Supplementary Materials

Function of triazenido compound for electrocatalytic hydrogen production catalyzed by platinum complex

Yun-Xiao Zhang, Chen-Neng Lin and Shu-Zhong Zhan*

Table of context

1	Fig. S1. ¹ H NMR spectrum of ligand (HL)
2	Fig. S2. ³¹ P NMR spectrum of Pt(PPh ₃) ₂ Cl ₂ in CDCl ₃ .
3	Fig. S3 . ³¹ P NMR spectrum of complex 1 in CDCl ₃ .
4	Fig. S4. ESI-MS of complex 1 in methanol.
5	Fig. S5 . ESI-MS of $Pt(PPh_3)_2Cl_2$ in methanol.
6	Fig. S6. CV of 2.5 mM HL in 0.10 M of [n-Bu ₄ N]ClO ₄ DMF solution at a glassy carbon electrode and a scan rate of 100 mV/s, ferrocene internal standard (*).
7	 Fig. S7. (a) Scan rate dependence of precatalytic waves for a 0.76 mM solution of complex 1 with 0.10 M [n-Bu₄N]ClO₄, at scan rates from 50 to 300 mV/s. (b) Scan rate dependence of precatalytic waves for a 1.26 mM solution of Pt(PPh₃)₂Cl₂ with 0.10 M [n-Bu₄N]ClO₄, at scan rates from 50 to 300 mV/s.
8	Fig. S8. Temperature dependence of cyclic voltammograms for a 0.10 M [n-Bu ₄ N]ClO ₄ DMF solution with 3.40 mM of complex 1 (a), and 3.40 mM

 $Pt(PPh_3)_2Cl_2.$

	Fig. S9. CVs of 2.50 mM solution of HL with varying concentrations of acetic
	acid in DMF. Conditions: 0.10 M [n-Bu ₄ N]ClO ₄ as supporting electrolyte, scan
9	rate: 100 mV/s, glassy carbon working electrode (1 mm diameter), Pt counter
	electrode, Ag/AgNO ₃ reference electrode. Ferrocene internal standard (*).
	Fig. S10. Charge buildup versus time from electrolysis of blank (black), 9.32
	μ M HL (red), 9.32 μ M Pt(PPh ₃) ₂ Cl ₂ (blue), the mixture of 9.32 μ M HL and
10	9.32 µM Pt(PPh ₃) ₂ Cl ₂ (green), and 9.32 µM Pt(PPh ₃) ₂ (L)Cl (violet) in DMF
	(0.10 M [n-Bu ₄ N]ClO ₄) under -1.45 V versus Ag/AgNO ₃ .
	Fig. S11. (a) CVs of complex Pt(PPh ₃) ₂ Cl ₂ in different concentration. (b) CVs
	of Pt(PPh ₃) ₂ Cl ₂ (0.25 µM) in different pH. Conditions: Glassy carbon working
11	electrode (1 mm diameter), Pt wire counter electrode, Ag/AgCl reference
	electrode.
	Fig. S12. (a) CVs of HL in different concentration. (b) CVs of HL (0.25 μ M)
	in different pH. Conditions: 0.25 M phosphate buffered solution (pH 7.0),
12	glassy carbon working electrode (1 mm diameter), Pt wire counter electrode,
	Ag/AgCl reference electrode.
	Fig. S13. (a) GC traces after a 1-h controlled-potential electrolysis at -1.45V
	vs Ag/AgCl of 2.33 µM Pt(PPh ₃) ₂ (L)Cl in 0.25 M phosphate buffer (pH 7.0). A
	standard of CH ₄ was added for calibration purposes. (b) Measured (red) and
	calculated (black) pH changes assuming a 100% Faradic efficiency of complex
13	during electrolysis. (the theoretical pH change over time can be calculated by
	the equation of $pH = 14 + lg \frac{\sum It}{\sum It}$ where I = current (A), t = time (s), F =
	FV FV
	Faraday constant (96485 C/mol), V = solution volume (0.05 L).
	Fig. S14. (a) GC traces after a 1-h controlled-potential electrolysis at -1.45 V
14	vs Ag/AgCl of 2.33 µM Pt(PPh ₃) ₂ Cl ₂ in 0.25 M phosphate buffer (pH 7.0). A
	standard of CH ₄ was added for calibration purposes. (b) Measured (red) and

