
University of Wollongong University of Wollongong 

Research Online Research Online 

Faculty of Science, Medicine and Health - 
Papers: part A Faculty of Science, Medicine and Health 

1-1-2013 

Function of arsATorf7orf8 of bacillus sp. CDB3 in arsenic resistance Function of arsATorf7orf8 of bacillus sp. CDB3 in arsenic resistance 

Wei Zheng 
Northeast Forestry University 

James Scifleet 
University of Wollongong, jamess@uow.edu.au 

Xuefei Yu 
University of Wollongong, xy155@uowmail.edu.au 

Tingbo Jiang 
Northeast Forestry University 

Ren Zhang 
University of Wollongong, rzhang@uow.edu.au 

Follow this and additional works at: https://ro.uow.edu.au/smhpapers 

 Part of the Medicine and Health Sciences Commons, and the Social and Behavioral Sciences 

Commons 

Recommended Citation Recommended Citation 
Zheng, Wei; Scifleet, James; Yu, Xuefei; Jiang, Tingbo; and Zhang, Ren, "Function of arsATorf7orf8 of 
bacillus sp. CDB3 in arsenic resistance" (2013). Faculty of Science, Medicine and Health - Papers: part A. 
1055. 
https://ro.uow.edu.au/smhpapers/1055 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

https://ro.uow.edu.au/
https://ro.uow.edu.au/smhpapers
https://ro.uow.edu.au/smhpapers
https://ro.uow.edu.au/smh
https://ro.uow.edu.au/smhpapers?utm_source=ro.uow.edu.au%2Fsmhpapers%2F1055&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/648?utm_source=ro.uow.edu.au%2Fsmhpapers%2F1055&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=ro.uow.edu.au%2Fsmhpapers%2F1055&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=ro.uow.edu.au%2Fsmhpapers%2F1055&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/smhpapers/1055?utm_source=ro.uow.edu.au%2Fsmhpapers%2F1055&utm_medium=PDF&utm_campaign=PDFCoverPages


Function of arsATorf7orf8 of bacillus sp. CDB3 in arsenic resistance Function of arsATorf7orf8 of bacillus sp. CDB3 in arsenic resistance 

Abstract Abstract 
Bacillus sp. CDB3 isolated from an arsenic contaminated cattle dip site possesses an uncommon arsenic 
resistance (ars) operon bearing eight genes in the order of arsRYCDATorf7orf8. We investigated the 
functions of arsA, arsT, orf7 and orf8 in arsenic resistance using a plasmid-based gene knockout 
approach in the ars gene deficient Escherichia coli strain AW3110. The CDB3 arsA gene was shown to 
play a significant role in resistance, suggesting that the encoded ArsA may couple with the arsenite 
transporter, forming an ArsAY complex that can enhance arsenite extrusion efficiency. The disruption of 
either arsT or orf7 was not observed to affect arsenic resistance in the heterologous E. coli host, but their 
involvement in arsenic resistance can not be excluded. The orf8 gene is predicted to encode a putative 
dual-specificity protein phosphatase which also shares certain homology to arsenate reductases. The 
function loss of orf8 resulted in a remarkable decrease in resistance to arsenate, though not arsenite. To 
examine if this effect was due to the reduction of arsenate by orf8, the arsC gene within the 8-gene 
operon was disrupted. The resulting abolishment of arsenate resistance suggests that the involvement of 
orf8 in arsenic resistance is not via reductase activity. 
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Abstract  

Bacillus sp. CDB3 isolated from an arsenic contaminated cattle dip site possesses an 

uncommon arsenic resistance (ars) operon bearing eight genes in the order of 

arsRYCDATorf7orf8.  We investigated the functions of arsA, arsT, orf7 and orf8 in arsenic 

resistance using a plasmid-based gene knockout approach in the ars gene deficient 

