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Abstract

Background: In addition to the molecular feedback loops, electrical activity has been shown to be important for the
function of networks of clock neurons in generating rhythmic behavior. Most studies have used over-expression of foreign
channels or pharmacological manipulations that alter membrane excitability. In order to determine the cellular mechanisms
that regulate resting membrane potential (RMP) in the native clock of Drosophila we modulated the function of Shaw, a
widely expressed neuronal potassium (K+) channel known to regulate RMP in Drosophila central neurons.

Methodology/Principal Findings: We show that Shaw is endogenously expressed in clock neurons. Differential use of clock
gene promoters was employed to express a range of transgenes that either increase or decrease Shaw function in different
clusters of clock neurons. Under LD conditions, increasing Shaw levels in all clock neurons (LNv, LNd, DN1, DN2 and DN3), or
in subsets of clock neurons (LNd and DNs or DNs alone) increases locomotor activity at night. In free-running conditions
these manipulations result in arrhythmic locomotor activity without disruption of the molecular clock. Reducing Shaw in the
DN alone caused a dramatic lengthening of the behavioral period. Changing Shaw levels in all clock neurons also disrupts
the rhythmic accumulation and levels of Pigment Dispersing Factor (PDF) in the dorsal projections of LNv neurons.
However, changing Shaw levels solely in LNv neurons had little effect on locomotor activity or rhythmic accumulation of
PDF.

Conclusions/Significance: Based on our results it is likely that Shaw modulates pacemaker and output neuronal electrical
activity that controls circadian locomotor behavior by affecting rhythmic release of PDF. The results support an important
role of the DN clock neurons in Shaw-mediated control of circadian behavior. In conclusion, we have demonstrated a central
role of Shaw for coordinated and rhythmic output from clock neurons.
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Introduction

A 24 hour (circadian) cycle of rest and activity exists in almost

all animals, persisting even in complete darkness. In flies, this

behavior is dependent on the rhythmic expression of oscillating

genes under control of a molecular clock that consists of

interlocked molecular feedback loops of transcription including

the period (per) and timeless (tim) genes. These feedback loops, and the

behavioral rhythms controlled by them, can be reset cell-

autonomously by light-induced TIM degradation via the blue-

light photoreceptor protein Cryptochrome (CRY) and through

light inputs to the pacemaker neurons from the eyes. This central

molecular clock mechanism operates in a set of pacemaker

neurons located in the fly brain [1].

Control of electrical activity has been postulated to be important

for the function of the clock [2–3]. Studies in the mammalian

suprachiasmatic nucleus (SCN) show that cell-autonomous,

circadian-oscillatory expression of clock genes drives the circadian

rhythms in neuronal firing rate and resting membrane potential

(RMP) [4,5]. The mechanism of these oscillations in mammals and

Drosophila may involve ion channels under direct transcriptional

control of the clock gene products or post-translational modulation

of ion channels by clock controlled proteins [6–8]. Voltage-gated

K+ channels are key regulators of the intrinsic excitability in all

neurons, and therefore they are crucial for output rhythms of clock

neurons under free-running conditions in the Bulla eye [9–10] and

in the SCN [11–12], as well as for molecular clock-gene

oscillations inside the nucleus and cytoplasm of SCN neurons in

mammals [13]. The role of endogenous K+ channels has not been

extensively explored in Drosophila central clock neurons.

Current models of the mammalian SCN predict RMP to be

rhythmically regulated by the clock [3]. In Drosophila artificial

expression of truncated dORK channels has also been shown to

hyperpolarize RMP and to decrease the firing rate of clock

neurons [14]. The same treatment results in behavioral arrhyth-

micity under constant conditions and a loss of clock protein cycling

in pacemaker cells. Therefore these studies used over-expression of

foreign channels to modulate electrical activity and constitutive
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hyperpolarization or depolarization of clock cells was found to be

disruptive to clock function in constant conditions [15–17].

These studies did not, however, shed any light on the actual

cellular mechanisms that regulate RMP in the native clock. So far

it is not known which endogenously expressed ion channels and

membrane proteins influence electrical membrane properties of

Drosophila clock neurons or if they are regulated by the circadian

clock. A number of Drosophila ion channels have been implicated in

clock function, these include Narrow Abdomen (NA), a Na+/Ca++

channel [18] and Slowpoke (SLO), a Ca++-sensitive K+ channel

[19] whose mammalian homolog (BK) is also important for

circadian regulation [20].

These studies suggest that electrical membrane properties

maybe similarly important in the fly clock and mammalian

SCN. Moreover, mammalian Shaw homologues, Kv3 channels,

are widely distributed within the SCN and the magnitude of their

current varies between the day and the night, even under free-

running conditions. Blocking Kv3.1b and Kv3.2 currents prevents

the daily rhythm in firing of SCN neurons [21]. In Drosophila,

Shaw is a member of the Shaker family of voltage-gated K+

channels and encodes a slowly activating and non-inactivating K+

current. These channels can be open at normal cell RMP and

cause hyperpolarization by allowing K+ efflux. In Drosophila, the

Shaw K+ channel is widely expressed in the nervous system and

helps regulate RMP in Drosophila central neuron [22–25]. Shaw is

therefore an attractive K+ channel to endogenously regulate RMP

in clock neurons. In this study we reveal a circadian function of

Shaw K+ channels in Drosophila and demonstrate that they are

required for rhythmic output from clock neurons.

Materials and Methods

Fly strains
Flies were grown at similar density in bottles on standard medium

at 25uC in 12 hr:12 hr LD cycles. The following strains were used:

CantonS, Pdf-GAL4 [26–27], tim-GAL4 insert 27 and 67 [27], cry-

GAL4 insert 13 [18,28–29], 8.0-luc:9D [30], UAS-Shaw-FLAG insert

12B and UAS-ShawTRuncated-FLAG insert 332 (truncated at residue

369) [25]. Data were confirmed with a second insert of each Shaw

transgene. The Pdf-GAL80 and cry-GAL80 [18,28–29] lines were a

kind gift of Dr. Patrick Emery (U. Mass., Worcester).

Transgenic lines
The UAS-Shaw RNAi construct contains a 720 bp fragment of

the 39 end of Shaw starting at nucleotide 881 in Exon 8 through to

the end of the gene including approximately 110 bp of 39

untranslated sequence. This fragment was cloned into the multiple

cloning site of the SympUAST transformation vector [31] that was

then introduced into the Drosophila germline by P-element

mediated transformation. Stable lines were established and a line

containing the insert homozygous on both chromosome 2 and 3

was used.

