Supplementary Materials

Function of triazenido compound for electrocatalytic hydrogen production catalyzed by platinum complex

Yun-Xiao Zhang, Chen-Neng Lin and Shu-Zhong Zhan*

Table of context

1	Fig. S1. ${ }^{1} \mathrm{H}$ NMR spectrum of ligand (HL)
2	Fig. S2. ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ in CDCl_{3}.
3	Fig. S3. ${ }^{31} \mathrm{P}$ NMR spectrum of complex 1 in CDCl_{3}.
4	Fig. S4. ESI-MS of complex 1 in methanol.
5	Fig. S5. ESI-MS of $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ in methanol.
6	Fig. S6. CV of 2.5 mM HL in 0.10 M of $\left[\mathrm{n}-\mathrm{Bu}_{4} \mathrm{~N}\right] \mathrm{ClO}_{4} \mathrm{DMF}$ solution at a glassy carbon electrode and a scan rate of $100 \mathrm{mV} / \mathrm{s}$, ferrocene internal standard (*).
7	Fig. S7. (a) Scan rate dependence of precatalytic waves for a 0.76 mM solution of complex 1 with $0.10 \mathrm{M}\left[\mathrm{n}-\mathrm{Bu}_{4} \mathrm{~N}^{2} \mathrm{ClO}_{4}\right.$, at scan rates from 50 to $300 \mathrm{mV} / \mathrm{s}$. (b) Scan rate dependence of precatalytic waves for a 1.26 mM solution of $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ with $0.10 \mathrm{M}\left[\mathrm{n}-\mathrm{Bu}_{4} \mathrm{~N}\right] \mathrm{ClO}_{4}$, at scan rates from 50 to $300 \mathrm{mV} / \mathrm{s}$.
8	Fig. S8. Temperature dependence of cyclic voltammograms for a 0.10 M [n- $\left.\mathrm{Bu}_{4} \mathrm{~N}\right] \mathrm{ClO}_{4} \mathrm{DMF}$ solution with 3.40 mM of complex 1 (a), and 3.40 mM

	$\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$.
9	Fig. S9. CVs of 2.50 mM solution of HL with varying concentrations of acetic acid in DMF. Conditions: $0.10 \mathrm{M}\left[\mathrm{n}-\mathrm{Bu}_{4} \mathrm{~N}\right] \mathrm{ClO}_{4}$ as supporting electrolyte, scan rate: $100 \mathrm{mV} / \mathrm{s}$, glassy carbon working electrode (1 mm diameter), Pt counter electrode, $\mathrm{Ag} / \mathrm{AgNO}_{3}$ reference electrode. Ferrocene internal standard (*).
10	Fig. S10. Charge buildup versus time from electrolysis of blank (black), 9.32 $\mu \mathrm{M} \mathrm{HL}$ (red), $9.32 \mu \mathrm{M} \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ (blue), the mixture of $9.32 \mu \mathrm{M} \mathrm{HL}$ and $9.32 \mu \mathrm{M} \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ (green), and $9.32 \mu \mathrm{M} \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) \mathrm{Cl}$ (violet) in DMF ($0.10 \mathrm{M}\left[\mathrm{n}-\mathrm{Bu}_{4} \mathrm{~N}\right] \mathrm{ClO}_{4}$) under -1.45 V versus $\mathrm{Ag} / \mathrm{AgNO}_{3}$.
11	Fig. S11. (a) CVs of complex $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ in different concentration. (b) CVs of $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(0.25 \mu \mathrm{M})$ in different pH . Conditions: Glassy carbon working electrode (1 mm diameter), Pt wire counter electrode, $\mathrm{Ag} / \mathrm{AgCl}$ reference electrode.
12	Fig. S12. (a) CVs of HL in different concentration. (b) CVs of HL $(0.25 \mu \mathrm{M})$ in different pH . Conditions: 0.25 M phosphate buffered solution (pH 7.0), glassy carbon working electrode (1 mm diameter), Pt wire counter electrode, $\mathrm{Ag} / \mathrm{AgCl}$ reference electrode.
13	Fig. S13. (a) GC traces after a 1-h controlled-potential electrolysis at -1.45 V vs $\mathrm{Ag} / \mathrm{AgCl}$ of $2.33 \mu \mathrm{M} \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) \mathrm{Cl}$ in 0.25 M phosphate buffer $(\mathrm{pH} 7.0)$. A standard of CH_{4} was added for calibration purposes. (b) Measured (red) and calculated (black) pH changes assuming a 100% Faradic efficiency of complex during electrolysis. (the theoretical pH change over time can be calculated by the equation of $p H=14+\lg \frac{\sum I t}{F V}$ where $\mathrm{I}=\operatorname{current}(\mathrm{A}), \mathrm{t}=\operatorname{time}(\mathrm{s}), \mathrm{F}=$ Faraday constant ($96485 \mathrm{C} / \mathrm{mol}$), V = solution volume (0.05 L).
14	Fig. S14. (a) GC traces after a 1-h controlled-potential electrolysis at -1.45 V vs $\mathrm{Ag} / \mathrm{AgCl}$ of $2.33 \mu \mathrm{M} \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ in 0.25 M phosphate buffer (pH 7.0). A standard of CH_{4} was added for calibration purposes. (b) Measured (red) and

