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Abstract

c-Met is a receptor tyrosine kinase belonging to the MET (MNNG HOS transforming gene) family, and is expressed

on the surfaces of various cells. Hepatocyte growth factor (HGF) is the ligand for this receptor. The binding of HGF

to c-Met initiates a series of intracellular signals that mediate embryogenesis and wound healing in normal cells.

However, in cancer cells, aberrant HGF/c-Met axis activation, which is closely related to c-Met gene mutations,

overexpression, and amplification, promotes tumor development and progression by stimulating the PI3K/AKT,

Ras/MAPK, JAK/STAT, SRC, Wnt/β-catenin, and other signaling pathways. Thus, c-Met and its associated signaling

pathways are clinically important therapeutic targets. In this review, we elaborate on the molecular structure of

c-Met and HGF and the mechanism through which their interaction activates the PI3K/AKT, Ras/MAPK, and Wnt

signaling pathways. We also summarize the connection between c-Met and RON and EGFR, which are also receptor

tyrosine kinases. Finally, we introduce the current therapeutic drugs that target c-Met in primary tumors, and their

use in clinical research.
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Background
c-Met (mesenchymal-epithelial transition factor), which

belongs to the MET family, along with RON, is a type of

receptor tyrosine kinase that is expressed on the surfaces

of various epithelial cells; its ligand is HGF/SF(ligand

hepatocyte growth factor/scatter factor) [1, 2]. HGF

belongs to the soluble cytokine family and is also a

member of the plasminogen-related growth factor fam-

ily. It is synthesized by mesenchymal cells, fibroblasts,

and smooth muscle cells, and acts through a paracrine

mechanism to activate HGF/c-Met signaling to exert its

biological functions [3]. Under normal conditions, HGF/

c-Met can mediate embryogenesis, tissue regeneration,

wound healing, and the formation of nerve and muscle,

which is controlled by the tumor suppressor p53. Thus,

this axis plays an important role in normal biological

functions in humans [4–6].

However, as a type of proto-oncogene, abnormal activa-

tion of c-Met can promote the development and progres-

sion of multiple cancers such as liver, lung, colon, breast,

pancreatic, ovarian, prostate, and gastric carcinomas, in

addition to cancers of the nervous system such as glio-

blastoma [7–9]. The HGF/c-Met axis, which can interact

and cooperate with other types of tyrosine kinases, can

stimulate various downstream signaling pathways in

tumor cells, such as PI3K/AKT, JAK/STAT, Ras/MAPK,

SRC, and Wnt/β-catenin, among others [10–13]. These

aforementioned phenomena regulate multiple biological

processes such as tumor proliferation, invasion, metasta-

sis, anti-apoptosis, EMT, and angiogenesis [14–17]. It has

been determined that c-Met gene mutations, overexpres-

sion, and amplification also occur in a variety of human

tumor types, and these events are closely related to the

aberrant activation of the HGF/c-Met signaling pathway

[18, 19]. Meanwhile, high c-Met expression is closely asso-

ciated with poor prognosis in cancer patients. Studies have

* Correspondence: zengzhaoyang@csu.edu.cn; xiongwei@csu.edu.cn
†Equal contributors
1The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health,

Xiangya Hospital, Central South University, Changsha, Hunan, China

Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Zhang et al. Molecular Cancer  (2018) 17:45 
https://doi.org/10.1186/s12943-018-0796-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s12943-018-0796-y&domain=pdf
mailto:zengzhaoyang@csu.edu.cn
mailto:xiongwei@csu.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


shown that abnormal activation of c-Met is critical for

resistance to targeted therapies such as tyrosine kinase

inhibitors and drugs that act against associated signaling

pathways. Therefore, as abnormal c-Met function can

increase the difficulty associated with tumor treatment, un-

derstanding its role in cancer is extremely important [4, 20].

Structures of c-met and HGF
The MET (c-Met encoding) gene is located on hu-

man chromosome 7 (7q21-q31), includes 21 exons

and 20 introns, and encodes a protein that is ap-

proximately 120 kDa in size [21]. The translated

product is processed to form a heterodimer that is

linked by the extracellular α chain and the trans-

membrane β chain. The transmembrane chain con-

sists of a SEMA domain (sema homology region;

SEMA), a PSI domain (plexin-semaphorin-integrin;

PSI), four IPT domains (immunoglobulin-like regions

in plexins and transcription factors), a transmem-

brane domain, a juxtamembrane domain, a tyrosine

kinase domain (TK domain), and a c-terminal dock-

ing site (carboxyl terminal; CT). SEMA is the site

where HGF binds directly to c-Met, and PSI can

stabilize this interaction. Ser-975 and Tyr-1003 sites

at the juxtamembrane domain play an important role

in the negative regulation of c-Met [14, 22, 23].

When HGF binds c-Met, Tyr-1234 and Tyr-1235 in

the intracellular tyrosine kinase domain undergo

autophosphorylation, which results in autophospho-

rylation of Tyr-1349 and Tyr-1356 in the C-terminal

docking site. This facilitates the recruitment of intra-

cellular effector molecules such as growth factor

receptor-bound protein 2(GRB2), SRC, PI3K, and

GAB1, and consequently the activation of down-

stream signaling pathways (Fig. 1) [24, 25].

