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Function prediction of uncharacterized protein sequences generated by genome projects
has emerged as an important focus for computational biology. We have categorized
several approaches beyond traditional sequence similarity that utilize the overwhelm-
ingly large amounts of available data for computational function prediction, includ-
ing structure-, association (genomic context)-, interaction (cellular context)-, process
(metabolic context)-, and proteomics-experiment-based methods. Because they incor-
porate structural and experimental data that is not used in sequence-based methods,
they can provide additional accuracy and reliability to protein function prediction. Here,
first we review the definition of protein function. Then the recent developments of these
methods are introduced with special focus on the type of predictions that can be made.
The need for further development of comprehensive systems biology techniques that can
utilize the ever-increasing data presented by the genomics and proteomics communities
is emphasized. For the readers’ convenience, tables of useful online resources in each
category are included. The role of computational scientists in the near future of biologi-
cal research and the interplay between computational and experimental biology are also
addressed.

Keywords: Protein function prediction; functional genomics; functional motifs; gene
ontology; unknown gene; genome annotation; protein—protein interaction.

1. Introduction

Computational function annotation, or computational proteomics, plays a crucial
role not only in the annotation process of newly sequenced genomes,' 2 but also
in the interpretation of high-throughput experimental data such as gene expression
patterns by microarray* or protein—protein interaction data.’ ” In the analysis of
these data, even if a detailed function cannot be predicted, prediction of a broader
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category of function or subcellular localization greatly helps to cluster genes and
reduce unavoidable errors in the data.® This computational prediction relies on all
kinds of information — protein sequences, co-occurrence of genes across multiple
genomes, protein co-expression patterns, protein interactions and protein struc-
tures — to accurately confer function primarily to sequences that are otherwise
uncharacterized and also to confer additional function to sequences of partially
characterized proteins.’

This review will focus on the current state of the field of computational func-
tion prediction of protein-coding genes and look toward future methods that unify
current resources. The text is organized as follows: first we report the number of
uncharacterized sequences in genomes. Next we introduce several functional ontolo-
gies, or standardized vocabularies describing protein function. Then we overview
computational function prediction methods classified into six categories, namely
sequence-based, structure-based, association-based, proteomics-experiment-based,
process-based, and multi-context-based methods. The main focus of this review is
on the latter five approaches, which attempt to predict function beyond traditional
sequence-based methods. Special attention is paid to mention the accuracy and
limitations, and also which category of Gene Ontology function definitions can be
predicted by each method.

1.1. The need for function prediction

As of the writing of this review, over 330 complete genomes have been
sequenced.'®!! The sequencing of these genomes has brought to light the discov-
ery of thousands of possible open reading frames which are all potentially tran-
scribed and translated into gene products, but a great majority of these have
yet to be characterized. An analysis of entries in the KEGG Genome collection, '
which includes incomplete and complete genomes, highlights the need for the field
of computational function prediction (Fig. 1). Of the 345 genomes listed, 222
contain at least 50% of gene entries with an ambiguous functional annotation
(putative, probable, and unknown), including well-characterized organisms such as
E. coli (51.17%) and C. elegans (87.92%). In annotating a genome sequence, iden-
tifying genes is a difficult task, especially for higher eukaryotic genomes.'?!3 Hence
these entries certainly contain both incorrect and non-coding open reading frames
(ORFSs). For an overview of computational gene finding, please refer to recent excel-
lent reviews.!214:1% Although misidentified ORFs may contribute somewhat to the
number of unannotated genes presented here, the lack of annotation in even widely
studied species indicates a compelling need and strong potential for assignment of
computationally predicted functions to uncharacterized or functionally ambiguous
protein-coding genes.

1.1.1. Using unified vocabularies to describe protein function

A major hurdle to annotate function to genomes of different organisms is a lack
of coherence in functional annotation.'® For example, some genomes are annotated
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Fig. 1. Analysis of the 345 genomes from KEGG: distribution of unknown function annotations
among entries (unknown annotations include the terms “hypothetical,” “unknown,” “uncharac-
terized,” “predicted,” “no hits,” “codon recognized,” “expressed protein,” “conserved protein,”
and “Vng”).