	calculated (black) pH changes assuming a 100% Faradic efficiency of complex during electrolysis. (the theoretical pH change over time can be calculated by the equation of $p H=14+\lg \frac{\sum I t}{F V}$ where $\mathrm{I}=\operatorname{current}(\mathrm{A}), \mathrm{t}=\operatorname{time}(\mathrm{s}), \mathrm{F}=$ Faraday constant $(96485 \mathrm{C} / \mathrm{mol}), \mathrm{V}=$ solution volume $(0.05 \mathrm{~L})$.
15	Fig. S15. (a) GC traces after a 1-h controlled-potential electrolysis at -1.45 V vs $\mathrm{Ag} / \mathrm{AgCl}$ of $2.33 \mu \mathrm{M}$ HL in 0.25 M phosphate buffer (pH 7.0). A standard of CH_{4} was added for calibration purposes. (b) Measured (red) and calculated (black) pH changes assuming a 100% Faradic efficiency of complex during electrolysis. (the theoretical pH change over time can be calculated by the equation of $p H=14+\lg \frac{\sum I t}{F V}$ where $\mathrm{I}=\operatorname{current}(\mathrm{A}), \mathrm{t}=\operatorname{time}(\mathrm{s}), \mathrm{F}=$ Faraday constant ($96485 \mathrm{C} / \mathrm{mol}$), $\mathrm{V}=$ solution volume (0.05 L).
16	Fig. S16. (a) Charge buildup versus time from $2.33 \mu \mathrm{M}$ complex $\mathbf{1}$ in a 0.25 M buffer (pH 7.0) under -1.45 V vs $\mathrm{Ag} / \mathrm{AgCl}$. (b) Charge buildup versus time from $2.33 \mu \mathrm{M} \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ in a 0.25 M buffer $(\mathrm{pH} 7.0)$ under -1.45 V vs $\mathrm{Ag} / \mathrm{AgCl}$. (c) Charge buildup versus time from $2.33 \mu \mathrm{M}$ HL in a 0.25 M buffer (pH 7.0) under -1.45 V vs $\mathrm{Ag} / \mathrm{AgCl}$.
17	Eq. S1. The calculation of TOF for $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ (in DMF)
18	Eq. S2. The calculation of TOF for $\mathrm{Pt}^{\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) \mathrm{Cl}}$ (in DMF)
19	Eq. S3. The calculation of TOF for $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) \mathrm{Cl}$ (in buffer, pH 7.0)
20	Eq. S4. The calculation of TOF for $\left(\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}\right.$ (in buffer, pH 7.0$)$.
21	Eq. S5. The calculation of TOF for HL (in buffer, pH 7.0)

Table S1. Crystallographic data for $\mathbf{H L}$ and $\operatorname{Pt}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) \mathrm{Cl} 1$

Table S2. Selected bond lengths ($\mathbf{(\AA)}$) and angles (o) for $\mathbf{H L}$ and $\mathrm{Pt}_{(}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) \mathrm{Cl} \mathbf{1}$

Fig. S1. ${ }^{1} \mathrm{H}$ NMR spectrum of ligand (HL)

Fig. S2. ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ in CDCl_{3}.