The HGF gene encoding a 728-amino-acid protein is

located on human chromosome 7 and consists of 18

exons and 17 introns [21]. Mature HGF is a heterodimer

consisting of an α chain (69 kDa) and a β chain

(34 kDa), which are linked by a disulfide bond. This pro-

tein consists of six domains. An N-terminal hairpin do-

main and four Kringle domains comprise the α chain,

and the hairpin domain and first two Kringle domains

are necessary for HGF to exert its biological function.

Fig. 1 Structure of c-Met and binding sites for c-Met monoclonal antibody and small molecule inhibitors. c-Met is a heterodimer linked by an extracellular

α chain and a transmembrane β chain. The β chain has a SEMA domain, a PSI domain, four IPT domains, a transmembrane domain, a juxtamembrane

domain, a tyrosine kinase domain, and a C-terminal tail region. HGF is a heterodimer consisting of an α chain and a β chain linked via a disulfide bond,

and forming six domains: the α chain contains a N-terminal hairpin domain and four Kringle domains and the β chain forms a serine protease analog

domain lacking catalytic activity. The SEMA domain and the PSI domain in c-Met bind the β chain of HGF. The small molecule inhibitor PF-2341066 binds

the TK domain of c-Met at Tyr312A, Lys345A, Pro317A, whereas the small molecule inhibitor ARQ197 forms a complex with the TK domain of c-Met at

Pro1158A, Met1160A, Phe1123A, and onartuzumab forms a complex with the Sema-PSI domain of c-Met at Leu43B
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The β chain forms a serine protease analog domain lack-

ing catalytic activity, and this is the binding site for c-Met.

HGF/c-met cascades in carcinoma
The binding of HGF to c-Met can initiate several down-

stream signaling pathways; we selected three significant

pathways, based on their functions in carcinoma for

futher review.

HGF/c-met and the Ras pathway

The binding of c-Met by its selective ligand HGF can

induce structural changes in c-Met [26]; specifically,

its intracellular protein tyrosine kinase (PTK) domain

becomes activated, resulting in exposure of the multi-

substrate docking site (MDS). Grb2 is then recruited

to this site [27]. After autophosphorylation of the

PTK domain, it can bind the SH2/SH3 domain of

Grb2 [28], which subsequently recruits downstream

guanine nucleotide exchange factors (GEFs) such as

SOS. Downstream SOS can recruit Ras-GTP from the

cell matrix to the membrane and convert it to acti-

vated Ras-GTP. Ras successively activates Raf, MEK,

MAPKs, ERK, JNK (Jun N-terminal kinase), and p38

(HOG), among others, and the activated MAPKs then

enter the cell nuclei to activate transcription factors

(e.g. Elk1, Etsl, c-Myc) through phosphorylation. This,

in turn, can interfere with the cell cycle and induce

cell transformation, consequently promoting carcino-

genesis. MAPKs also induce the degradation of pro-

teins and matrix, promote cell migration, and sustain

tumor proliferation (Fig. 2) [29, 30].

In tumor cells, the mutation rate of the Ras gene is ap-

proximately 25%, whereas in pancreatic cancer and

colon cancer, the mutation rates could be 85 and 40%,

respectively. Such mutations are predominantly point

mutations and gene amplifications [27]. Mutations occur

in codons 11, 12, 13,18, 59, and 69, which affect the

interaction between Ras and GAP. Upon mutation, its

intrinsic GTPase activity is inhibited, which can lead to

malignant cell transformation through sustained activa-

tion of Ras2GTP (Fig. 2).

HGF/c-met and PI3K pathway

When HGF binds c-Met and induces autophosphoryl-

ation, the phosphorylated residue acts as a docking site

for the heterodimeric PI3K-p85 subunit. Here, the p85

subunit of phosphatidylinositol-3-kinase (PI3K) binds to

the adaptor protein at the SH2/SH3 domain, using the

same phosphorylated site. When PI3K recruits enough

activated receptors, it initiates the phosphorylation of

many phosphatidylinositol intermediates. Especially, in

many tumor-associated signaling cascades, PI3K can

convert phosphatidylinositol-4, 5-diphosphate (PIP2) to

phosphatidylinositol-3,4,5-trisphosphate (PIP3). Phospho

rylated RTKs can bind the SH2 domain of p85, and sub-

sequently recruit the p85-p110 complex to cell mem-

branes to activate the complex. Activated PI3K

accelerates the conversion of PIP2 to PIP3. The associ-

ation between PIP3 and signaling proteins containing a

PH domain, namely, AKT and PDK1, facilitates the phos-

phorylation of AKT at Thr-308 and at Ser-473 by PDK1

[27]. Activated AKT, which later translocates to cell nuclei,

modulates downstream transcription factors like FKHRL1,

NF-κB, and Bcl-2, and inhibits the expression of tumor

suppressor genes. AKT also phosphorylates GSK-3 and

mammalian target of rapamycin (mTOR) or a series of in-

hibitory proteins such as p21CIP1 and p27KIP1; these, in

turn, separately upregulate the expression of Cyclin D,

shorten the cell cycle, and ultimately contribute to tumori-

genesis [31]. In addition to this, RTKs might also activate

the PI3K/AKT pathway through Ras (Fig. 2).