Escherichia coli strain AW3110. The CDB3 arsA gene was shown to play a significant role in 

resistance, suggesting that the encoded ArsA may couple with the arsenite transporter, 

forming an ArsAY complex that can enhance arsenite extrusion efficiency. The disruption of 

either arsT or orf7 was not observed to affect arsenic resistance in the heterologous E. coli 

host, but their involvement in arsenic resistance can not be excluded. The orf8 gene is 

predicted to encode a putative dual-specificity protein phosphatase which also shares certain 

homology to arsenate reductases. The function loss of orf8 resulted in a remarkable decrease 

in resistance to arsenate, though not arsenite. To examine if this effect was due to the 

reduction of arsenate by Orf8, the arsC gene within the 8-gene operon was disrupted. The 

resulting abolishment of arsenate resistance suggests that the involvement of orf8 in arsenic 

resistance is not via reductase activity.   

Key words: ars genes; arsenic resistance assay; gene knockout 
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Introduction 

Arsenic, a toxic metalloid element existing in the form of either organic or inorganic salts, 

is widely spread in the environment (Ye et al., 2012). Arsenite and arsenate are two primary 

oxidation states, which are toxic to living organisms. The pressure of survival in arsenic-

containing environments has prompted the evolution of detoxification systems in almost all 

microorganisms (Achour-Rokbani et al., 2010). As a result, many such organisms have been 
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found to possess arsenic resistance (ars) genes (Huang et al., 2012; Kim and Rensing, 2012; 

Srivastava et al., 2012).  

The most common ars genes involved in the mechanism of bacterial arsenic resistance 

are arsR, arsB, arsC, arsD and arsA. The arsR gene codes for a trans-acting repressor 

regulating the expression of ars genes (Shi et al., 1994). ArsD was first shown to be a second 

repressor (Chen and Rosen, 1997) and was later demonstrated to also function as a 

metallochaperone (Lin et al., 2006). The arsC gene encodes an arsenate reductase, reducing 

arsenate to arsenite prior to extrusion (Ding et al., 2005; Rosen 2002). Arsenite is then 

extruded out of the cells via chemiosmotic arsenite specific transmembrane transporters. Two 

major families of membrane arsenite transporters have been identified in bacteria. The first 

group is composed of the Escherichia coli pR773 ArsB protein and its homologs, which 

utilizes the membrane potential of the cell to extrude arsenite and antimonite from the cytosol 

(Kuroda et al., 1997; Rosen, 2002, 1999). The second group, the YqcL (ArsY) family first 

discovered in Bacillus subtilis, has been shown to be specific to arsenite, lacking the activity 

for antimonite (Rosen, 1999; Sato and Kobayashi, 1998). ArsA, an anion translocating 

ATPase initially identified in E. coli pR773 has been found to be able to couple with ArsB and 

the complex improving the efficiency of arsenite extrusion (Dey et al., 1994a, 1994b; Dey and 

Rosen, 1995).  

Apart from these well characterized ars genes, a number of less common genes involved 

in arsenic resistance have also been reported. arsH was first identified in the Yersiniae 

enterocolitica virulence plasmid pYV (Neyt et al., 1997), and has since been found in many 

other bacteria including Thiobacillus ferrooxidans (Butcher et al., 2000), Acidithiobacillus 

caldus (Dopson et al., 2001), Serratia marcescens (Ryan and Colleran, 2002), 

cyanobacterium Synechocystis (Kaneko et al., 1996; López-Maury et al., 2003) and 

Staphylococcus sp. strain NBRIEAG-8 (Srivastava et al., 2012). The function of arsH 

however has not yet been demonstrated consistently. A recent investigation into ArsH function 

in Synechocystis has suggested its role in dealing with the damage caused by arsenite by 

means of reducing semiquinone radicals or oxidized quinones (Hervás et al., 2012). arsM, a 

putative arsenite-methyltransferase gene located on the large extrachromosomal replicon 

pNRC100 in Halobacterium sp. strain NRC-1 was demonstrated to be involved in arsenic 