Behavior
Locomotor activity of adult males placed in an infrared beam-

cross counting apparatus was monitored automatically and

analyzed as in Wülbeck et al. [32] using MATLAB analysis

software [33]. Flies were raised in 12 hr:12 hr LD cycles at 25uC
and then assayed for locomotor activity for the next 7 days in LD.

This was followed by 9 to 16 days in constant darkness (DD).

Immunohistochemistry, imaging and quantification
Whole-mounted adult brains were processed and stained with

a rabbit anti-Shaw C terminal (amino acids 413–498) antibody

(pre-absorbed and used at 1:1000), mouse anti-FLAG (affinity

purified M2 F1804 used at 1:1000, Sigma-Aldrich, St. Louis

MO), rabbit anti-crab PDH (affinity purified used at 1:1500,

[34]) and Alexa488, Alexa594 (1:180; Molecular Probes, OR),

FITC and Cy5 secondary antibodies (1:180; Jackson, West

Grove PA) using standard immunohistochemical techniques

[25,35].

All preparations were processed in parallel and images acquired

with identical settings using the 406 or 506 (zoomed 1–46)

objectives of a Leica TCS SP2 confocal microscope. Care was

taken to keep all intensity readings within the linear range below

saturation and all double immunofluorescent images were scanned

sequentially. Quantification was performed on 1 mm sections with

pixel intensity readings taken in a given region of interest for PDF-

Alexa488 (10 LNv axon terminal boutons per hemisphere) with a

surrounding background measurement subtracted using the Leica

TCS SP2 quantification software. Quantification was performed

blind to genotype and experimental condition. Statistical analysis

was performed in Excel (Microsoft) and JMP (SAS). Significance

levels in figures were determined by one-way ANOVA unless

otherwise specified.

Analysis of Bioluminescence Rhythms
Luciferase expression of individual flies carrying the 8.0-luc:9D

transgene was measured, analyzed, and plotted as described in

Veleri et al. [30]. Prior to each experiment, flies were entrained for

at least 2 days to a 12 hr:12 hr LD cycle at 25uC and kept in the

same regime for the first 2 days of the experiment. Subsequently

flies were subjected to constant conditions (DD) for 3–5 days.

Fly head extracts
2–3 day old flies were entrained to 12 hr:12 hr LD cycles for 2–

3 days and frozen in liquid nitrogen. After decapitating by

vortexing, equal numbers of frozen heads from each genotype

were homogenized and solubilized in ice-cold RIPA buffer for

30 min. Homogenates were spun at 5006 g and then 14,0006 g

for 15 min at 4uC to remove debris [35]. Protein was separated by

SDS-PAGE, and analyzed by immunoblot using rabbit anti-C

terminal Shaw antibody (1:1000; [25]) and rabbit anti-PER

(1:10,000; [32]).

Results

Shaw is expressed in clock neurons
To determine if Shaw is expressed in the cells that constitute the

circadian clock, we used whole-mount immunohistochemistry and

confocal imaging (Figure 1). Clock neurons can be visualized and

genetically accessed by using GAL4 drivers [37] that are controlled

by clock-cell specific promoters such as those from the timeless

(Figure 1A, C and E–G) and Pdf (Figure 1D) genes [26–27]. tim-

GAL4 is expressed strongly in all clock neurons including the DN1,

DN2, and DN3 groups and in the well characterized dorsal and

ventral lateral neurons (LNd and LNv). Pdf-GAL4 is expressed only

in the small and large ventral lateral neurons (s- and l-LNv). Using

GAL80 to suppress GAL4 activity [38], it is possible to subdivide

these expression patterns further. In tim-GAL4; Pdf-GAL80 animals,

only LNd and Dorsal Neurons should express UAS transgenes

[18,28–29]. However, after careful inspection of our data, we

cannot rule out that even in the presence of Pdf-GAL80 weak

reporter gene expression (of the Flag-epitope tagged, truncated

version of Shaw, ShawTR: [25]) remains in at least some of the l-

LNv (Figure 1 compare A and B). The large size and position of

the weakly staining cell bodies suggests that these are not the small
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LNv, which are generally considered to be more circadianly

relevant as they maintain molecular clock oscillation in DD, as

compared to the large LNv [26,29,39–40].

To visualize endogenous Shaw expression, whole brains of the

tim-GAL4/UAS-ShawTR flies were double-labeled with an antibody

directed against the C-terminus of Shaw (absent from the

truncated transgene, in magenta, Figure 1) and anti-Flag

antibodies. Endogenous Shaw was found to be in and close to a

number of clock neurons (co-expression indicated by the white

signal, Figure 1D–F) including the s- and l-LNv, LNd and at a low

level in at least some of the DN (Figure 1B and G). In Pdf-GAL4

animals, endogenous Shaw subunits are sequestered into cytoplas-

mic clusters (in white), likely due to the ability of the endogenous

and truncated channels to multimerize and the fact that the C-

termini of Shaw channel complexes are required for correct

localization [25,41]. ShawTR has been demonstrated to generate

Shaw dominant negative phenotypes using both electrophysiolog-

ical and behavioral assays presumably by assembling with

endogenous Shaw subunits resulting in a non-functioning

tetrameric channel [25]. These data suggest that ShawTR

effectively traps endogenous Shaw in cytoplasmic inclusions and

demonstrate that endogenous Shaw is expressed in a subset of

clock neurons. Expression of ShawTR does not appear to change

the number, or disturb the viability or morphology of these

neurons (Figure 1 and data not shown).

To explore the role of Shaw in the clock we employed the

GAL4/UAS system to manipulate channel function and level in

different subsets of clock neurons. Three approaches were used: i)

targeted over-expression of Shaw using a full-length transgene; ii)

targeted expression of a dominant-negative C-terminal truncated

form of Shaw (ShawTR, see above) ([25]; Figure 1); and iii)

reduction of Shaw levels by expressing ShawRNAi. In animals

expressing the latter transgene, Shaw levels are significantly

decreased both when analyzed by immunoblotting and when

endogenous Shaw levels are quantitatively assessed immunohisto-

chemically in the intact brain (L.C. Griffith, personnel commu-

nication).