One study found that mTOR can regulate the

degradation of extracellular matrix in cancer cells and

influence the synthesis and secretion of matrix metal-

loproteinase; through this mechanism, this protein

can also promote the invasion and metastasis of

tumor cells [32]. Activated AKT might also phosphor-

ylate nitric oxide synthase to produce NO, which

positively regulates angiogenesis (Fig. 2).

The PI3K/AKT/mTOR pathway can modulate the ex-

pression of vascular endothelial growth factor (VEGF)

and hypoxia inducible factor-1 (HIF-1) through the acti-

vation of human double minute 2 (HDM2) (Fig. 2) [33].

In addition, PTEN (phosphatase and tension homology

deleted on chromosome 10) negatively regulates phos-

phorylation in the PI3K pathway. Specifically, this pro-

tein facilitates the dephosphorylation of PIP3, converting

PIP3 to PIP2. Hence, it relieves the negative regulation

of the downstream PI3K components AKT and mTOR.

In tumor cells, mutations or deletions in PTEN are com-

mon, and enable the increased activation of the PI3K/

AKT/mTOR pathway; this leads to aberrant activation

of this pathway (Fig. 2).

Association between the HGF/c-met and Wnt/β-catenin

signaling pathways

HGF/c-Met is closely related to Wnt/β-catenin signaling,

and promotes tumor proliferation, invasion, and metastasis

by modulating this signaling pathway [34]. Studies have

shown that in colon cancer and glioblastoma, c-Met ex-

pression can enhance Wnt/β-catenin signal transduction,

and prevent GSK3β from phosphorylating β-catenin; this,

in turn, promotes the translocation of β-catenin to the

nucleus, facilitating tumorigenesis. Accordingly, it has been

shown that c-Met inhibitors can inhibit Wnt pathway activ-

ity in tumor cells [35, 36]. Meanwhile, it has been found

that in breast cancer cells undergoing osteolytic bone me-

tastasis, the activation of HGF/c-Met signaling can promote
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Fig. 2 (See legend on next page.)
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β-catenin translocation to the nucleus and enhance

its transcriptional activity. Therefore, HGF/c-Met can

exert its biological function through the Wnt signal-

ing pathway (Fig. 2) [37].

In normal cells lacking Wnt pathway activation, β-

catenin is cytoplasmic and is phosphorylated at Ser-31,

Ser-37, Thr-4, and Ser-45 by GSK3β and CK1 proteins,

which are part of the destruction complex. At the same

time, it can be acetylated by acetyltransferase p300/CBP-

associated factor (PCAF) at Lys-49. Subsequently, these

modified sites are recognized by and associate with the

β-TrCP E3 ubiquitin ligase, resulting in its degradation

by the proteasome, thereby preventing translocation to

the nucleus [38, 39]. However, in tumor cells, aberrant

activation of the HGF/c-Met pathway and stimulation of

Wnt pathway block phosphorylation and acetylation of

β-catenin through different signals. This results in the

accumulation of β-catenin in the cytoplasm; it then en-

ters the nucleus to displace Groucho, which has a tran-

scriptional inhibitory effect on T-cell factor/lymphoid

enhancer factor (TCF/LEF) transcription factors. β-

catenin exerts its functions along with BCL9/LGS and

Pygo to promote expression of Myc, Cyclin D1, and

MMP-7, which facilitates proliferation, invasion, and

metastasis (Fig. 2) [38, 40, 41].

Crosstalk between c-met and other receptors
tyrosine kinases
C-met and RON

Studies have shown that c-Met and RON (receptor origi-

nated from nantes) are overexpressed [42] or aberrantly

activated in many epithelial-derived malignant cancers

[43–49]. These proteins can be involved in tumorigen-

esis by promoting cell proliferation, inhibiting apoptosis,

enhancing angiogenesis, and promoting metastasis,

among other functions, by acting upstream of these

processes [46–49]. c-Met and RON can be activated by

HGF and macrophage stimulating protein (MSP), re-

spectively. Activated signaling depends on the tissue

availability of adaptor proteins and signaling intermedi-

ates or the tendency of the adaptor proteins and signal-

ing intermediates to undergo homodimerization or

heterodimerization [50, 51]. MSP and HGF are highly

homologous in sequence and structure [52], and are se-

creted as inactive single chains by multiple tissues and

cells including smooth muscle, fibroblasts, adipose

tissue, epithelial-derived tumors, liver, lungs, adrenal

glands, placenta, and kidney. They are subsequently

activated by proteasomal cleavage and form dimeric pep-

tides consisting of α and β chains. In contrast to HGF,

the high-affinity RON-binding site (for MSP) is located

in the β chain [51].

The dimerization of these two monomers represents a

major regulatory mechanism for the activation of tyro-

sine kinase receptors [53]. In some cases, the formation

of a heterodimeric complex permits interaction and

crosstalk between different receptors of the same sub-

family. The epidermal growth factor receptor (EGFR)

family is the best example of a tyrosine kinase receptor

that undergoes homo and heterodimerization [54, 55].