resistance via gene knockout assay (Wang et al., 2004). Further investigation has shown that 

purified ArsM is capable of catalysing the transfer of methyl groups from S-

adenosylmethionine to arsenite (Qin et al., 2006). Bacteria that express arsM have been 

demonstrated capable of removing arsenic via volatilization of methylated form(s) from the 
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contaminated soil (Liu et al., 2011). A recent study has also revealed that the expression of 

arsM of cyanobacteria is not regulated by the ars repressor but likely to be constitutive (Ye et 

al., 2012). The flavin-binding monooxygenase encoded by arsO is probably involved in the 

mechanism of arsenic resistance in Streptomyces sp. FR-008 but is yet to be functionally 

characterized (Butcher et al., 2000; Wang et al., 2006). The arsK gene identified in B. subtilis 

has been evidenced to contribute to resistance against low concentrations of arsenite and high 

concentrations of arsenate by an in-frame deletion and plasmid-insertion disruption (Sato and 

Kobayashi, 1998), but the mechanisms by which arsK is involved in arsenic resistance is not 

yet clear. arsT, encoding a putative thioredoxin reductase, has been identified in some 

Streptomycies strains and ArsT is assumed to provide reductive power for the thioredoxin-

coupled arsenate reductases (Wang et al., 2006). 

A Bacillus strain designated CDB3 isolated from an arsenic contaminated cattle dip site 

(Chopra et al., 2007), has been found to possess a novel ars cluster with eight genes in the 

order of arsRYCDATorf7orf8, one of the longest ars operons identified to date (Bhat et al., 

2011). This ars operon has been shown capable of significantly enhancing the resistance to 

arsenic of transformed arsenic-sensitive E. coli strain AW3110, but exhibited little effect on 

the resistance to antimonite (Bhat et al., 2011). Apart from the first five common genes 

arsRYCDA, the cluster harbours a thioredoxin reductase gene (arsT), and two other novel 

genes, orf7 and orf8, which have not been reported in any previously characterised ars 

clusters. The theoretical translation of orf7 suggests a HesB-like domain whilst Orf8 is 

predicted to be a dual-specificity protein phosphatase (Bhat et al., 2011). In this study, we 

examined the functions of arsT, orf7 and orf8 in arsenic resistance via plasmid-based gene 

mutant assays in the ars gene deficient E. coli AW3110. In addition, the function of ArsA was 

also investigated, confirming its role in coupling with ArsY to enhance arsenite extrusion.  

 

1 Materials and methods 

1.1 Bacterial strains, plasmids and growth conditions 

Bacterial strains and plasmids used in this study are listed in Table 1. E. coli strains with 

plasmids transformed were grown in Luria-Bertani (LB) broth medium (Sambrook et al., 

1989) containing ampicillin (Sigma, USA; 100 μg/mL) and varying concentrations of sodium 

arsenite or sodium arsenate (Sigma, USA). 
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Table 1 Bacterial strains and plasmids used in this study 

Strain or plasmid Genotype or description Reference or source 

E. coli AW3110 K-12 F-IN (rrnD-rrnE) ars::cam (Cmr, the 

chromosomal arsRBC deleted) 

Carlin et al., 1995; gift of Barry P. 

Rosen 

E. coli JM109 recA1, endA1, gyrA96, thi, hsdR17 (rk−, mk+), 

supE44, relA1, Δ(lac-proAB), [F’, traD36, 

proAB, lacIqZΔM15] 

Promega, USA 

 