Over-expression of Shaw in the clock alters locomotor
activity in LD

In order to determine if Shaw has a specific role in regulating

rhythmic behavior, we measured locomotor activity in 12 hr:12 hr

light:dark (LD) cycles. To increase non-inactivating K+ current in

clock neurons, full-length Shaw was over-expressed in the tim-

GAL4 pattern (Figure 1). This would be expected to hyperpolarize

the RMP, thereby reducing spontaneous firing of action potentials

in the clock neurons in which it is expressed (14,25). To decrease

the Shaw mediated non-inactivating K+ current, ShawTR and

ShawRNAi were expressed. The functional effect of these

manipulations is a depolarization of the RMP, expected to result

in an increase in spontaneous firing of action potentials in the

neurons in which it is expressed (Figure 1; [25] and L.C. Griffith,

personnel communication).

Increasing Shaw in all the clock cells (tim-GAL4/UAS-Shaw;

Figure 2D) caused flies to have more locomotor activity compared

to controls (Figure 2A–B). Determining the overall average activity

for the day and night portion of the experiment respectively,

revealed that activity was significantly increased at night only

(Table 1). Adding Pdf-GAL80 to tim-GAL4/UAS-Shaw to remove

Shaw over-expression in the LNv has no effect on the hyperactive

tim-GAL4/UAS-Shaw phenotype (Figure 2, compare E to D;

Table 1). Surprisingly, even after restricting Shaw over-expression

to the Dorsal Neurons (tim-GAL4/UAS-Shaw; cry-GAL80) increased

night activity persisted (Figure 2F, Table 1). Together this

indicates that clock-cell specific Shaw expression in Pdf 2 and

Cry2 cells increases activity in LD. Similarly, cry-GAL4 (but not Pdf-

GAL4) driven Shaw over-expression resulted in increased activity at

Figure 1. Shaw is widely expressed in the adult brain including
in a subset of clock neurons. The clock neurons are divided into
lateral neurons (LN) and dorsal neurons (DN). The LN’s consist of 6
dorsally located neurons (LNd) and two cell clusters of ventrally located
neurons [4–6 large LNv (l-LNv) and 5 small (s-LNv)]. DN cells are divided
into ,15 DN1, 2 DN2 and ,40 DN3, which also differ in size and
position. The DN1 and DN3 project to the s-LNv and l-LNv. The s-LNv
projections terminate in the dorsal part of the brain while the l-LNv
projections terminate on the surface of the medulla and close to the
LNv of the contralateral brain hemisphere. The LNv pacemaker cells
(except for one) produce a neuropeptide, Pigment Dispersing Factor
(PDF) that is likely to function as a circadian output signal [36]. (A), (C)
and (E–G) tim-GAL4; UAS-Shaw-Truncated-FLAG stained with anti-FLAG
and green secondary antibody reveals the mostly cytoplasmic localized
truncated channel [25] in the tim complement of clock neurons [27]. An
antibody to the C terminus of Shaw (downstream of the truncation)
detects endogenous Shaw [25] co-localized (in white) in a subset of
each cluster of clock neurons, while magenta shows Shaw in and
around tim clock neurons. (B) Pdf-GAL80 was used to subtract
expression of the Shaw transgene in LNv clock neurons from the
remainder of the tim-GAL4 pattern, leaving expression in the DN and
LNd neurons intact [18,28–29]. (D) A Pdf-GAL4; UAS-Shaw-Truncated-
FLAG brain double-labeled with anti-FLAG and anti-Shaw. The dominant
negative Shaw subunits seem to aggregate endogenous Shaw subunits
in clusters in the PDF neuronal cell bodies, thereby making it possible to
visualize endogenous Shaw.
doi:10.1371/journal.pone.0002274.g001
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night, suggesting that the cry expressing Dorsal Neurons also

contribute to this phenotype (Figure S1C–D; Table 1). However,

when Shaw expression in the cry-GAL4 flies is excluded from the Pdf

cells (cry-GAL4/UAS-Shaw; Pdf-GAL80), no activity increase was

observed, indicating that the Pdf + cells also contribute to this

phenotype (Figure S1G; Table 1). We have no explanation why

Shaw expression in the Dorsal Neurons is not sufficient to increase

night activity in this latter genotype, except that the cry+ DNs

contribute to this phenotype to a lesser extent compared to the

cry2 ones (and require Shaw expression in other clock neurons as

well as for example in the LNv in the cry-GAL4 flies). In summary,

our results indicate that the DNs are sensitive to Shaw levels, and to

some extent the LNv too. These findings are in good agreement

with the endogenous Shaw expression detected in these cells

(Figure 1).

In contrast to Shaw over-expression, reducing Shaw function by

expressing the dominant-negative ShawTR, or reducing Shaw

levels by expressing ShawRNAi in all clock neurons had no clear

effect on locomotor rhythms in LD (Figure 2C, G; Table 1).

Although it appeared initially that tim-GAL4/UAS-ShawRNAi flies

exhibited reduced activity levels during the day and night

(Figure 2G), this behavior is likely attributable to the genetic

background of the UAS-ShawRNAi line (Table 1). As expected from

these results, no clear effects on LD behavior could be observed

Figure 2. Over-expression of Shaw increases activity during the night. Histograms show daily averages of locomotor activity in the LD
portion of the experiment (7 days). Open and black bars indicate activity levels during 30 min intervals when the lights were on and off, respectively.
All genotypes exhibit bimodal behavior, showing the characteristic anticipation of the lights-on transition in the morning, and the lights-off transition
in the evening. Only the LD behavioral pattern of the tim-GAL4 ShawRNAi/+; cry-GAL80/+ is altered, perhaps due to a more fundamental disturbance
of clock function (see text for details). SEM’s are indicated by dots above each histogram bar.
doi:10.1371/journal.pone.0002274.g002
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when ShawRNAi or ShawTR expression was restricted to the Pdf 2

cells (Figure 2H, and Figure S1H; Table 1) or to the Pdf + and cry+

cells, respectively (Figure S1E–F; Table 1, and data not shown).

A striking and surprising alteration from the wild-type behavior

pattern was observed when ShawRNAi expression was restricted to

the cry2 cells—a large fraction of the DNs. Silencing endogenous

Shaw expression in the DN mediated by ShawRNAi resulted in a

lack of behavioral anticipation of the ‘lights-on’ transition in the

morning, and only a marginal anticipation of the ‘lights-off’

transition in the evening (Figure 2I). But instead of a specific defect

in LD behavior, this abnormal behavioral pattern is most likely

caused by a more central clock or clock-output defect, resulting in

a drastically increased free running period (see below).