Therefore, it is important to study the dimerization

mechanism of PTKs. RON and c-Met are co-expressed

in many types of tumors and crosstalk between c-Met

and RON has been demonstrated [52]. Analysis of their

structural homology suggested that they might interact,

and in fact, studies have indicated that c-Met and RON

can form heterodimers and phosphorylate each other

[56]. One study showed that oncogenic addiction to

c-Met requires co-expression of RON in four different

tumor cell lines [50]. In these cases, RON was constitu-

tively activated, and this was dependent on transpho-

sphorylation by c-Met [50]. Experimentally, it has been

shown that c-Met has stronger kinase activity than RON

[57], and thus it is possible that heterodimers might be

more efficiently activated than RON-RON homodimers.

The fact that oncogenic addiction to c-Met requires

RON implies that c-Met-RON heterodimers can

promote the activation of diverse signaling cascades

(See figure on previous page.)

Fig. 2 Illustration of the molecular mechanism of c-Met downstream signaling pathways. a Binding of HGF and c-Met can induce conformational

changes in c-Met, resulting in the activation of downstream Ras-Raf-MAPK and PI3K/AKT/mTOR signaling pathways. After autophosphorylation,

PTK binds Gab2 and activates it. Gab2 activates SOS; SOS activates Ras and then Ras stimulates Raf, MEK, and MAPKs. Activated MAPKs can enter

the nucleus to regulate the expression of transcription factors such as Elk1, Etsl, and c-Myc (among others) to modulate cell proliferation and

apoptosis. b The PTK domain is the site of autophosphorylation and also provides a docking site for PI3K. With this interaction, PI3K converts PIP2

to PIP3, and then PIP3 binds to the signaling proteins AKT and PDK1; PDK activates AKT, and activated AKT not only translocates to the nucleus,

but also activates GSK-3 and mTOR to regulate the expression of multiple transcription factors. c Wnt binds to the low-density lipoprotein

receptor-related protein 5/6/Frizzled (LRP5/LRP6/Frizzled) co-receptor group and activates the Dishevelled protein (DSH/Dvl) resulting in inhibition

of the degradation of β-catenin by the destruction complex (consisting of Axin, adenomatosis polyposis coli (APC), protein phosphatase 2A

(PP2A), glycogen synthase kinase 3 (GSK3) and casein kinase 1α (CK1α)).Subsequently, β-catenin is transported to the nucleus via Rac1 and other

factors and binds to the LEF/TCF transcription factors in the nucleus with BCL9/LGS and Pygo to promote expression of oncogenes such as Myc,

Cyclin D1, and MMP-7. This process can promote the invasion and migration of cancer cells. Aberrant activation of HGF/c-Met in tumor cells can

block the degradation of β-catenin by the destruction complex, resulting in a higher concentration of β-catenin in the cytoplasm, and can also

promote the entry of β-catenin into the nucleus
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through different platforms. However, c-Met and RON

possess remarkably similar tyrosine-binding sites that

serve as docking sites for signaling molecules, and thus

these signaling platforms might also be redundant.

However, one study found that these two receptors have

different kinase activities. Specifically, c-Met can be acti-

vated directly through Grb2 binding, but requires modula-

tion for activation by other platforms [58]; in contrast,

RON relies mainly on Grb2-associated binder (Gab1),

based on the fact that the binding of Gab2 by RON atten-

uates the recruitment of Gab1 and represses signal

transduction.

Grb2 has a unique role with respect to c-MET-RON

heterodimers. Although Grb2 inhibits RON autophos-

phorylation, it enhances this process with c-MET [59].

Considering heterodimers of the EGFR family, the sig-

naling diversity through heterodimers could depend on

the relative abundance of each receptor [54].

RON expression might partially modulate c-Met

activity, which can be applied when modeling this re-

ceptor. With respect to this, we found that knock-

down of RON enhances the level and duration of

HGF-mediated activation of MAPK and AKT [53].

Although the functional relevance of c-Met-RON het-

erodimers has not been fully explored, some studies

suggest that general knockdown of RON leads to

changes in c-Met signaling. For example, it was found

that silencing RON in pancreatic cancer cell lines

leads to upregulation of c-Met expression and activity

[56]. This suggests that inhibitors that co-target or

simultaneously block the kinase activities of both

c-Met and RON might be clinically useful. However,

most studies have not considered the possibility that

separately inhibiting either c-Met or RON might lead

to compensation by [60] the other.

C-met and EGFR

It has been confirmed that signal transduction between

the c-Met and EGFR pathways is closely linked in breast

cancer, lung cancer, brain cancer, and other tumors;

however, the associated mechanism is still not fully

understood [61–64]. Studies have shown that 70% of

EGFR-activating mutations in non-small cell lung car-

cinoma (NSCLC) are associated with an initial positive

response to the EGFR inhibitors gefitinib or erlotinib

[65]. However, the vast majority of tumors that respond

to EGFR inhibitors achieve acquired resistance [66].

Interestingly, the expression and activation of c-Met are

associated with initial resistance and acquired resistance

to EGFR inhibitors in patients with NSCLC [66–68].