Fig. S3. ${ }^{31} \mathrm{P}$ NMR spectrum of complex $\mathbf{1}$ in CDCl_{3}.

Fig. S4. ESI-MS of complex 1 in methanol.

Fig. S5. ESI-MS of $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ in methanol.

Fig. S6. CV of 2.50 mM HL in 0.10 M of $\left[\mathrm{n}-\mathrm{Bu}_{4} \mathrm{~N}^{2} \mathrm{ClO}_{4} \mathrm{DMF}\right.$ solution at a glassy carbon electrode and a scan rate of $100 \mathrm{mV} / \mathrm{s}$, ferrocene internal standard $(*)$.

Fig. S7. (a) Scan rate dependence of precatalytic waves for a 0.76 mM solution of complex 1 with $0.10 \mathrm{M}\left[\mathrm{n}-\mathrm{Bu}_{4} \mathrm{~N}\right] \mathrm{ClO}_{4}$, at scan rates from 50 to $300 \mathrm{mV} / \mathrm{s}$. (b) Scan rate dependence of precatalytic waves for a 1.26 mM solution of $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ with $0.10 \mathrm{M}\left[\mathrm{n}-\mathrm{Bu}_{4} \mathrm{~N}^{2} \mathrm{ClO}_{4}\right.$, at scan rates from 50 to $300 \mathrm{mV} / \mathrm{s}$.

Fig. S8. Temperature dependence of cyclic voltammograms for a 0.10 M [$\left.\mathrm{n}-\mathrm{Bu}_{4} \mathrm{~N}\right] \mathrm{ClO}_{4} \mathrm{DMF}$ solution with 3.40 mM of complex $\mathbf{1}$ (a), and 3.40 mM $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$.

Fig. S9. CVs of 2.50 mM solution of HL with varying concentrations of acetic acid in DMF. Conditions: $0.10 \mathrm{M}\left[\mathrm{n}-\mathrm{Bu}_{4} \mathrm{~N}^{2} \mathrm{ClO}_{4}\right.$ as supporting electrolyte, scan rate: 100 mV / s, glassy carbon working electrode (1 mm diameter), Pt counter electrode, $\mathrm{Ag} / \mathrm{AgNO}_{3}$ reference electrode. Ferrocene internal standard (*).

Fig. S10. Charge buildup versus time from electrolysis of blank (black), $9.32 \mu \mathrm{M}$ HL (red), $9.32 \mu \mathrm{M} \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ (blue), the mixture of $9.32 \mu \mathrm{M} \mathrm{HL}$ and $9.32 \mu \mathrm{M}$
$\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ (green), and $9.32 \mu \mathrm{M} \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) \mathrm{Cl}$ (violet) in $\mathrm{DMF}(0.10 \mathrm{M}$ $\left[\mathrm{n}-\mathrm{Bu}_{4} \mathrm{~N}\right] \mathrm{ClO}_{4}$) under -1.45 V versus $\mathrm{Ag} / \mathrm{AgNO}_{3}$.

Fig. S11. (a) CVs of complex $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ in different concentration. (b) CVs of $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(0.25 \mu \mathrm{M})$ in different pH . Conditions: Glassy carbon working electrode (1 mm diameter), Pt wire counter electrode, $\mathrm{Ag} / \mathrm{AgCl}$ reference electrode.

Fig. S12. (a) CVs of HL in different concentration. (b) CVs of HL ($0.25 \mu \mathrm{M}$) in different pH . Conditions: 0.25 M phosphate buffered solution (pH 7.0), glassy carbon working electrode (1 mm diameter), Pt wire counter electrode, $\mathrm{Ag} / \mathrm{AgCl}$ reference electrode.