Changing levels of Shaw K+ channels in the clock results
in arrhythmic locomotor behavior or pronounced period
changes in free running conditions

To test the ability of flies to maintain their circadian rhythm in

constant conditions, flies were monitored in constant darkness

(DD) for 9–16 days following the LD portion of the experiment

(Figure 3). Expression of Shaw using tim-GAL4 results in arrhythmic

(AR) behavior immediately after the transition to DD (Figure 3D;

Table 2). Moreover, tim-GAL4/UAS-Shaw flies exhibited a reduced

lifespan, with individuals never surviving until the end of an

experiment (compare Figure 3D with Figure 3A–C). Flies that

express Shaw less extensively in the clock network (cry-GAL4/UAS-

Shaw or Pdf-GAL4/UAS-Shaw) maintain rhythmicity in DD albeit

with reduced amplitude compared to controls (Figure 3B–C, and

Table 2). It is also evident that over-expression of Shaw results in

higher activity levels, similar as observed in LD (Figure 2D,

Table 1).

Arrhythmicity in tim-GAL4/UAS-Shaw flies is similar to that seen

with over-expression of an open-rectifier K+ channel (dORK) in

clock neurons [15–16]. However for dORK-induced arrhythmi-

city, expression in the PDF neurons is sufficient, whereas Pdf-

GAL4/UAS-Shaw flies remain rhythmic (Figure 3B). Some flies

show signs of possible internal desynchronization (e.g., upper panel

in Figure 3B) but the effects are much milder than those resulting

from LNv expression of other channel transgenes [17,42].

cry-GAL4/UAS-Shaw flies, which express in fewer clock neurons

compared to tim-GAL4 (LNv, LNd, 4 DN1 and 2 DN3’s) maintain

rhythmic behavior (Figure 3C). This suggests that a spatially more

restricted over-expression of Shaw does not grossly impair clock

neuronal communication (Table 2 and Figure 3C). Removing

Shaw over-expression in the LNvs only (tim-GAL4, Pdf-GAL80/

UAS-Shaw) appears to result in a small increase of rhythmically

behaving flies compared to expressing Shaw in all clock neurons

(tim-GAL4/UAS-Shaw) suggesting that Shaw in the LNv influences

DD behavior to some extent (Table 2). But given the drastic

difference between tim-GAL4 and cry-GAL4 drivers, the cry-GAL4

negative DN1, DN2 and DN3 seem to be the main cause for the

observed behavioral arrhythmicity. To test if this is the case, we

restricted Shaw expression to these cells (tim-GAL4/UAS-Shaw; cry-

GAL80). Although not all the flies were arrhythmic in DD, more

than 30% were, and the rhythmic flies exhibited rather weak

rhythmicity (Figure 3E, Table 2). Therefore, as is the case for LD

behavior, the DN neurons seem to be particularly sensitive to Shaw

levels, and more importantly, they seem to be able to block

rhythmic locomotor activity, even if the Lateral Neurons are not

manipulated. Manipulations expected to increase electrical activity

of all clock neurons (tim-GAL4/UAS-ShawTR; Table 2) also lead to

reduced rhythmicity, but expression of ShawRNAi in all clock

neurons caused no gross effect on rhythmicity in DD with any of

the drivers (Table 2). However, reduction of Shaw expression in the

DNs alone (tim-GAL4 ShawRNAi/+; cry-GAL80/+) lead to a

dramatic period lengthening of 3.5 to 4 hr (Figure 3F, Table 2).

This clearly shows that endogenous Shaw contributes to clock

function in DD.

Interestingly, reducing Shaw function by means of the dominant

negative ShawTR transgene did not result in a period lengthening

when its expression was restricted to the DN cells (Table 2).

Although only a few flies were tested, they exhibited robust and

normal-period rhythms. This indicates a qualitative difference

between reducing Shaw levels (RNAi) and introducing a dominant

negative form of Shaw, which seems to multimerize with wild-type

Shaw subunits in cytoplasmic organelles (Figure 1, [25]).

Expression of Shaw-RNAi or Shaw-TR in clock neurons did not

lead to any early mortality.

Over-expression of Shaw does not interfere with basic
molecular oscillations in clock neurons

In order to see if Shaw-mediated changes in clock electrical

activity affect the molecular circadian rhythm we employed a

Table 1. Average activity levels during 12 hr: 12 hr light dark
cycles.

Genotype n day night total

Canton-S 12 24.9 21.5 23.2

tim-GAL4/UAS-Shaw 27 24.6 33.0 28.8

cry-GAL4/UAS-Shaw 12 36.2 47.6 41.9

Pdf-GAL4/UAS-Shaw 28 27.9 22.2 25.1

tim-GAL4, Pdf-GAL80/UAS-Shaw 16 32.5 27.1 29.8

tim-GAL4/UAS-Shaw; cry-GAL80/+ 16 17.8 27.1 22.4

cry-GAL4, Pdf-GAL80/UAS-Shaw 23 25.0 21.5 23.3

tim-GAL4/UAS-ShawTR 14 23.6 19.2 21.4

cry-GAL4/UAS-ShawTR 13 21.5 22.0 21.8

Pdf-GAL4/UAS-ShawTR 15 28.9 24.4 26.7

cry-GAL4, Pdf-GAL80/UAS-ShawTR 15 24.0 22.8 23.4

tim-GAL4 Pdf-GAL80/UAS-ShawTR 15 27.5 20.2 23.9

tim-GAL4/UAS-ShawTR; cry-GAL80/+ 4 27.1 38.7 32.9

tim-GAL4/UAS-ShawRNAi 18 8 16.6 12.3

tim-GAL4 Pdf-GAL80/UAS-ShawRNAi 15 23.2 12.1 17.7

tim-GAL4 ShawRNAi/+; cry-GAL80/+ 16 18.7 21.2 19.9

tim-GAL4 ShawRNAi/+; cry-GAL80/cry-GAL80 7 11.6 16.0 13.8

tim-GAL4/+ 32 28.5 16.9 22.7

cry-GAL4/+ 16 31.7 26.7 29.2

Pdf-GAL4/+ 28 23.6 23.8 23.7

UAS-Shaw/+ 16 26.1 15.6 20.8

UAS-ShawTR/+ 15 29.8 15.0 22.4

UAS-ShawRNAi/+ 14 16.6 14.5 15.5

UAS-Shaw/+; cry-GAL80/+ 14 22.5 9.7 16.1

Numbers in the ‘day’ and ‘night’ columns indicate the average activity (beam
crossings/30 min) of each fly of a given genotype during that part of the day. It
is calculated based on the activity displayed during each 30 min ‘bin’ during the
whole experiment (usually 7 days) that was also used to generate the daily
average histogram plots shown in Figure 2 and Figure S1. So, for example each
entry in the ‘day’ column is an average of a given fly’s activity during 30 min in
the light portion of 7 days, which is again averaged among all the flies tested
for this genotype (n). The SEM for each 30 min interval of the light and dark
portion for the 7-day average is indicated in Figure 2 and Figure S1.
doi:10.1371/journal.pone.0002274.t001
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luciferase reporter assay, which allows clock gene expression to be