Initial resistance might occur through the simultaneous

activation of c-Met and EGFR pathways in lung cancer,

whereas inhibiting both maximizes the inhibitory effect

on the tumor [61]. As such, studies have shown that

c-Met might be an effective therapeutic target for over-

coming EGFR inhibitor resistance in lung cancer [62].

Possible explanations regarding this mechanism are as

follows. One study has already shown that the second

mutation in EGFR, T790 M, and the amplification of the

MET proto-oncogene will lead to the activation of its

downstream ERBB3-initiated PI3K/AKT pathway, result-

ing in EGFR-TKI acquired resistance [67, 69, 70]. When

the c-MET gene is amplified, the two downstream path-

ways (Grb2/MAPK and PI3K/AKT) are activated by the

increase in the number of ERBB3 receptors [69, 70].

In addition, continuous interaction with HGF facili-

tates c-Met amplification-mediated reversible resistance

to EGFR-TKI treatment [66, 70]. When HGF activates

Met, it activates MAPK and PI3K/AKT signaling path-

ways through Gab1, leading to the occurrence of irre-

versible EGFR-TKI resistance [66].

If EGFR and Met mutations exist simultaneously, drug

resistance will be further exacerbated [70]. Therefore, we

speculate that c-Met activation of downstream PI3K/

AKT and MAPK pathways bypasses EGFR activation

because they can both act as tyrosine kinase receptors

and activate this pathway (Fig. 3). In addition, c-Met can

either directly or indirectly transactivate the PI3K path-

way; the fact that c-Met is not activated by this RTK also

supports this hypothesis [71].

Another study found that EGFR mutation and Met

activation were observed in tumor cells. At the same

time, whereas the activation of c-Met was not the result

of gene mutation, it resulted in poor prognosis for

NSCLC metastasis [68]. In addition, after reversible

resistance to EGFR-TKIs in lung cancer cells, HGF can

induce an irreversible second mutation (Fig. 3) [66].

HGF/c-Met is activated in approximately 50% of hepa-

tocellular carcinomas (HCC), and expression levels of

these proteins are associated with poor clinical prognosis

for this disease [72–75]. Cells with constitutive c-Met

activity respond to c-Met inhibition [76]; however, one

study found that monotherapy does not completely

eliminate tumor growth, suggesting that tumor survival

mechanisms that bypass the inhibition of this pathway

might be involved in the maintenance of tumor growth

in response to these treatments [77].

In previous studies, inhibition of the EGFR pathway

was shown to lead to either activation or inhibition of

the c-Met pathway, whereas another study showed that

c-Met inhibition leads to the activation of the EGFR

pathway in a c-Met-positive HCC model [76]. In

addition, EGFR inhibitor monotherapies are not signifi-

cantly effective with respect to in vitro cell viability [76].

c-Met inhibitor monotherapy triggers several survival

mechanisms that bypass cell death induced by these

agents, including increased expression of the EGFR lig-

and TGF-α and ErbB3. It has been determined that
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members of the EGFR family can form homodimers or

heterodimers and that different dimers have different

signal transduction capabilities; specifically, ErbB3 can

heterodimerize with ErbB1 to form one of the most potent

dimers [78]. Experiments have shown that c-Met inhibition

enhances EGFR signaling by increasing ErbB3 expression

[76]. In addition, the increase in TGF-α expression that re-

sults from c-Met inhibition, whether this occurs through an

autocrine or paracrine mechanism, and its effect on HCC

cell survival requires further study.

Fig. 3 Crosstalk between c-Met and EGFR. a, b The tyrosine kinase receptors EGFR and c-Met can initiate downstream PI3K/Akt signaling resulting

in anti-apoptotic processes and Grb2/MAPK activation to promote the proliferation of tumor cells. Therefore, it is speculated that there might be

an effect that allows c-Met to bypass the EGFR receptor to activate its downstream pathway, resulting in resistance to EGFR-TKI monotherapy. c

c-Met-TKI monotherapy triggers upregulation of the EGFR ligand TGF-α, as well as upregulation of the EGFR protein family receptor ErbB3, which

can contribute to one of the most potent dimers that can activate c-Met downstream pathways leading to acquired resistance in cancer cells
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Current clinical trials targeting c-met
Currently, drugs targeting c-Met that are in clinical trials

can be classified as monoclonal antibodies (e.g. onartuzu-

mab) and small molecule inhibitors. Small molecule inhibi-

tors bind to the tyrosine kinase domain of c-Met and can

be further classified into ATP competitive inhibitors (e.g.

crizotinib) and non-ATP competitive inhibitors (e.g. tivanti-

nib). Inhibitors belonging to the same group inhibit c-Met

downstream signaling in a similar manner. Therefore, in

this review, we will introduce current clinical trials targeting

c-Met, and have chosen onartuzumab, crizotinib, and tivan-

tinib as examples to elaborate on their c-Met binding sites,

as shown in Fig. 1.

Anti-c-met monoclonal antibody Metmab (onartuzumab)

Onartuzumab is a humanized single-armed specific

monoclonal antibody targeting c-Met. The binding of

onartuzumab to c-Met is highly specific and this anti-

body can block c-Met-HGF binding specifically by

blocking the HGF α-chain and by forming a complex

with the Sema-PSI domain of c-Met [79]; this process

occurs without exerting an agonistic activity or trigger-

ing c-Met dimerization.

