A. muciniphila administration reported in the current articles were 
not identical. For example, Hanninen et al. (2018) found that 4-week 
treatment with oral A. muciniphila reduced the abundance of 
Ruminococcus, while Bian et al. (2019) drew an opposite conclusion 
that the relative abundance of Ruminococcus was increased after 
A. muciniphila treatment compared with the dextran sulfate sodium-
treated group. This may be due to the different sample sources for 
microbiota analysis, Hanninen et al. (2018) isolated bacterial DNA 
from stools or caecal and colon contents, while Bian et al. (2019) 
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extracted bacterial DNA from fecal samples only. Different frequency 
and periodicity of A. muciniphila administration also influenced the 
results. At present, the low reproducibility and high bias of microbial 
sequencing results may be explained by methodological differences in 

sample sources and sequencing technologies, as well as the lack of 
consideration of environmental factors (Cani, 2018). Notably, 
A. muciniphila is a crucial regulator of the gut microbiota balance, and 
its precise role in the intestinal ecosystem remains to be explored.

FIGURE 3

Effects of Akkermansia muciniphila and its derivatives on the enhancement of intestinal barrier and the prevention of endotoxemia. (A) Diabetic 
patients displayed increased gut permeability and LPS absorption, leading to the accumulation of inflammatory factors and metabolic endotoxemia. 
(B) (1) A. muciniphila and its derivatives directly activated the intestinal TLR2 and AhR, thereby regulating the ratio of pro−/anti-inflammatory factors.  
(2) A. muciniphila and its derivatives strengthened the function of tight junction between intestinal epithelial cells and promoted the intestinal stem cell 
proliferation. (3) A. muciniphila increased the Mucin2 secretion from the goblet cells, which was a major protein in the mucus layer. A. muciniphila 
consolidated the above three layers of intestinal barrier and prevented the LPS penetration. EVs, extracellular vesicles; LPS, lipopolysaccharide; TLR2, 
Toll-like receptor 2; AhR, aryl hydrocarbon receptor; IL-10, interleukin-10; IL-22, interleukin-22; AMP, antimicrobial peptide.
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4.4. Components of Akkermansia 
muciniphila active against T2D

Culture conditions can affect the potency of probiotics, live and 
heat-killed bacteria may differ in functions. Recent studies have 
focused on the active components of A. muciniphila. Heat-killed 
A. muciniphila is generally considered ineffective (Everard et  al., 
2013). Contrarily, many studies have argued that pasteurized 
A. muciniphila is equivalent to live A. muciniphila in providing 
metabolic improvement (Plovier et  al., 2017; Depommier et  al., 
2020), and inflammation relief in obese and diabetic mice (Choi 
et al., 2021). Furthermore, pasteurized A. muciniphila has displayed 
increased effectiveness over the live microorganism in certain studies 
(Ashrafian et al., 2021). Notably, a recent study reported the anti-
fibrotic properties of heat-killed A. muciniphila in human LX-2 cells, 
suggesting a possible role in liver fibrosis (Keshavarz Azizi Raftar 
et  al., 2021). The above experiments indicate that certain critical 
substances from A. muciniphila are insensitive to heat and remain 
active after pasteurization or heating at 95°C. To determine the key 
components, Ottman et  al. (2016) identified 79 outer membrane 
proteins of A. muciniphila using proteomics. Among these, 
Amuc_1100, encoded by the type IV pili gene cluster, is one of the 
most abundant proteins. Many studies have suggested that 
Amuc_1100 could partially recapitulate the beneficial effects of 
A. muciniphila in mice with diabetes or colitis (Plovier et al., 2017; 
Ottman et al., 2017b; Wang et al., 2020). Therefore, scientists have 
explored the underlying mechanism of Amuc_1100 functions, such 
as the activation of AhR (Gu et al., 2021), Toll-like receptor 2 (TLR2), 
and TLR4 (Plovier et al., 2017; Ottman et al., 2017b; Wang et al., 
2021), reduction of colonic cytotoxic T lymphocytes (Wang et al., 
2020), and inhibition of lipid synthesis and transport genes (Zhang 
F. L. et al., 2021), thereby alleviating T2D and related diseases. A 
recent study identified a lipid from A. muciniphila’s cell membrane 
as the main role of regulating immune homeostasis and dissected its 
structure and the mechanism of binding to toll-like receptors (Bae 
et al., 2022).

In addition, bacterial extracellular vesicles (EV) mediate signal 
transmission between the gut microbiota and the host (Villard et al., 
2021). A. muciniphila-derived EVs (AmEV) play a significant role in 
improving the intestinal barrier (Chelakkot et al., 2018; Ashrafian 
et al., 2019), and regulating serotonin levels (Yaghoubfar et al., 2020). 
Thus, AmEV exhibits anti-inflammatory action and metabolic 
regulation. In detail, AmEV relieves inflammation by strengthening 
tight junctions and regulates metabolic imbalance by improving 
glucose tolerance (Chelakkot et al., 2018). In summary, AmEV and 
the outer membrane protein Amuc_1100 possess partial functions of 
A. muciniphila; however, further experimental investigations are 
needed to evaluate their potency and full potential as 
therapeutic agents.