Bacillus sp. CDB3 Isolated from cattle dip sites  Chopra et al., 2007  

pGEM7Zf(+) Cloning vector (Apr) Promega, USA 

pRYCDATorf7,8 A 7600 bp Sau3AI fragment containing the 

CDB3 ars cluster 1 cloned into pGEM7Zf(+) 

vector at BamHI site 

Bhat et al., 2011  

pRYC∆DATorf7,8 arsC mutant of  pRYCDATorf7,8 This study 

pRYCDA∆Torf7,8 arsA mutant of  pRYCDATorf7,8 This study 

pRYCDAT∆orf7,8 arsT mutant of  pRYCDATorf7,8 This study 

pRYCDATorf7∆,8 orf7 mutant of  pRYCDATorf7,8 This study 

pRYCDATorf7,8∆ orf8 mutant of  pRYCDATorf7,8 This study 

pRorf8  arsYCDATorf7 deleted from pRYCDATorf7,8 This study 

pRorf8∆ arsYCDATorf7 deleted from pRYCDATorf7,8∆ This study 

 

1.2 General DNA manipulation 

Plasmid DNA isolation, restriction endonuclease digestion, agarose gel electrophoresis, 

ligation and E. coli transformation were performed using standard methods (Sambrook et al., 

1989). All enzymes were obtained from Promega (USA). DNA sequencing reactions were 

carried out using the Big Dye Terminator v3.1 cycle sequencing kit (Perkin-Elmer, USA) 

following the manufacture’s instructions and the extended DNA fragments  analysed on an 

ABI PRISMTM 377 DNA Sequencer (Applied Biosystems, USA).  

 

1.3 Mutagenesis of ars genes 

Although chromosomal gene knockout is still a common approach in investigating gene 

function for bacteria, plasmid-based analysis in heterologous hosts has also been used by 

many for its simplicity and proved effective. For instance, the functional analysis of the 

amarsA1, amarsA2 and acr3 genes of Alkaliphilus metalliredigens conducted in E. coli has 

demonstrated their involvements and interactions in arsenic resistance (Fu et al., 2010). With 

previous attempts to knockout the ars genes in Bacillus sp. CDB3 unsuccessful  (unpublished) 

and with the finding that the transcriptional pattern of CDB3 ars1 in E. coli was similar to that 
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in Bacillus sp. CDB3 (not shown), the plasmid-based heterologous host method was adapted  

in this study. 

The open-reading frames of target CDB3 ars genes were disrupted to generate respective 

gene function knockout mutants in pRYCDATorf7,8. pRYCDATorf7,8 and pGEM7Zf(+) 

were positive and negative controls respectively throughout this study. For creating the arsC, 

A and T mutants (arsC∆, A∆ and T∆), the target sequences between two appropriate restriction 

enzyme sites were replaced with synthetic mutant sequences (GeneArt, Germany). Thus the 

arsC gene was disrupted from the fifth codon (Lys) with a mutant KpnI/CspI DNA fragment 

carrying a stop codon at the fifth position; arsA was deleted from codon one to 552 with a 

CspI/NcoI fragment; and arsT was disrupted from the third codon (Lys) by replacement with 

a mutant NcoI/PstI DNA fragment. For orf7 and orf8 mutants (orf7∆ and orf8∆), the respective 

internal BamHI and BstXI restriction sites were cut and blunted with T4 DNA polymerase 

(Promega, USA) before re-ligation to generate frame shifts from the 61st and 90th codons 

respectively, resulting in loss-of-function mutants. To create pRorf8 and pRorf8∆, 

pRYCDATorf7,8 and pRYCDATorf7,8∆ were opened with EcoRV and BamHI, with the 

BamHI overhangs filled by Klenow activity followed by re-ligation resulting in deletions in 

both plasmids from codon 15 of arsY to codon 41 of orf7.  

 

1.4 Arsenic resistance assays  

Overnight liquid cultures of E. coli JM109 or AW3110 strains carrying different plasmids 

were adjusted to equal optical densities and diluted 100 fold in LB broth with 100 µg/mL 

ampicillin. Aliquots of 500 µL were then transferred to 1.5 mL microcentrifuge tubes, with 

varying concentrations of sodium arsenate (Na2HAsO4) or sodium arsenite (NaAsO2). These 

tubes were agitated at 37℃, for 2--3 hr with the endpoint of incubation for each determined 

by the 0 mmol/L arsenic sample reaching an OD600 nm of 0.5. Cell density for each sample set 

was then determined at OD600 nm. Absorption readings were recorded using a SpectraMax 

Plus 384 Microplate Spectrophotometer (Bio-strategy, Australia). Growth inhibition as a 

measurement for sensitivity to arsenic was expressed as a percentage of the OD reading 

observed for the 0 mmol/L arsenic-treated samples. The assays were conducted in triplicates 

with the data subjected to analysis of variance (ANOVA). 