Onartuzumab has been applied as a c-Met inhibitor

for the treatment of NSCLC and breast cancer in clinical

trials (Table 1) [80], and it proved to be considerably ef-

fective. Other studies also found that onartuzumab in

combination with erlotinib and placebo is effective for

NSCLC. Therefore, this drug might have potential to

treat c-Met-overexpressing cancer.

Small molecule inhibitors

Crizotinib

Crizotinib (PF-02341066, trade name: Xalkori), an effect-

ive small molecule inhibitor of c-Met, was derived from

the first-generation series c-Met inhibitor, PHA-66752

(3-benzyloxy-2-amino). PF-22341066 targets the TK

domain of c-Met, and after a series of reactions, some

residues cause a conformational change, which interferes

with the ATP binding site. One clinical trial (phase I) for

the treatment of NSCLC with enhanced Met amplifica-

tion, performed in 2014 [81], showed that crizotinib has

increased potential for the treatment of c-Met-associated

cancer. Crizotinib is one of five drugs approved by the

FDA for the treatment of advanced NSCLC, to date [82],

and it is used for the clinical treatment of ROS1-positive

Table 1 Ongoing studies with Metmb (onartuzumab)

NCT Number Combination Drugs PHASES URL

NCT01897038 Drug: Onartuzumab Phase1 https://ClinicalTrials.gov/show/NCT01897038

Drug: Sorafenib

NCT01519804 Drug: Placebo Phase2 https://ClinicalTrials.gov/show/NCT01519804

Drug: cisplatin/carboplatin

Drug: onartuzumab

Drug: paclitaxel

NCT00854308 Drug: Erlotinib HCl Phase2 https://ClinicalTrials.gov/show/NCT00854308

Drug: MetMAb

Drug: placebo (0.9% saline)

NCT01496742 Drug: Placebo Phase2 https://ClinicalTrials.gov/show/NCT01496742

Drug: RO5490258

Drug: bevacizumab [Avastin]

Drug: cisplatin/carboplatin

Drug: paclitaxel

Drug: pemetrexed

NCT02031744 Drug: erlotinib [Tarceva] Phase3 https://ClinicalTrials.gov/show/NCT02031744

Drug: Placebo

Drug: Onartuzumab [MetMAb]

NCT01887886 Drug: erlotinib Phase3 https://ClinicalTrials.gov/show/NCT01887886

Drug: onartuzumab

Drug: placebo

NCT01456325 Drug: Erlotinib Phase 3 https://ClinicalTrials.gov/show/NCT01456325

Drug: Onartuzumab (MetMab)

Drug: Placebo
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lung cancer [83]. Moreover, the number of studies focus-

ing on the combination of crizotinib and other drugs is

increasing. Huang et al. [84] showed that crizotinib with

cisplatin induces G2/M cell cycle arrest and apoptosis in

ovarian cancer cells. Stanley et al. [85] elaborated on the

different growth inhibitory effects caused by the combin-

ation of c-Met inhibitors with cytotoxic drugs using

breast cancer cell lines (BT474, MCF7, MDA-MB-468,

and SKBr3). Results suggested that crizotinib and EGFR-

TKIs might have a synergistic effect on MCF7 and

MDA-MB-468 cells and an antagonistic effect on BT474

and SKBr3 cells. The combination of EGFR-TKIs and

crizotinib was shown to have a more pronounced effect

than a single drug regimen on breast cancer. In addition,

sensitivity to mitomycin C (MMC), when combined with

crizotinib, was studied using a colorectal cancer cell line.

The results also showed that a combination of the two

drugs resulted in increased tumor cell apoptosis and a

synergistic effect. Currently, several clinical trials are in

progress. A summary of these trials is provided in Table 2.

Cabozantinib

Cabozantinib (XL184) is a small molecule inhibitor of

Met and AXL [86, 87], and has been approved by the

FDA for the treatment in progressive metastatic thyroid

medullary carcinoma [60, 88], and also for advanced

renal cell carcinoma after the implementation of antian-

giogenic therapy regimens [89]. Wakelee divided NSCLC

patients into three groups as follows: the first two

groups were administered erlotinib alone (150 mg poqd)

and cabozantinib alone (60 mg poqd), whereas the third

group was administered combination therapy (150 mg erloti-

nib/40 mg cabozantinib). Results showed that progression-

free survival and overall survival were significantly improved

with cabozantinib treatment. Shotani et al. [90] showed that

cabozantinib is effective in inhibiting growth and invasion in

BCa cell lines driven by HGF (5637 and T24), and blocked

HGF-Met signaling to inhibit MMP1 expression. Thus,

cabozantinib has potential for the treatment of muscle inva-

sive bladder cancer (MIBC). At present, this drug is at the

clinical stage for prostate cancer treatment, and has been

tested in phase II trials.