	calculated (black) pH changes assuming a 100% Faradic efficiency of complex
	during electrolysis. (the theoretical pH change over time can be calculated by
	the equation of $pH = 14 + lg \frac{\sum It}{FV}$ where I = current (A), t = time (s), F =
	Faraday constant (96485 C/mol), V = solution volume (0.05 L).
	Fig. S15. (a) GC traces after a 1-h controlled-potential electrolysis at -1.45 V
	vs Ag/AgCl of 2.33 μ M HL in 0.25 M phosphate buffer (pH 7.0). A standard of
	CH4 was added for calibration purposes. (b) Measured (red) and calculated
	(black) pH changes assuming a 100% Faradic efficiency of complex during
15	electrolysis. (the theoretical pH change over time can be calculated by the
	equation of $pH = 14 + lg \frac{\sum It}{FV}$ where I = current (A), t = time (s), F = Faraday
	constant (96485 C/mol), $V =$ solution volume (0.05 L).
-	Fig. S16. (a) Charge buildup versus time from 2.33 μ M complex 1 in a 0.25
	M buffer (pH 7.0) under -1.45 V vs Ag/AgCl. (b) Charge buildup versus time
16	from 2.33 μ M Pt(PPh ₃) ₂ Cl ₂ in a 0.25 M buffer (pH 7.0) under -1.45 V vs
	Ag/AgCl. (c) Charge buildup versus time from 2.33 μ M HL in a 0.25 M
	buffer (pH 7.0) under -1.45 V vs Ag/AgCl.
17	Eq. S1. The calculation of TOF for Pt(PPh ₃) ₂ Cl ₂ (in DMF)
18	Eq. S2. The calculation of TOF for Pt(PPh ₃) ₂ (L)Cl (in DMF)
19	Eq. S3. The calculation of TOF for Pt(PPh ₃) ₂ (L)Cl (in buffer, pH 7.0)
20	Eq. S4. The calculation of TOF for $(Pt(PPh_3)_2Cl_2$ (in buffer, pH 7.0).
21	Eq. S5. The calculation of TOF for HL (in buffer, pH 7.0)

22	Table S1. Crystallographic data for HL and Pt(PPh_3)2(L)Cl 1
23	Table S2. Selected bond lengths (Å) and angles (o) for HL and $Pt(PPh_3)_2(L)Cl 1$

Fig. S1. ¹H NMR spectrum of ligand (HL)

Fig. S2. ³¹P NMR spectrum of Pt(PPh₃)₂Cl₂ in CDCl₃.

Fig. S5. ESI-MS of Pt(PPh₃)₂Cl₂ in methanol.

Fig. S6. CV of 2.50 mM HL in 0.10 M of [n-Bu₄N]ClO₄ DMF solution at a glassy carbon electrode and a scan rate of 100 mV/s, ferrocene internal standard (*).

Fig. S7. (a) Scan rate dependence of precatalytic waves for a 0.76 mM solution of complex **1** with 0.10 M [n-Bu₄N]ClO₄, at scan rates from 50 to 300 mV/s. (b) Scan rate dependence of precatalytic waves for a 1.26 mM solution of $Pt(PPh_3)_2Cl_2$ with 0.10 M [n-Bu₄N]ClO₄, at scan rates from 50 to 300 mV/s.

Fig. S8. Temperature dependence of cyclic voltammograms for a 0.10 M $[n-Bu_4N]ClO_4$ DMF solution with 3.40 mM of complex 1 (a), and 3.40 mM $Pt(PPh_3)_2Cl_2$.