 

2 Results and discussion 

2.1 Function of arsA and arsT in arsenic resistance 
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E. coli AW3110 strains bearing the wild type (WT) operon plasmid (pRYCDATorf7,8) 

and the arsA loss-of-function mutant (arsA∆) were assayed for resistance to arsenite. The 

resistance curve of AW3110 harbouring arsA∆ was observed to be much lower than that of 

AW3110 containing pRYCDATorf7,8 but significantly higher than that of the negative 

control, AW3110 harbouring pGEM7Zf(+) (Fig. 1), indicating that ArsA plays a significant 

role in arsenite resistance. Sequence alignment demonstrates significant homology between 

the CDB3 ArsA and E. coli pR773 ArsA, with the metalloid- and nucleotide-binding domains 

and signal transduction domains conserved (data not shown). It has previously been shown 

that the E. coli ArsA can combine with ArsB in the cell to form an ArsAB complex pumping 

arsenite out of the cytosol more efficiently than ArsB alone (Dey et al., 1994a, 1994b; Dey 

and Rosen, 1995). In contrast, the CDB3 ars operon bears a gene encoding a transmembrane 

protein designated ArsY (a homolog of Acr3) rather than ArsB. In comparison to ArsB which 

possesses 12 membrane-spanning regions, ArsY only contains 10 (Sato and Kobayashi, 1998; 

Wu et al., 1992; Wysocki et al., 1997). Our result suggests that the CDB3 ArsA is capable of 

coupling with ArsY to form an ArsAY complex which, like ArsAB, also acts to enhance 

extrusion efficiency. This is in agreement with a recent study demonstrating the interaction 

between ArsA and Acr3 in Alkaliphilus metalliredigens QYMF (Fu et al., 2010); 

interestingly, the functional ArsA of A. metalliredigens QYMF is assembled by two 

polypeptides (halves, AmArsA1 and AmArsA2) which are encoded separately.  

-------------------------------- 

 

-------------------------------- 
Fig. 1 Growth inhibition by sodium arsenite of E. coli AW3110 harbouring pGEM7Zf(+), 

pRYCDATorf7,8 and arsA∆ (pRYCDA∆Torf7,8), respectively. Growth inhibition was expressed as a 

percentage of the OD reading observed for the 0 mmol/L arsenite-treated samples. Vertical bars represent 

standard deviation. 

 

ArsT has previously been suggested to serve as a thioredoxin reductase, functioning 

through the provision of reductive power for thioredoxin-coupled arsenate reductases, like 

CDB3 ArsC (Bhat et al., 2011; Li et al., 2007; Messens et al., 2002; Wang et al., 2006). 

However, no loss of resistance against arsenate was observed for the AW3110 cells 

containing arsT∆ compared to the WT (Fig. 2). Since the CDB3 ArsT shares significant 

homology to thioredoxin reductases of many species, including those of E. coli, possessing all 

domains and the CXXX active site responsible for reductive activity (Fig. 3), it is speculated 
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that the thioredoxin reductases encoded by the E. coli AW3110 chromosome may have 

compensated for the loss of ArsT function, acting in regenerating the CDB3 ArsC. This 

mirrors the result of Wang et al. (2006) who reported that mutation of arsT in the ars operon 

of pJTU91 of Streptomyces griseus IMRU3570 resulted in no significant decrease in 

resistance to arsenate. 