Foretinib

Foretinib (GSK1363089) is an ATP-competitive c-Met

inhibitor, and its therapeutic potential has been assessed

for different tumors including head and neck cancer,

gastric cancer, and liver cancer [56, 57, 91, 92]. Chia et

al. [93] conducted a phase I study to determine the

effect of combining foretinib with lapatinib on HER-2-

positive metastatic breast cancer. The study suggested

that the combined use of foretinib and lapatinib at doses

of 45 mg and 1000 mg PO, respectively, could be toler-

ated relatively well. The most common grade 3 and

higher toxic adverse reactions were mainly high blood

pressure, diarrhea, nausea, and fatigue. Yin et al. [22]

also demonstrated that foretinib inhibits prostate cancer

(PCa) metastasis by targeting c-Met.

LY280163

LY280163 is an ATP competitive Met tyrosine kinase in-

hibitor developed by Lilly. Cheng et al. [94] showed that

this drug can improve the response of MEK inhibitors

such as trametinib in metastatic uveal melanoma (UM)

patients and promote the expression of PARP. In

addition, studies [95] have investigated the effect of

Table 2 Ongoing studies with crizotinib

NCT Number Combination Drugs PHASES URL

NCT00932451 Drug: PF-02341066 Phase2 https://ClinicalTrials.gov/show/NCT00932451

NCT00932893 Drug: PF-02341066 Phase3 https://ClinicalTrials.gov/show/NCT00932893F

Drug: Pemetrexed

Drug: Docetaxel

NCT01154140 Drug: treatment Phase3 https://ClinicalTrials.gov/show/NCT01154140

Drug: treatment

NCT01685060 Drug: LDK378 Phase2 https://ClinicalTrials.gov/show/NCT01685060

NCT01121575 Drug: PF-02341066 Phase1 https://ClinicalTrials.gov/show/NCT01121575

Drug: PF-00299804

Drug: PF-02341066

Drug: PF-00299804

NCT00965731 Drug: Erlotinib Phase1 https://ClinicalTrials.gov/show/NCT00965731

Drug: PF-02341066

NCT02435108 Drug: crizotinib Phase2 https://ClinicalTrials.gov/show/NCT02435108
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LY2801653 on human cholangiocarcinoma (CCC) cell

lines. Using a xenograft mouse model, it was determined

that LY2801653 blocks c-Met phosphorylation, down-

regulates downstream target expression, and inhibits

CCC cell proliferation and xenograft tumor growth.

MK2461

MK2461 is an ATP competitive small molecule multi-

target inhibitor developed by Merck Sharp & Dohme

Corp. It is effective in inhibiting the proto-oncogene

c-Met mutants N1100Y, Y1230C, Y1230H, Y1235D, and

M1250Tn1100y. Currently, this drug is in experimental

stage I clinical trials for advanced cancer.

Capmatinib

Capmatinib (INC280) blocks c-Met phosphorylation

and the activation of key downstream molecules in

c-Met-dependent tumor cell lines, causing mitochon-

drial membrane depolarization and DNA repair [96,

97]. The drug has been utilized in phase I trials for

advanced solid cancer. Wei et al. [96] found that the

addition of capmatinib could effectively block cell

proliferation induced by cancer associated fibroblast

(CAF) matrix with overexpression of HGF, and could

eliminate CAF-induced ovarian cancer cell resistance.

The latest study by Lara et al. [97] utilized a series of

NSCLC cell lines (including three EGFR-mutant cell

lines, HCC827, PC9 and H1975, one Kirsten rat

sarcoma virus oncogene mutant cell line, H358, and

one EGFR and KRAS wild type cell line, H1666) to

determine whether capmatinib in combination with

erlotinib could attenuate erlotinib resistance. The

Massachusetts General Hospital in the United States

has also launched a clinical trial for the use of

capmatinib in stage IV patients with malignant

NSCLC. In addition, Novartis Pharmaceuticals is per-

forming clinical phase II trials using oral capmatinib

combined with gefitinib for NSCLC patients with c-

Met amplification.

Tivantinib

Tivantinib (ARQ197), developed by American ArQule

Corporation and Japan’s Daiichi Sankyo and Kyowa

Hakko Kogyo, is a non-ATP competitive inhibitor that

blocks receptor activation and downstream signaling by

binding to unactivated receptors [49, 98]. ARQ197

directly binds the A-loop and P-loop phenylalanines by

inducing “hydrophobic collapse”, resulting in disruption

of the ionic interaction in the catalytic residue with the

help of Arg1227, Tyr1230, and other residues. In recent

years, its pharmacokinetic mechanism has become

increasingly controversial. It was previously believed that

tivantinib can exert its biological effects by directly inhi-

biting c-Met receptor tyrosine kinases. However, several

subsequent studies showed that the biological effect of tivan-

tinib does not depend on the c-met receptor; in contrast, it

inhibits tumor cells through microtubule depolymerization.

Tivantinib inhibits tubulin polymerization, disrupting tubulin

metabolism, prolonging cell G2/M phase, and promoting

apoptosis [99, 100]. Studies have shown that combining

tivantinib with erlotinib for treatment improves progression

free survival (PFS) and is well tolerated [101–103]. In pa-

tients with advanced solid tumors, tivantinib combined with

sorafenib treatment was shown to be safe, especially for renal

cell carcinoma (RCC), hepatocellular carcinoma (HCC), and

melanoma patients harboring tumors with high levels of

c-Met; an enhanced therapeutic effect was also observed for

these cases. The combination of the two drugs was shown to

enhance the antitumor activity of sorafenib, thus reducing

associated resistance without promoting off-target effects

[104]. As is described in Table 3, we summarized ongoing

studies involving tivantinib.