Fig. S9. CVs of 2.50 mM solution of HL with varying concentrations of acetic acid in DMF. Conditions: 0.10 M [n-Bu₄N]ClO₄ as supporting electrolyte, scan rate: 100 mV/s, glassy carbon working electrode (1 mm diameter), Pt counter electrode, Ag/AgNO₃ reference electrode. Ferrocene internal standard (*).

Fig. S10. Charge buildup versus time from electrolysis of blank (black), 9.32 μ M HL (red), 9.32 μ M Pt(PPh₃)₂Cl₂ (blue), the mixture of 9.32 μ M HL and 9.32 μ M

 $Pt(PPh_3)_2Cl_2 \text{ (green), and } 9.32 \ \mu\text{M} \ Pt(PPh_3)_2(L)Cl \text{ (violet) in DMF (0.10 M} \text{ [n-Bu_4N]ClO_4) under -1.45 V versus Ag/AgNO_3.}$

Fig. S11. (a) CVs of complex $Pt(PPh_3)_2Cl_2$ in different concentration. (b) CVs of $Pt(PPh_3)_2Cl_2$ (0.25 μ M) in different pH. Conditions: Glassy carbon working electrode (1 mm diameter), Pt wire counter electrode, Ag/AgCl reference electrode.

Fig. S12. (a) CVs of HL in different concentration. (b) CVs of HL (0.25 μ M) in different pH. Conditions: 0.25 M phosphate buffered solution (pH 7.0), glassy carbon working electrode (1 mm diameter), Pt wire counter electrode, Ag/AgCl reference electrode.

Fig. S13. (a) GC traces after a 1-h controlled-potential electrolysis at -1.45V vs Ag/AgCl of 2.33 μ M Pt(PPh₃)₂(L)Cl in 0.25 M phosphate buffer (pH 7.0). A standard of CH₄ was added for calibration purposes. (b) Measured (red) and calculated (black) pH changes assuming a 100% Faradic efficiency of complex during electrolysis. (the theoretical pH change over time can be calculated by the equation of

$$pH = 14 + \lg \frac{\sum It}{FV}$$
 where I = current (A), t = time (s), F = Faraday constant (96485)

C/mol), V = solution volume (0.05 L).

Fig. S14. (a) GC traces after a 1-h controlled-potential electrolysis at -1.45 V vs Ag/AgCl of 2.33 μ M Pt(PPh₃)₂Cl₂ in 0.25 M phosphate buffer (pH 7.0). A standard of CH₄ was added for calibration purposes. (b) Measured (red) and calculated (black) pH changes assuming a 100% Faradic efficiency of complex during electrolysis. (the theoretical pH change over time can be calculated by the equation of

$$pH = 14 + lg \frac{\sum It}{FV}$$
 where I = current (A), t = time (s), F = Faraday constant (96485)

C/mol), V = solution volume (0.05 L).

Fig. S15. (a) GC traces after a 1-h controlled-potential electrolysis at -1.45 V vs Ag/AgCl of 2.33 μ M HL in 0.25 M phosphate buffer (pH 7.0). A standard of CH₄ was added for calibration purposes. (b) Measured (red) and calculated (black) pH changes assuming a 100% Faradic efficiency of complex during electrolysis. (the theoretical

pH change over time can be calculated by the equation of $pH = 14 + lg \frac{\sum It}{FV}$ where I = current (A), t = time (s), F = Faraday constant (96485 C/mol), V = solution volume

(0.05 L).

Fig. S16. (a) Charge buildup versus time from 2.33 μ M complex **1** in a 0.25 M buffer (pH 7.0) under -1.45 V *vs* Ag/AgCl. (b) Charge buildup versus time from 2.33 μ M Pt(PPh₃)₂Cl₂ in a 0.25 M buffer (pH 7.0) under -1.45 V *vs* Ag/AgCl. (c) Charge buildup versus time from 2.33 μ M HL in a 0.25 M buffer (pH 7.0) under -1.45 V *vs* Ag/AgCl.