monitored in real time in live flies (e.g. [30,32]). Because Shaw-

mediated changes in the DNs seem to have the greatest effect on

maintenance of rhythmic behavior in free running conditions

(Table 1) we used a promoter-less, Period-Luciferase (Per-Luc)

encoding fusion gene (the 8.0-luc:9D transgene), in which (Per-Luc)

is predominantly expressed in the DN1, DN2, and DN3 neurons

with occasional expression in a small subset of the LNd neurons

[30]. Flies were exposed to two LD cycles followed by either 3 or

5 days in constant darkness (Figure 4). Activation of Shaw

expression in all tim expressing cells did not have any drastic

effect on 8.0-luc reported PER expression in the DNs, neither in

LD nor in DD. This indicates that although all clock neurons are

electrically inactivated, the molecular feedback loops operate more

or less normally at least in the DNs. We did observe a slight

increase in period length when Shaw was over-expressed in the 8.0-

luc background indicating some influence on the central clock

mechanism (Figure 4, black arrows compared to control grey

arrows), perhaps caused by a missing feedback to central clock

neurons in behaviorally arrhythmic flies.

Figure 3. Effects of Shaw on free-running behavior. Locomotor activity of individual flies was measured for 7 days in LD followed by 9–16 days
in DD and plotted as actograms. Shaded and white areas indicate when lights were off and on, respectively. The height of the black bars on each line
of the actogram correlates with the activity level of the fly (measured in 30 min intervals). Free running period length (t) for the DD part of the
experiment is indicated below each actogram. To better visualize rhythmic behavior, each row of an actogram represents two consecutive days
(double plot). Note that tim-GAL4/UAS-Shaw flies (D) are arrhythmic (AR; see also Table 2) compared to Pdf-GAL4/UAS-Shaw flies (B) and a control: tim-
GAL4/+ (A) (other control flies showed a similar behavior; see also Table 2). Restricting expression of Shaw to the majority of dorsal neurons (tim-GAL4;
cry-GAL80) caused a significant proportion of the flies to be arrhythmic (E), while expression of Shaw-RNAi in these cells (F) caused a dramatic and
significant lengthening of the free-running period.
doi:10.1371/journal.pone.0002274.g003
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It is possible that broader effects on the molecular clock in

peripheral clock cells went unnoticed in our spatially restricted

luciferase assay. We therefore asked if Shaw-mediated electrical

silencing would affect molecular clock properties in the whole fly

heads (largely reflecting clock gene expression in the compound-

eye photoreceptor cells) and determined the abundance and

phosphorylation state of endogenous PER (e.g., [32]). To do this

we performed Western blots on proteins extracted from tim-GAL4/

UAS-Shaw and control heads collected at different times during a

LD cycle (Figure 5). Although we saw a robust over-expression of

Shaw protein in tim-GAL4/UAS-Shaw heads compared to controls

(Figure 5B), the relative abundance and phosphorylation state of

PER during the LD cycle did not seem to differ between tim-

GAL4/UAS-Shaw and control heads (Figure 5A). This result

correlates well with the non-disturbance of per-luciferase rhythms

by Shaw over-expression (Figure 4). Although we cannot rule out

that the molecular clock is affected in LNv and LNd pacemaker

neurons, we favor the idea that Shaw mis-expression specifically

effects neuronal clock output (see below and Discussion).

Shaw disrupts rhythmic accumulation and levels of PDF
in neuronal pacemaker terminals

A mechanism by which Shaw K+ channels could influence the

output of the clock independent of any effect on the molecular

rhythm is by affecting PDF release from clock neurons. PDF

release from Drosophila clock neurons is circadianly regulated and

controls output behavior [26]. In order to determine if changing

the level of Shaw in clock neurons affects rhythmic accumulation

of PDF in the dorsal projections of s-LNv neurons, we quantified

PDF levels in LNv terminals in the dorsal brain during a LD cycle

(Figure 6). In wild-type animals there is more PDF in the LNv

terminals during the day (ZT1 or ZT9) than at night (ZT13 or

ZT21; p,0.00001) (Figure 6A–B; cf [26]). This circadian variation

in PDF intensity is abolished when Shaw levels are manipulated in

the clock neurons using tim-GAL4. Shaw over-expression in all

clock neurons results in overall increased PDF levels compared to

wild-type (ZT1 p,0.05, ZT9 and ZT21 p,0.00001), which are

approximately the same at ZT1 and ZT21, and reaching peak and

trough levels at ZT9 or ZT13, respectively (p,0.00001).

Expression of dominant negative Shaw causes lower PDF levels

at day and night compared to wild-type (ZT9 p,0.00001), but

levels are somewhat higher at ZT21 and ZT13 compared to ZT9

(p,0.001 and p,0.05 respectively). Reducing Shaw in all clock

neurons using Shaw RNAi also results in an overall reduction of

PDF levels (ZT9 p,0.00001, ZT13 p,0.05) and peak levels are

also reached during the night (p,0.0001). We cannot rule out that

there might still be some PDF rhythm after Shaw over-expression,

and possibly still residual, but improperly phased rhythms in flies

with reduced Shaw.

The results suggests that increasing hyperpolarizing Shaw

throughout the clock circuit causes LNv to display decreased

probability of neuropeptide release resulting in the accumulation

of PDF in the LNv terminals. In turn, this could explain the

increased LD activity levels displayed in this genotype. Genotypes

with a reduction of functional Shaw throughout the clock have

lower PDF levels in their LNv terminals, perhaps caused by an

accelerated neuropeptide release, which in this case is not

correlated with a reduction of behavioral activity.

Surprisingly, when Shaw is manipulated only in the PDF

expressing LNv, rhythmic accumulation of PDF is not

disrupted. PDF in the LNv terminals remains higher during

the day (ZT1 or ZT9) than at night (ZT21; p,0.00001), as

in the controls (Figure 7A–B). Furthermore, the bidirectional

change in absolute levels of PDF in LNv terminals is no

longer observed. There is no change in absolute levels of

PDF at ZT1 and ZT9 between genotypes. At ZT21 PDF

levels in LNv terminals of Pdf-GAL4/UAS-ShawTR and wild-

type are the same, while Pdf-GAL4/UAS-Shaw (p,0.01) and

Pdf-GAL4/UAS-ShawRNAi (p,0.001) show weakly increased

PDF abundance.