Fig. S13. (a) GC traces after a 1-h controlled-potential electrolysis at -1.45 V vs $\mathrm{Ag} / \mathrm{AgCl}$ of $2.33 \mu \mathrm{M} \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) \mathrm{Cl}$ in 0.25 M phosphate buffer $(\mathrm{pH} 7.0)$. A standard of CH_{4} was added for calibration purposes. (b) Measured (red) and calculated (black) pH changes assuming a 100% Faradic efficiency of complex during electrolysis. (the theoretical pH change over time can be calculated by the equation of $p H=14+\lg \frac{\sum I t}{F V}$ where $\mathrm{I}=\operatorname{current}(\mathrm{A}), \mathrm{t}=$ time $(\mathrm{s}), \mathrm{F}=$ Faraday constant $(96485$ $\mathrm{C} / \mathrm{mol}), \mathrm{V}=$ solution volume $(0.05 \mathrm{~L})$.

Fig. S14. (a) GC traces after a 1-h controlled-potential electrolysis at -1.45 V vs $\mathrm{Ag} / \mathrm{AgCl}$ of $2.33 \mu \mathrm{M} \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ in 0.25 M phosphate buffer (pH 7.0). A standard of CH_{4} was added for calibration purposes. (b) Measured (red) and calculated (black) pH changes assuming a 100% Faradic efficiency of complex during electrolysis. (the theoretical pH change over time can be calculated by the equation of
$p H=14+\lg \frac{\sum I t}{F V}$ where $\mathrm{I}=\operatorname{current}(\mathrm{A}), \mathrm{t}=$ time $(\mathrm{s}), \mathrm{F}=$ Faraday constant $(96485$ $\mathrm{C} / \mathrm{mol}), \mathrm{V}=$ solution volume $(0.05 \mathrm{~L})$.

Fig. S15. (a) GC traces after a 1-h controlled-potential electrolysis at -1.45 V vs $\mathrm{Ag} / \mathrm{AgCl}$ of $2.33 \mu \mathrm{M}$ HL in 0.25 M phosphate buffer (pH 7.0). A standard of CH_{4} was added for calibration purposes. (b) Measured (red) and calculated (black) pH changes assuming a 100% Faradic efficiency of complex during electrolysis. (the theoretical
pH change over time can be calculated by the equation of $\mathrm{pH}=14+\lg \frac{\sum_{F V} I t}{}$ where I $=$ current $(\mathrm{A}), \mathrm{t}=$ time $(\mathrm{s}), \mathrm{F}=$ Faraday constant $(96485 \mathrm{C} / \mathrm{mol}), \mathrm{V}=$ solution volume (0.05 L).

Fig. S16. (a) Charge buildup versus time from $2.33 \mu \mathrm{M}$ complex 1 in a 0.25 M buffer (pH 7.0) under -1.45 V vs $\mathrm{Ag} / \mathrm{AgCl}$. (b) Charge buildup versus time from $2.33 \mu \mathrm{M} \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ in a 0.25 M buffer $(\mathrm{pH} 7.0)$ under -1.45 V vs $\mathrm{Ag} / \mathrm{AgCl}$. (c) Charge buildup versus time from $2.33 \mu \mathrm{M}$ HL in a 0.25 M buffer (pH 7.0) under $-1.45 \mathrm{~V} v s \mathrm{Ag} / \mathrm{AgCl}$.

$$
\text { TOF }=\frac{\Delta C}{F \cdot n_{1} \cdot n_{2} \cdot t}=\frac{0.0234 C \times 3600}{96485 \mathrm{C} \cdot \mathrm{~mol}^{-1} \times 2 \times 0.373 \times 10^{-6} \mathrm{~mol} \times 120}=9.84 \mathrm{~h}^{-1}
$$

Eq. S1. The calculation of TOF for $\operatorname{Pt}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ (in DMF)

TOF $=\frac{\Delta C}{F \cdot n_{1} \cdot n_{2} \cdot t}=\frac{0.0603 C \times 3600}{96485 C \cdot \mathrm{~mol}^{-1} \times 2 \times 0.373 \times 10^{-6} \mathrm{~mol} \times 120}=25.36 \mathrm{~h}^{-1}$

Eq. S2. The calculation of TOF for $\operatorname{Pt}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) \mathrm{Cl}$ (in DMF)