-------------------------------- 

 

-------------------------------- 
Fig. 2 Growth inhibition by sodium arsenate of E. coli AW3110 harbouring pGEM7Zf(+), 

pRYCDATorf7,8 and arsT∆ (pRYCDAT∆orf7,8), respectively. Growth inhibition was expressed as a 

percentage of the OD reading observed for the 0 mmol/L arsenate-treated samples. Vertical bars represent 

standard deviation. 

-------------------------------- 

 

-------------------------------- 
Fig. 3 Partial sequence alignment of CDB3 ArsT with some homologous proteins. The alignment was 

performed using ClustalW (Thompson et al., 1994). FAD binding site 1, FAD binding site 2, reactive site 

and NADP(H) binding site are indicated in stars, line, broken box and box, respectively. The accession 

numbers for CDB3 ArsT, thioredoxin reductase of Streptomyces coelicolor A3(2), Streptomyces 

clavuligerus and E. coli are AF178758, CAA63076, CAA79940 and ADR26238, respectively.   

 

2.2 The involvement of orf8 in arsenic resistance  

The CDB3 ars cluster additionally contains two novel orfs downstream of arsT: orf7 and 

orf8. Orf7 has a HesB-like domain, demonstrating sequence similarities with proteins 

involved in metallo-sulphur cluster assembly, while Orf8 is predicted to encode a dual 

specificity protein phosphatase (Bhat et al., 2011). To date, neither protein family has been 

implicated in arsenic resistance. As illustrated in Fig. 4, the bacterial cells harbouring orf7∆ 

exhibited an almost identical resistance growth curve to that of the WT under both arsenite 

and arsenate treatments. The cells harbouring orf8∆, however, exhibited a remarkable decrease 

in resistance to arsenate, although not arsenite, compared to the WT, indicating a significant 

contribution by this gene to the overall arsenate resistance of arsRYCDATorf7,8. 

-------------------------------- 

 

-------------------------------- 
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Fig. 4 Growth inhibition by sodium arsenate (a) and sodium arsenite (b) of E. coli AW3110 harbouring 

pGEM7Zf(+), pRYCDATorf7,8, orf7∆ (pRYCDATorf7∆,8) and orf8∆ (pRYCDATorf7,8∆) respectively. 

Growth inhibition was expressed as a percentage of the OD reading observed for the 0 mmol/L 

arsenate/arsenite-treated samples. Vertical bars represent standard deviation. 

Taking into account the relationship between protein tyrosine phosphatases and arsenate 

reductases, it was possible that Orf8 was functioning as an arsenate reductase (Bennett et al., 

2001; Zhou et al., 2006).  In an attempt to ascertain whether Orf8 possessed this activity, an 

arsC∆ construct (pRYC∆DATorf7,8) was generated. The growth of E. coli AW3110 

harbouring arsC∆ was totally inhibited in media supplemented with >1 mmol/L arsenate (Fig. 

5a), suggesting Orf8 could not compensate for the loss of the reductase function of ArsC 

while both the WT and arsC∆ constructs demonstrated similar resistance levels to arsenite 

(Fig. 5b). These results suggest that ArsC is the only protein encoded by the CDB3 ars cluster 

possessive of arsenate reductase activity and this is in line with our original hypothesis that 

Orf8 may function as a phosphatase (Bhat et al., 2011).  

-------------------------------- 

 

-------------------------------- 
Fig. 5 Growth inhibition by sodium arsenate (a) and sodium arsenite (b) of E. coli AW3110 harbouring 

pGEM7Zf(+), pRYCDATorf7,8 and arsC∆ (pRYC∆DATorf7,8), respectively. Growth inhibition was 

expressed as a percentage of the OD reading observed for the 0 mmol/L arsenate/arsenite-treated samples. 

Vertical bars represent standard deviation. 