This suggests that changing Shaw levels in LNv neurons alone

has little effect on either rhythmic accumulation or levels of PDF in

the LNv terminals. These data are consistent with the lacking

effect of changing Shaw levels in LNv neurons on locomotor

activity under LD conditions. Instead it seems that changing Shaw

levels in the DN cells has the greatest effect on locomotor activity

(Figures 2–3; Tables 1–2) and rhythmic accumulation or levels of

PDF levels in the LNv terminals (Figures 5–6). This implies that

the DN may affect PDF release indirectly, pointing to a potential

circuit level effect of Shaw mediated changes in electrical activity

of the DN. For instance, the Shaw mediated change in electrical

activity may cause release of an anterograde or retrograde signal

that influences the LNv’s rhythmic accumulation or level of PDF.

Furthermore, the larger effect of changing Shaw levels in DN cells

Table 2. Shaw levels in clock neurons influence rhythmic
behavior in constant darkness.

Genotype n
%
Rhythmic t (h)

Rhythm
Strength
(RS)

w; Canton-S 20 95 23.760.1 6.260.4

tim-Gal4/UAS-Shaw 39 13 24.460.4 2.560.2

cry-Gal4/UAS-Shaw 34 88 23.860.1 6.260.4

Pdf-Gal4/UAS-Shaw 27 89 23.760.1 5.560.4

tim-Gal4, Pdf-Gal80/UAS-Shaw 15 20 23.960.2 2.560.2

tim-Gal4/UAS-Shaw; cry-Gal80/+ 15 67 24.060.1 3.860.4

cry-Gal4, Pdf-Gal80/UAS-Shaw 10 100 23.860.2 5.660.8

tim-Gal4/UAS-ShawTR 46 50 24.660.2 2.760.2

cry-Gal4/UAS-ShawTR 23 91 24.260.1 5.960.5

Pdf-Gal4/UAS-ShawTR 15 100 24.260.1 8.360.6

cry-Gal4, Pdf-Gal80/UAS-ShawTR 11 100 24.160.1 5.860.6

tim-Gal4 Pdf-Gal80/UAS-ShawTR 15 87 23.560.1 3.860.3

tim-Gal4/UAS-ShawTR; cry-Gal80/+ 3 100 23.960.3 5.561.0

tim-Gal4/UAS-ShawRNAi 32 97 24.360.1 4.860.3

tim-Gal4 Pdf-Gal80/UAS-ShawRNAi 41 85 24.460.1 3.460.2

Pdf-Gal4/UAS-ShawRNAi 27 93 24.560.1 4.060.2

tim-Gal4 ShawRNAi/+; cry-Gal80/+ 20 90 27.460.4 5.460.4

tim-Gal4/+ 19 89 24.660.2 4.960.6

cry-Gal4/+ 20 90 24.060.1 6.760.5

Pdf-Gal4/+ 29 90 24.560.1 4.560.3

cry-Gal4, Pdf-Gal80/+ 13 100 24.160.1 6.160.5

tim-Gal4, Pdf-Gal80/+ 14 100 24.760.1 3.860.1

UAS-Shaw/+ 23 100 23.760.1 5.960.2

UAS-ShawTR/+ 15 100 23.560.1 4.560.3

UAS-ShawRNAi/+ 29 93 23.660.1 6.560.4

UAS-Shaw/+; cry-Gal80/+ 13 85 23.760.2 4.760.5

Individual male flies were first kept in light:dark (LD) cycles for 7 days, before
being released into constant darkness (DD). Free-running period length (t) and
the significance of the rhythms (RS) were determined by autocorrelation as
described by Levine et al [33]. Flies with an RS value $2 were considered
rhythmic. Errors indicate SEMs.
doi:10.1371/journal.pone.0002274.t002
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on locomotor activity maybe related to expression of the PDF

receptor in these cells, suggesting that they have a role in receiving

and transferring circadian signals to downstream neurons

controlling locomotor activity [43–44].

Discussion

We show that Shaw-mediated changes in clock neuronal

electrical activity severely affect the fly’s locomotor activity in

Figure 4. Over-expression of Shaw does not disrupt the molecular clock in Dorsal clock Neurons (DNs). Flies of the indicated genotypes
were individually placed in micro titer plates containing food and luciferin and bioluminescence levels were measured automatically (Materials and
Methods). Flies were initially exposed to two LD cycles followed by 3 (upper panel) and 5 (lower panel) days in constant darkness (DD). Average blots
are shown. The 8.0-luc:9D transgene (a promoter-less, Period-Luciferase encoding fusion gene) is predominantly expressed in the LNd, DN1, and DN3

neurons [30]. Note that expression of Shaw is correlated with a small increase in period length in both experiments. Black and grey arrows indicate
the rising phase (upper panel), or peak (lower panel) of luciferase expression for the Shaw expressing and control flies, respectively. White bars
indicate times when the lights were ‘‘on’’, black bars indicate ‘‘lights off’’. Grey bars signify times in constant darkness when the lights would have
been ‘‘on’’ in a continued light:dark cycle (subjective day).
doi:10.1371/journal.pone.0002274.g004
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Figure 5. Peripheral clocks are not affected by over-expression of Shaw. Total head extracts were prepared from flies maintained under LD
conditions and collected at the time (ZT, hours) indicated above each lane. Open or solid bars between blots indicate lights being on or off (e.g. ZT0 is
the time of ‘‘lights on’’ and ZT12 is time of ‘‘lights off’’). (A) To determine the time-dependent changes in mobility and abundance of PER in wild-type
heads, equal numbers of UAS-Shaw/CyO heads (25) were loaded per lane and analyzed by Western blotting using anti-PER antibodies [32]. In order to
determine the effect of over-expression of Shaw, equal numbers of tim-GAL4/UAS-Shaw heads (25) were loaded per lane and a similar change in
temporal abundance and phosphorylation of PER was seen as in wild-type. (B) Robust Shaw over-expression is visible by comparing tim-GAL4/UAS-
Shaw to UAS-Shaw/CyO on a separate nitrocellulose membrane incubated with anti-Shaw antibodies [25]. Due to the high quantity of Shaw in the
over-expressing flies a shorter exposure of the tim-GAL4/UAS-Shaw half of the blot is shown and only 7 heads of this genotype were loaded
(compared to 25 heads of the control). Three experiments were performed under these conditions with similar results.
doi:10.1371/journal.pone.0002274.g005