TOF $=\frac{\Delta C}{F \cdot n_{1} \cdot n_{2} \cdot t}=\frac{1.55 C \times 3600}{96485 C \cdot \mathrm{~mol}^{-1} \times 2 \times 0.373 \times 10^{-6} \mathrm{~mol} \times 120}=651.87 \mathrm{~h}^{-1}$

TOF $=\frac{\Delta C}{F \cdot n_{1} \cdot n_{2} \cdot t}=\frac{0.583 \mathrm{C} \times 3600}{96485 \mathrm{C} \cdot \mathrm{mol}^{-1} \times 2 \times 0.373 \times 10^{-6} \mathrm{~mol} \times 120}=245.18 \mathrm{~h}^{-1}$

Eq. S4. The calculation of TOF for $\left(\mathrm{Pt}_{(}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}\right.$ (in buffer, pH 7.0$)$.

TOF $=\frac{\Delta C}{F \cdot n_{1} \cdot n_{2} \cdot t}=\frac{0.226 C \times 3600}{96485 C \cdot \mathrm{~mol}^{-1} \times 2 \times 0.373 \times 10^{-6} \mathrm{~mol} \times 120}=95.06 \mathrm{~h}^{-1}$

Eq. S5. The calculation of TOF for HL (in buffer, pH 7.0)

Table S1. Crystallographic data for $\mathbf{H L}$ and $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) \mathrm{Cl} 1$

Parameter	HL	$\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) \mathrm{Cl} 1$
Empirical formula	$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}$	$\mathrm{C}_{52} \mathrm{H}_{51} \mathrm{ClN}_{4} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{Pt}$
Formula weight	228.26	1072.45
$\lambda(\AA)$	0.71073	0.71073
Crystal system	monoclinic	monoclinic
Space group	P2(1)/c	P2(1)/c
a/Å	18.961(4)	23.331(3)
b/Å	5.3302(11)	10.0888(13)
c/Å	25.673(10)	22.298(2)
$\alpha /{ }^{\circ}$	90	90
$\beta /{ }^{\circ}$	115.89(2)	116.786(3)
$\gamma{ }^{\circ}$	90	90
V / \AA^{3}	2334.2(11)	4685.5(10)
Z	8	4
Dc/ Mgm^{-3}	1.299	1.520
$\mathrm{F}(000)$	960	2160
θ range for data collection	3.19 to 27.46°	3.28 to 27.48°
Reflections collected/unique	20901/5246	23259/10452
Data/restraints/parameters	5246/0/307	10452/0/538
Goodness-of-fit on F^{2}	0.940	1.070
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0520$	$\mathrm{R} 1=0.0664$
R indices (all data)	$\mathrm{wR} 2=0.1302$	$w R 2=0.1664$
	$\mathrm{R} 1=0.1278$	$\mathrm{R} 1=0.0828$
	$w R 2=0.1817$	$w R 2=0.1726$

Table S2. Selected bond lengths $(\mathbf{\AA})$ and angles (o) for $\mathbf{H L}$ and $\mathrm{Pt}_{\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{~L}) \mathrm{Cl}}^{\mathbf{1}}$

HL

$\mathrm{N}(1)-\mathrm{N}(2)$	$1.269(3)$	$\mathrm{N}(1)-\mathrm{C}(1)$	$1.422(3)$
$\mathrm{N}(2)-\mathrm{N}(3)$	$1.336(3)$	$\mathrm{N}(3)-\mathrm{C}(8)$	$1.388(3)$
$\mathrm{N}(4)-\mathrm{C}(8)$	$1.333(3)$		
$\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{N}(3)$	$110.6(2)$	$\mathrm{N}(3)-\mathrm{C}(8)-\mathrm{N}(4)$	$113.6(2)$

Complex 1

$\operatorname{Pt}(1)-\mathrm{N}(2)$	$2.038(7)$	$\mathrm{Pt}(1)-\mathrm{P}(1)$	$2.238(2)$
$\mathrm{Pt}(1)-\mathrm{P}(2)$	$2.270(2)$	$\mathrm{Pt}(1)-\mathrm{Cl}(1)$	$2.363(2)$
$\mathrm{N}(3)-\mathrm{N}(1)-\mathrm{N}(2)$	$112.9(7)$		