$$TOF = \frac{\Delta C}{F \cdot n_1 \cdot n_2 \cdot t} = \frac{0.0234C \times 3600}{96485C \cdot mol^{-1} \times 2 \times 0.373 \times 10^{-6} mol \times 120} = 9.84 \text{h}^{-1}$$

Eq. S1. The calculation of TOF for Pt(PPh₃)₂Cl₂ (in DMF)

$$TOF = \frac{\Delta C}{F \cdot n_1 \cdot n_2 \cdot t} = \frac{0.0603C \times 3600}{96485C \cdot mol^{-1} \times 2 \times 0.373 \times 10^{-6} mol \times 120} = 25.36 h^{-1}$$

Eq. S2. The calculation of TOF for Pt(PPh₃)₂(L)Cl (in DMF)

$$TOF = \frac{\Delta C}{F \cdot n_1 \cdot n_2 \cdot t} = \frac{1.55C \times 3600}{96485C \cdot moI^{-1} \times 2 \times 0.373 \times 10^{-6} moI \times 120} = 651.87h^{-1}$$

Eq. S3. The calculation of TOF for Pt(PPh₃)₂(L)Cl (in buffer, pH 7.0)

$$TOF = \frac{\Delta C}{F \cdot n_1 \cdot n_2 \cdot t} = \frac{0.583C \times 3600}{96485C \cdot mol^{-1} \times 2 \times 0.373 \times 10^{-6} mol \times 120} = 245.18 h^{-1}$$

Eq. S4. The calculation of TOF for $(Pt(PPh_3)_2Cl_2$ (in buffer, pH 7.0).

$$TOF = \frac{\Delta C}{F \cdot n_1 \cdot n_2 \cdot t} = \frac{0.226C \times 3600}{96485C \cdot moI^{-1} \times 2 \times 0.373 \times 10^{-6} moI \times 120} = 95.06 h^{-1}$$

Parameter	HL	Pt(PPh ₃) ₂ (L)Cl 1
Empirical formula	$C_{12}H_{12}N_4O$	$C_{52}H_{51}ClN_4O_3P_2Pt$
Formula weight	228.26	1072.45
λ (Å)	0.71073	0.71073
Crystal system	monoclinic	monoclinic
Space group	P2(1)/c	P2(1)/c
a/Å	18.961(4)	23.331(3)
b/Å	5.3302(11)	10.0888(13)
c/Å	25.673(10)	22.298(2)
α/º	90	90
β/°	115.89(2)	116.786(3)
γ/ ^o	90	90
V/Å ³	2334.2(11)	4685.5(10)
Z	8	4
Dc/Mgm ⁻³	1.299	1.520
F(000)	960	2160
θ range for data collection	3.19 to 27.46°	3.28 to 27.48°
Reflections collected/unique	20901/5246	23259/10452
Data/restraints/parameters	5246/0/307	10452/0/538
Goodness-of-fit on F ²	0.940	1.070
Final R indices [I>2sigma(I)]	R1 = 0.0520	R1 = 0.0664
	wR2 = 0.1302	wR2 = 0.1664
R indices (all data)	R1 = 0.1278	R1 = 0.0828
	wR2 = 0.1817	wR2 = 0.1726

Table S1. Crystallographic data for HL and $Pt(PPh_3)_2(L)Cl 1$

HL			
N(1)-N(2)	1.269(3)	N(1)-C(1)	1.422(3)
N(2)-N(3)	1.336(3)	N(3)-C(8)	1.388(3)
N(4)-C(8)	1.333(3)		
N(1)-N(2)-N(3)	110.6(2)	N(3)-C(8)-N(4)	113.6(2)
Complex 1			
Pt(1)-N(2)	2.038(7)	Pt(1)-P(1)	2.238(2)
Pt(1)-P(2)	2.270(2)	Pt(1)-Cl(1)	2.363(2)
N(3)-N(1)-N(2)	112.9(7)		

Table S2. Selected bond lengths (Å) and angles (o) for HL and $Pt(PPh_3)_2(L)Cl 1$