Figure 6. Changing Shaw levels in all clock neurons effects cyclic accumulation of PDF in LNv terminals. (A) Confocal image of the
dorsal projections of the LNv neurons revealed by anti-PDF antibodies. The panels show representative samples of adult brains containing clock
neurons with normal levels of Shaw (UAS-Shaw/CyO), elevated levels of Shaw (tim-GAL4/UAS-Shaw), a dominant-negative form of Shaw (tim-GAL4/
UAS-ShawTR), or reduced levels of Shaw (tim-GAL4/UAS-Shaw-RNAi) that were fixed at the two time points indicated (ZT9 and ZT21). (B) Quantification
of average staining intensity of the dorsal LNv projections from a single experiment (n = 7 to 10 hemispheres). Error bars represent SEM. In control
brains PDF accumulation is higher during the day compared to the night. This circadian difference in PDF intensity is not seen when Shaw levels are
manipulated in the clock neurons using tim-GAL4. In addition PDF tends to accumulate to higher levels compared to wild-type when Shaw levels are
increased, while reduction or dominant-negative forms of Shaw tend to have the opposite effect.
doi:10.1371/journal.pone.0002274.g006
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LD and DD conditions. Mammalian Shaw homologues have been

shown to have a central function in clock neurons, and were

recently demonstrated to be the first circadianly-regulated intrinsic

voltage-gated currents in mammalian cells [21].

In LD conditions, over-expression of Shaw K+ channels

(electrical inactivation) results in an increase in locomotor activity

at night. Therefore our data suggest that under LD conditions

appropriate Shaw-mediated electrical activity is not required for

rhythmic output from the clock, but rather regulates overall

behavioral activity levels with the DN neurons being particularly

important for this regulation. Similarly in SCN neurons of the

mammalian system, decreased electrical activity is correlated with

increased behavioral activity [5,12].

In DD, over-expression of Shaw in clock neurons lead to

arrhythmic behavior, consistent with previous reports, in which

clock neurons were electrically silenced [15–16]. A dominant

negative form of Shaw (ShawTR) lead to mild arrhythmia, but

reduction by RNAi had no effect. This suggests that the underlying

causes of Shaw RNAi-induced hyperexcitability are different for

Shaw dominant-negative-induced hyperexcitability and may

involve differences in localization of the channel or differences in

compensatory changes in other channels that arise from over-

expression of the two different transgenes.

Again as for Shaw mediated changes in LD, the Dorsal Neurons

seem to have a special role in regulation of DD behavior and are

particularly sensitive to changes in the level of Shaw. Restricting

over-expression of Shaw to subsets of the Dorsal Neurons with tim-

GAL4/UAS-Shaw; cry-GAL80 (cry-GAL80 has been shown to be

effective in suppressing tim-GAL4 driven expression in all LNs, but

allowing expression in the majority of DNs [18,28–29] caused flies

to be arrhythmic in DD or to display weaker rhythms.

Furthermore, reduction of Shaw expression in the DNs alone

(tim-GAL4 ShawRNAi/+; cry-GAL80/+) caused a dramatic period

lengthening of 3.5–4 hr, confirming that endogenous Shaw

contributes to clock function under constant conditions.

The fact that we observe this phenotype only when manipu-

lating Shaw in a subset of the clock neurons even though we find

endogenous Shaw in all clock-neuronal groups, strongly suggests

that Shaw may mediate neuronal properties of all clock neurons.

However reducing Shaw levels equally throughout the whole clock

Figure 7. Changing Shaw levels in the LNv’s only, does not effect cyclic accumulation of PDF. (A) Maximum projections are shown for
confocal sections containing the dorsal projections of the LNv neurons revealed by anti-PDH antibodies. The panels show representative samples of
adult brains containing clock neurons with normal levels of Shaw in the LNv (UAS-Shaw/CyO), elevated levels of Shaw (Pdf-GAL4/UAS-Shaw), a
dominant-negative form of Shaw (Pdf-GAL4/UAS-Shaw-TR), or reduced levels of Shaw (Pdf-GAL4/UAS-Shaw-RNAi) that were fixed at two time points
indicated (ZT9 and ZT21). (B) Quantification of average intensity of the LNv dorsal projections from a single experiment (n = 7 to 10 hemispheres).
Error bars represent SEM. Brains from all genotypes display similar PDF levels at all times.
doi:10.1371/journal.pone.0002274.g007
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neuronal network has little effect, perhaps because the commu-

nication between the individual cells with respect to each other is

not changed and their electrical properties are all changed in the

same direction. If only a subset of the network is altered (i.e., the

DN), communication can be influenced or disrupted, resulting in

long period rhythms. Alternatively, the clock may be able to

compensate for equal increases in electrical activity throughout its

neural circuit and preserve its functional output. If however

activity is only changed in part of the hierarchy of clock neurons

(the DNs), then the clock circuit cannot compensate as a whole

and behavior becomes compromised, in this case indicated by a

lengthening of the free-running period.

Our results are similar to those obtained after blocking

pacemaker synaptic output with tetanus toxin (ttx) [45]. First, in

DD, expression of either ttx or Shaw does not cause behavioral

arrhythmicity when expressed in PDF neurons alone. Both must

be expressed in all clock neurons or in all PDF2 clock neurons to

cause arrhythmicity. Second, blocking output of TIM but not PDF

neurons by either transgene increases activity at night during LD

conditions. This correlation suggests that Shaw somehow affects

chemical signaling between clock neurons in non-PDF cells. In

turn this could explain the alteration of PDF accumulation in LNv

terminals observed with tim-GAL4 (but not Pdf-GAL4) driven Shaw

over-expression and down-regulation.

Shaw expression in all tim expressing cells had no gross effects

on PER oscillations in LD in peripheral clock cells (Figure 5), nor

did it interfere with self-sustained rhythmic PER expression in the

DNs (Figure 4). This suggests that endogenous Shaw is important

for regulated output from the clock neurons but not for sustaining

clock molecular feedback loops. Perhaps Shaw controls RMP in

clock neurons in a circadian fashion and hence affects the

rhythmic release of neuropeptides such as PDF or other

neurotransmitters from clock neurons. Indeed we find that altering

Shaw levels in clock neurons disrupts the cyclic accumulation of

PDF in the dorsal projections of the LNv neurons. Increasing

Shaw in all clock neurons causes PDF accumulation in small LNv

terminals possibly by causing a decrease in the probability of

neuropeptide release. This suggests that Shaw-dependent changes

in the LNd and DNs are responsible for rhythmic accumulation of

PDF, which in turn may mediate changes in LD locomotor

activity. This result also suggests that Shaw regulation of PDF

release is not cell-autonomous and may result from an indirect

effect of the LNd and DN on the LNv terminals. Alternatively, the

relevant LNd and DN cells express the PDF receptor and are

therefore important for the transfer of the PDF signal to

downstream neurons controlling locomotor activity.