Conclusions
Despite research on c-Met over the past 30 years, the

structure and function of this tyrosine kinase has not

been well established. HGF/c-Met mediates cascades

that play a key role in tumorigenesis; extensive research

on those pathways is not only beneficial for enhancing

our understanding of the mechanisms associated with

carcinoma, but also suggest promising targets for the

development of novel cancer treatments. Considering

the complexity of the HGF/c-Met axis, further explor-

ation of the mechanism through which blocking c-Met

activation modulates downstream pathways is required.

Recently, many clinical trials have found that drug re-

sistance is more easily acquired with single drug therapy;

therefore, research on combining c-Met inhibitors with

other drugs (e.g. EGFR-TKI) will lead to the rapid dis-

covery of effective treatment options. One study showed

that in a nude mouse model of treatment-sensitive

NSCLC, erlotinib resistance could be effectively reversed

by the administration of SU1274. Meanwhile, Klempner

et al. [105] found that cabozantinib could reverse resist-

ance to crizotinib. Thus, the use of combinations of

drugs to avoid resistance induced by the utilization of a

single drug might become a major priority for re-

searchers developing novel c-Met inhibitors.

Recently, phase II/III clinical trials for c-Met inhibitors

have been initiated, and many of these drugs are

regarded as second-line drugs. The main problem is that

in most c-Met-overexpressing cancer cells, this receptor

is not always the only driver of carcinoma, as it often

interacts with other tyrosine kinase receptors. For ex-

ample, the cytotoxic effect of tivantinib is not due solely

to c-Met inhibition. Meanwhile, non-specific reactions

are also a major problem when using c-Met inhibitors.

For example, the c-Met monoclonal antibody Metmab is
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associated with several adverse events including rash,

diarrhea, fatigue, and nausea/vomiting.

Under these circumstances, more precise informa-

tion regarding how the drug functions and its rela-

tionship with c-Met and other tyrosine kinase

receptors is required. In fact, as mentioned previously,

the relationship between c-Met and its family member

RON is being extensively studied, whereas the mech-

anism underlying the crosstalk between c-Met and

RON is still not fully understood. One study showed

that in pancreatic cancer, silencing RON might modu-

late the c-Met signaling pathway, resulting in a com-

pensatory reaction during the downregulation of

either tyrosine kinase receptor [56–59]. As such, we

might consider targeting c-Met and RON simultan-

eously. It turns out that c-Met and RON also interact

with other tyrosine kinase receptors. Nevertheless,

compared to RON, these other receptors might not

be as indispensable for the activation of c-Met, and

the significance of this crosstalk is still not well

understood.

Meanwhile, the initiation of carcinoma can be induced

by multiple factors including genome backgrounds, en-

vironmental factors [106], microenvironment [29, 107],

even the non-coding RNAs [108–110]. Considering that,

further efforts on the interactions between c-Met and

other cancer related risk factors will be necessary in

promoting the process of precise medical treatment on

c-Met which thus, demand a further comprehensive un-

derstanding of this tyrosine kinase receptor.

However, based on the fact that c-Met has an intimate

association with cancer, targeting this receptor for the

treatment of tumorigenesis is still thought to be associ-

ated with vast clinical significance.
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Table 3 Ongoing studies with tivantinib

NCT Number Combination Drugs PHASES URL

NCT01755767 Drug:Tivantinib Phase 3 https://ClinicalTrials.gov/show/NCT01755767

Drug: Placebo

NCT00988741 Drug: ARQ 197 Phase 2 https://ClinicalTrials.gov/show/NCT00988741

Drug: Placebo

NCT01656265 Drug: ARQ 197 Phase 1 https://ClinicalTrials.gov/show/NCT01656265

NCT00802555 Drug: ARQ 197 Phase 1 https://ClinicalTrials.gov/show/NCT00802555

NCT00557609 Drug: ARQ 197 Phase 2 https://ClinicalTrials.gov/show/NCT00557609

NCT01575522 Other: Laboratory Biomarker Analysis Phase 2 https://ClinicalTrials.gov/show/NCT01575522

Drug: Tivantinib

NCT01395758 Drug: ARQ 197 plus erlotinib Phase 2 https://ClinicalTrials.gov/show/NCT01395758

Drug: Pemetrexed, docetaxel or gemcitabine

NCT01244191 Drug: Tivantinib Phase 3 https://ClinicalTrials.gov/show/NCT01244191

Drug: Placebo

Drug: Erlotinib

NCT01069757 Drug: ARQ 197 and Erlotinib Phase 1 https://ClinicalTrials.gov/show/NCT01069757

NCT01251796 Drug: ARQ 197 and Erlotinib Phase 1 https://ClinicalTrials.gov/show/NCT01251796

NCT00777309 Drug: ARQ 197 Phase 2 https://ClinicalTrials.gov/show/NCT00777309

Drug: Erlotinib

Drug: Placebo
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