5. Cultivation and measures to enrich 
the intestinal abundance of 
Akkermansia muciniphila

The ameliorative effects and mechanisms of A. muciniphila on 
T2D and related metabolic diseases have been described previously, 

which remind us that A. muciniphila is a promising probiotic and 
that oral administration of A. muciniphila may alleviate metabolic 
disorders. The method of cultivation and administration of 
A. muciniphila can greatly affect its function. Owing to the 
potential of A. muciniphila in treating metabolic diseases, many 
researchers have explored the most suitable growing environment 
and method for A. muciniphila in the intestine. Suitable culture 
conditions will allow A. muciniphila to survive better so that they 
can be administered by gavage to observe their effect on metabolic 
diseases. When A. muciniphila was first discovered by Derrien 
et al. (2004) this bacterium was defined as strictly anaerobic and 
grew well on mucin medium, with an optimal pH of 6.5 and 
growth temperature of 37°C. However, later studies suggested that 
A. muciniphila could grow under a low oxygen concentration 
(Ouwerkerk et  al., 2016; Machado et  al., 2020). Ottman et  al. 
performed a transcriptomic and proteomic analysis on 
A. muciniphila cultured in mucus and non-mucus sugars. The 
results showed that several mucin-derived monosaccharides could 
be utilized by A. muciniphila. Furthermore, the addition of mucin 
enhanced the uptake of monosaccharides and the growth rate of 
A. muciniphila (Ottman et  al., 2017a). The investigators also 
demonstrated that hexosamines, N-acetylgalactosamine (GalNAc), 
and N-acetylglucosamine (GlcNAc) served as critical nitrogen 
sources in the mixed sugar medium; Plovier’s discovery also 
supported this finding. Notably, the researchers found that the 
A. muciniphila cultured in a medium supplemented with glucose, 
GlcNAc, soy peptone, and threonine had the same growth 
efficiency as that in a mucus-based medium (Plovier et al., 2017). 
Additionally, a recent study reported that only when the 
concentration of mucin reached 0.5% m/v in the medium could the 
metabolic characteristics of A. muciniphila be  altered (Liu X 
et al., 2021).

Oral drugs need to pass through the stomach to reach the 
intestine, so to achieve the purpose of drug delivery, A. muciniphila 
should be delivered in a way that maintains their activity as much as 
possible. However, probiotic delivery methods require improvement. 
Considering the characteristics of A. muciniphila and the gastric 
oxygen-rich and acidic environment, researchers have attempted to 
encapsulate live A. muciniphila in a water-in-oil-in-water double 
emulsion (van der Ark et al., 2017), freeze-dried xanthan, gellan 
gum matrix (Marcial-Coba et al., 2018), and spray-dried modified 
sodium alginate (Chang et  al., 2020). A. muciniphila 
microencapsulation reinforced its activity and survival rate in 
gastrointestinal transit. Further research on microencapsulation 
would be of great help in improving the next-generation probiotics. 
In addition to direct A. muciniphila gavage, the intake of multiple 
dietary components and medicines, classified as polyphenols, 
flavonoids, probiotics, alkaloids, etc., could increase the abundance 
of A. muciniphila (Table 2).

6. Conclusions and perspective

Ever since it was isolated, A. muciniphila has been considered a 
therapeutic target for metabolic diseases, especially T2D. Although 
accumulating evidence has shown the positive effects of 
A. muciniphila on T2D and related diseases, the underlying 
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mechanisms remain obscure. In this review, we  focused on the 
mechanisms by which A. muciniphila ameliorates T2D and its 
potential as a next-generation probiotic. However, certain problems 
remain to be  addressed. First, most controlled experiments were 
conducted using experimental animals as hosts; thus, more large-
scale clinical studies should be performed to validate the function of 
A. muciniphila in humans. Second, the reproducibility of microbial 
gene sequencing has been complicated by environmental factors and 
methodological divergences. Therefore, sampling from both stool 
samples and different parts of the intestine may be  necessary to 
ensure the consistency of the experimental findings. Furthermore, it 
would make more sense to focus on the microbial dynamic changes 
associated with A. muciniphila administration rather than sampling 
at a fixed time. Third, the discovery of A. muciniphila-derived 
substances provides a step forward in identifying potential 
therapeutics, and it is necessary to evaluate their bioequivalences 
with A. muciniphila itself. Finally, considering the heterogeneity of 
diabetes, individualized research and treatment options for 
microbiota are essential.
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TABLE 2 Dietary interventions that increased the abundance of A. muciniphila.

Intervention Specific classification Species References

Polyphenols Grape extract Mice Han et al. (2020), Lu et al. (2021), Roopchand et al. (2015)

Berry extract Anhe et al. (2015, 2018)

Apple extract Li et al. (2021), Liu F et al. (2021), Liu Q et al. (2021), Liu X et al. (2021)

Green tea extract/Epigallocatechin-3-gallate Jeong et al. (2020), Liu JH et al. (2020), Liu X et al. (2020), Sheng et al. (2018)

Pomegranate extract Human Henning et al. (2017)

Whole grape powder Yang et al. (2021)

Saccharides Inulin Mice Li T et al. (2022), Perez-Monter et al. (2022)

Plant polysaccharide Chang et al. (2015), Chen et al. (2021), Shang et al. (2017, 2018), Yde et al. 

(2021), Zhang et al. (2022)

Dietary fiber Bang et al. (2019), Tian et al. (2021)

Oligosaccharide Deng et al. (2021), Xi et al. (2020)

Inulin Human Roshanravan et al. (2017)

Dietary fiber Zhang et al. (2019)

Probiotics Lactobacillus Mice/Rat Ma et al. (2020), Ondee et al. (2021)

Tibet kefir milk Gao et al. (2021)

Flavonoids Mice Bu et al. (2021), Dong et al. (2021), Duan et al. (2021)

Alkaloids Plant alkaloids Mice Shen et al. (2017). Yu et al. (2021)

Breast milk alkaloids Ribo et al. (2021)

Time-restricted feeding / Rat Palomba et al. (2021)

Traditional chinese medicine / Mice/Rat Li X et al. (2022), Regnier et al. (2020), Su, 2020, Wang et al. (2015, 2019), 

Zhai et al. (2021), Zhu et al. (2018)
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