It is not understood how temporal information from the

molecular clock in the nucleus is conveyed to the membrane, and

how rhythmic physiological events in the membrane feedback to the

molecular clock. So far this question has been addressed by

expression of dORK in LNv neurons [15–16], which results in

behavioral arrhythmicity in DD and loss of molecular clock protein

cycling. This is surprising because in cultured mammalian SCN

clock neurons, reversal of action potential blockade by tetrodotoxin

allows circadian firing rhythms to return with the exact phase as

when the tetrodotoxin was added [46]. This suggests that in the

SCN, the clock still runs even when it is decoupled from membrane

properties. Similarly in flies, blockade of synaptic release in all clock

neurons (tim-GAL4/UAS-ttx) caused DD arrhythmia but TIM

cycling in all clock neuronal types (except for the l-LNv, who stop

cycling immediately after transfer to DD) remained normal in tim-

GAL4/UAS-ttx flies under LD and DD [45].

Another study that addressed the relationship between electrical

activity and the molecular clock of Drosophila used a series of

mutations in narrow abdomen (na), another channel encoding gene

expressed in clock neurons [18]. na mutations would be expected

to hyperpolarize RMP and result in DD behavioral arrhythmicity.

However unlike the case of dORK, this was not correlated with a

loss of molecular clock protein cycling [18]. It is not clear why

Nitabach et al. [15] saw a disruption of PER oscillations in flies

with electrically silenced clock neurons, but we and others have

not. It is possible that expression of dORK channels has a more

profound effect on neuronal membrane physiology than any other

manipulation. But this seems unlikely as both panneural

expression of Shaw [25] and dORK [15] result in lethality, while

pan-clock-neuronal expression of both channels results in

arrhythmicity (Figure 3 this study; and Figure 6 [16]). There are

experimental differences between their study and ours that may

explain the contradictory results. Nitabach et al. [15] electrically

inactivated only the LNv neurons with an exogenous Open

Rectifier K+ channel (dORK) and then used semi-quantification of

intensity of PER and TIM antibody staining of the LNvs to judge

the status of the molecular clock. In contrast, we electrically

inactivated all clock neurons using an endogenous non-inactivat-

ing K+ channel and directly measured per-luciferase oscillations of

the DNs in the intact animal.

Based on these studies, it seems uncertain if changes of

membrane properties feedback to influence circadian clock gene

expression and if they are indeed required for molecular clock

function. If true, this would imply that in Drosophila membrane

properties may only influence clock output. In addition, the fact

that we observed Shaw-dependent period-lengthening of behav-

ioral rhythms and PER oscillations suggests that altered mem-

brane properties may modulate the molecular clock. Such a Shaw-

dependent lengthening in circadian period in our luciferase or

locomotor activity data also reiterates a key current concept in the

study of circadian systems: the temporal readout to behavior does

not dependent solely on a cell autonomous molecular timekeeper,

but coordinated clock output is a property that arises from many

clock cells acting together in concert with electrical activity and

neurochemicals mediating intercellular signaling and synchroni-

zation. In this respect it will be interesting to determine the

molecular period of the different subsets of clock neurons in the

long period flies caused by reduced Shaw levels in the DN only.

Our data lends further support to recent studies that show the

electrical activity of Drosophila clock cells is circadianly regulated

with resting membrane potential and associated electrophysiolog-

ical parameters varying between subjective day and subjective

night [47]. It has also been shown that clock cell electrical activity

affects the coordination of molecular oscillations between clock

cells by both PDF-dependent and independent factors [17]. When

compared to our current understanding of the SCN network [48]

these findings along with another recent Drosophila study that

demonstrated that intracellular Ca2+ regulates clock cell oscilla-

tions [49], would suggest that many physiological in addition to

molecular mechanisms of circadian clocks are evolutionary

conserved between the Drosophila brain clock and the mammalian

SCN.

Under free-running conditions appropriate levels of Shaw-

mediated electrical activity are required in the clock network to

maintain rhythmic activity, whereby the DN (especially the cry-

GAL4 negative DN1-3) appear to be particularly important for this

behavior. Alternatively (and especially in respect to the PDF

staining results), the s-LNvs could be the ‘‘most important’’ Shaw

cells, but the cry-GAL4 and Pdf-GAL4 drivers maybe too weak

(compared to tim-GAL4) to observe an effect of Shaw expression on

the circadian clock. Either way our data suggest that PDF negative

clock neurons participate in regulation of DD behavior. The
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importance of the DN in circadian rhythms has been reiterated in

recent studies demonstrating that these cells regulate rhythmic

behavior in LL [29,40] and are also important for relaying PDF

receptor mediated signals to cells regulating circadian output

behavior [43–44].

Based on our results it is likely that Shaw modulates electrical

activity of (DN) clock neurons, which control circadian locomotor

behavior by affecting rhythmic release of PDF. We have

demonstrated a central role of Shaw K+ channels for coordinated

and rhythmic output from clock neurons in Drosophila, which seems

to be conserved in mammals, where homologues of Shaw have

also been implicated in controlling circadian behavior [21]. Future

studies will hopefully reveal which molecules connect the

molecular clock with Shaw’s neuronal membrane function.

Supporting Information

Figure S1 Behavior of flies in light: dark cycles over-expressing

Shaw or a dominant-negative form of Shaw in different subsets of

clock neurons. Histograms show daily averages of locomotor

activity in the LD portion of the experiment (7 days). Open and

black bars indicate activity levels during 30 min intervals when the

lights were on and off, respectively. All genotypes exhibit bimodal

behavior, showing the characteristic anticipation of the lights-on

transition in the morning, and the lights-off transition in the

evening. Note that only the cry-GAL4/Shaw flies exhibit a Shaw-

dependent activity increase during the night (see text and Table 1

for details). SEM’s are indicated by dots above each histogram bar.

Found at: doi:10.1371/journal.pone.0002274.s001 (6.01 MB TIF)
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