 

2.3 The contribution of Orf8 to arsenate resistance in transformed E. coli JM109 

Having established evidence for the contribution of orf8 to arsenate resistance, its role 

was further investigated by testing whether the gene alone could confer elevated levels of 

resistance to transformed E. coli. pRorf8 and pRorf8∆ were thus constructed and transformed 

into both AW3110 and JM109 strains because of the different backgrounds they provide. As 

mentioned previously, AW3110 lacks any ars resistance elements (Carlin et al., 1995). In 

contrast, JM109 possesses a chromosomal arsRBC operon; thus any contribution of orf8 to 

resistance could be identified as either independent or as requiring the basic arsRBC 

components. An initial assay used high concentrations of arsenate (1--8 mmol/L) as applied in 

other resistance assays of this study, but the bacterial strains were all found almost completed 

inhibited (data not shown). The subsequent assays with lower concentrations of arsenate (0.2-

-0.8 mmol/L) revealed a better bacterial growth and the effect of orf8 expression. The 

AW3110 cells harbouring either pRorf8 or pRorf8∆ could barely grow in arsenate 
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supplemented media (Fig. 6), indicating that the expression of orf8 had no effect on arsenate 

resistance in the arsRBC lacking mutant host. In contrast, the JM109 harbouring pRorf8 grew 

remarkably better than the control cells carrying pRorf8∆ (Fig. 6). This again suggested the 

role of Orf8 in combating the toxic metalloid. Whether this effect is due to a direct influence 

of Orf8 on the arsenic resistance machinery or a flow-on effect of its function in regard to 

other cellular stress responses to arsenic warrants further investigation. 

-------------------------------- 

 

-------------------------------- 
Fig. 6 Growth inhibition by sodium arsenate of E. coli JM109 and AW3110 harbouring pRorf8 or pRorf8. 

Growth inhibition was expressed as a percentage of the OD reading observed for the 0 mmol/L arsenate-

treated samples. Vertical bars represent standard deviation. 

 

3 Conclusions 

This study has confirmed the involvements of arsA and orf8 genes of the newly identified 

8-gene CDB3 cluster in arsenic resistance. It is proposed that the CDB3 ArsA is capable of 

coupling with ArsY to enhance the extrusion of arsenite. Although ArsT has not been 

evidenced as required for arsenate resistance in an E. coli system, its involvement in arsenate 

reduction in Bacillus sp. CDB3 may still be assumed since it appears in the presence of a 

thioredoxin-coupled reductase. Orf8 was shown to contribute significantly to resistance to 

arsenate but not arsenite. It did not complement the function loss of arsC suggesting that its 

role is not via arsenate reductase activity but another unknown mechanism, possibly the 

predicted phosphatase activity. Further work is in progress to investigate the biochemical 

function of Orf7 and Orf8.  
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List of Figure Captions 
Fig. 1 Growth inhibition by sodium arsenite of E. coli AW3110 harbouring pGEM7Zf(+), 

pRYCDATorf7,8 and arsA∆ (pRYCDA∆Torf7,8), respectively. Growth inhibition was expressed as a 

percentage of the OD reading observed for the 0 mmol/L arsenite-treated samples. Vertical bars represent 

standard deviation. 

Fig. 2 Growth inhibition by sodium arsenate of E. coli AW3110 harbouring pGEM7Zf(+), 

pRYCDATorf7,8 and arsT∆ (pRYCDAT∆orf7,8), respectively. Growth inhibition was expressed as a 

percentage of the OD reading observed for the 0 mmol/L arsenate-treated samples. Vertical bars represent 

standard deviation.   

Fig. 3 Partial sequence alignments of CDB3 ArsT with some homologous proteins. The alignment was 

performed using ClustalW (Thompson et al., 1994). FAD binding site 1, FAD binding site 2, reactive site 

and NADP(H) binding site are indicated in stars, line, broken box and intact box, respectively. The 

accession numbers for CDB3 ArsT, thioredoxin reductase of Streptomyces coelicolor A3(2), Streptomyces 

clavuligerus and E. coli are AF178758, CAA63076, CAA79940 and ADR26238, respectively. 

Fig. 4 Growth inhibition by sodium arsenate (a) and sodium arsenite (b) of E. coli AW3110 harbouring 

pGEM7Zf(+), pRYCDATorf7,8, orf7∆ (pRYCDATorf7∆,8) and orf8∆ (pRYCDATorf7,8∆) respectively. 

Growth inhibition was expressed as a percentage of the OD reading observed for the 0 mmol/L 

arsenate/arsenite-treated samples. Vertical bars represent standard deviation. 

Fig. 5 Growth inhibition by sodium arsenate (a) and sodium arsenite (b) of E. coli AW3110 harbouring 

pGEM7Zf(+), pRYCDATorf7,8 and arsC∆ (pRYC∆DATorf7,8), respectively. Growth inhibition was 

expressed as a percentage of the OD reading observed for the 0 mmol/L arsenate/arsenite-treated samples. 

Vertical bars represent standard deviation. 

Fig. 6 Growth inhibition by sodium arsenate of E. coli JM109 and AW3110 harbouring pRorf8 or pRorf8. 

Growth inhibition was expressed as a percentage of the OD reading observed for the 0 mmol/L arsenate-

treated samples. Vertical bars represent standard deviation. 

 

 

 



15 
 

0

20

40

60

80

100

0 1 2 3 4

Sodium arsenite (mmol/L)

G
ro

w
th

 in
hi

bi
tio

n 
(%

)
pGEM7Zf(+)

pRYCDATorf7,8

arsA△

 
Fig. 1 Growth inhibition by sodium arsenite of E. coli AW3110 harbouring pGEM7Zf(+), 

pRYCDATorf7,8 and arsA∆ (pRYCDA∆Torf7,8), respectively. Growth inhibition was expressed as a 

percentage of the OD reading observed for the 0 mmol/L arsenite-treated samples. Vertical bars represent 

standard deviation. 
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Fig. 2 Growth inhibition by sodium arsenate of E. coli AW3110 harbouring pGEM7Zf(+), 

pRYCDATorf7,8 and arsT∆ (pRYCDAT∆orf7,8), respectively. Growth inhibition was expressed as a 

percentage of the OD reading observed for the 0 mmol/L arsenate-treated samples. Vertical bars represent 

standard deviation. 
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Fig. 3 Partial sequence alignments of CDB3 ArsT with some homologous proteins. The alignment was 

performed using ClustalW (Thompson et al., 1994). FAD binding site 1, FAD binding site 2, reactive site 

and NADP(H) binding site are indicated in stars, line, broken box and intact box, respectively. The 

accession numbers for CDB3 ArsT, thioredoxin reductase of Streptomyces coelicolor A3(2), Streptomyces 

clavuligerus and E. coli are AF178758, CAA63076, CAA79940 and ADR26238, respectively.   
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Fig. 4 Growth inhibition by sodium arsenate (a) and sodium arsenite (b) of E. coli AW3110 harbouring 

pGEM7Zf(+), pRYCDATorf7,8, orf7∆ (pRYCDATorf7∆,8) and orf8∆ (pRYCDATorf7,8∆) respectively. 

Growth inhibition was expressed as a percentage of the OD reading observed for the 0 mmol/L 

arsenate/arsenite-treated samples. Vertical bars represent standard deviation. 
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Fig. 5 Growth inhibition by sodium arsenate (a) and sodium arsenite (b) of E. coli AW3110 harbouring 

pGEM7Zf(+), pRYCDATorf7,8 and arsC∆ (pRYC∆DATorf7,8), respectively. Growth inhibition was 

expressed as a percentage of the OD reading observed for the 0 mmol/L arsenate/arsenite-treated samples. 

Vertical bars represent standard deviation. 
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Fig. 6 Growth inhibition by sodium arsenate of E. coli JM109 and AW3110 harbouring pRorf8 or pRorf8. 

Growth inhibition was expressed as a percentage of the OD reading observed for the 0 mmol/L arsenate-

treated samples. Vertical bars represent standard deviation. 
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