”

with a full functional description for each entry while others simply use a short
name. Terms are used interchangeably, like “putative,” “probable,” “potential,”
etc. Computationally, it is difficult even to identify proteins of the same function if
a slightly different notation is used. A single function can exist in multiple genomes
as completely different descriptions, any of which can be propagated to new entries
through current automatic annotation methods.'”!®

There are several efforts, however, to resolve this issue. The use of ontologies
provides support for universal function definitions, which will facilitate uniformity
of functional annotations across many databases.!® An ontology is a hierarchi-
cal framework of categorized consensus vocabularies describing function. Among
the most widely utilized vocabularies describing protein function are the Gene
Ontology (GO),?° Enzyme Commission (E.C.),?! and MIPS Functional Catalogue
(FunCat).?? The GO consists of three individual, hierarchical ontologies containing
terms which describe molecular function (biochemical activity), biological process
(pathway), and cellular component (localization). GO terms annotated to protein
sequences carry evidence codes which describe the experimental or computational
evidence for the annotation. The E.C. is a four-level hierarchy of enzyme nomencla-
ture describing biochemical activity. MIPS FunCat is a six-level hierarchical scheme
used for genome annotation containing over 1300 terms in 28 general categories. GO
is the most recent and frequently updated of these ontologies, and there are several
individual efforts to improve on its basic format. Several annotation methodologies
use a condensed version of GO for functional assignment (e.g. ProtFun?*2?* and
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CHUGO?%), and Myhre et al.?® have devised a Second Layer of connections over
the GO that identifies relationships between terms in the three category ontologies.
The organizational structure of the GO lends itself to use in computational biol-
ogy well, as shown by its widespread use (over 800 PubMed abstracts describing its
use since July 2003) and inclusion in the function prediction category of the sixth
and seventh biennial CASP (Critical Assessment of Techniques for Protein Struc-
ture Prediction).?” Because GO is so recently popular and because its scheme seems
to be very comprehensive, we will use it here to describe the nature of functional
annotations that can be derived by each of the predictive methods we describe.

2. Methods of Protein Function Prediction

Because of the complexity and breadth of protein function, the assignment of
some function to an experimentally uncharacterized gene product can (and should)
be approached from multiple directions. Here, we break down functional cues
into six distinct categories — sequence-based, structure-based, association-based,
proteomics-experiment-based, process-based, and multi-context-based — and dis-
cuss the current available methods in each category, as well as note the types of

functional clues in the GO each method can reveal. Sequence-based methods?® 37

are described only briefly because recent review articles summarize them well.!6:38
The available online resources listed in the text are included in the tables accom-

panying each section.

2.1. Sequence-based (evolutionary context)

Probably the most widely utilized computational technique for function assign-
ment is sequence alignment. Direct comparison of an uncharacterized sequence to
sequences of known function in a sequence database can reveal evolutionary con-
servation among species (homology). The most frequently used database search
tools include FASTA?829 and the BLAST suite (including BLAST?? and PSI-
BLAST3!). There are also a number of functional motif and alignment databases,
including PROSITE,?? Blocks,?* SMART 343> PRINTS*¢ and Pfam.3” Com-
bining different types of sequence-based methods can lead to better function
predictions.?®3° Because there are several excellent reviews on sequence-based func-
tion annotation,'%:3%:40 here we focus on more recent and interesting ideas, including
extensive use of conventional database search methods.

2.1.1. PFP: Enhanced usage of PSI-BLAST

Recently, it has been recognized that homology search tools, especially PSI-BLAST,
retrieve much more useful information than we can easily use by drawing a uniform
FE-value threshold. Based on this observation, we have designed a novel algorithm,
named PFP, which extends a PSI-BLAST search in three ways.*! First, we extract
and score GO annotations based on the frequency of their occurrence in retrieved
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sequences. Second, GO terms are also extracted from weak hits in a PSI-BLAST
search, which are far below the conventional E-value threshold. Weakly similar
sequences are not recognized as orthologs to the query sequence but often represent
proteins sharing a common functional domain. Third, we additionally consider GO
function pair associations which frequently occur in a reference database. Using
these associations, GO terms which do not occur in sequence hits but strongly
associate to an occurring GO term in the search are also scored. Because the score
of each GO term is summed up over the sequence hits, when a detailed biochemical
function cannot be predicted, a function of “low-resolution”, i.e. one which locates
at a higher level on the GO hierarchical tree, can be predicted by PFP. The low-
resolution function can be valuable information for omics-type analyses, including
clustering of gene expression data from microarrays, where functional clues of genes
are essential for interpreting data.

There are several other methods developed recently that build on BLAST
or PSI-BLAST searches, using the GO as a prediction standard. Goblet maps
GO terms associated to sequences retrieved by a BLAST search on to the GO
tree.*? OntoBlast scores each GO term by multiplying the E-values of retrieved
sequences.?® GoFigure and GOtcha consider the hierarchy of the GO tree in scor-
ing GO terms.***® In the GOtcha approach, the score for each GO term is addi-
tively propagated onto all of its parents in the GO tree such that the category root
always has the highest score.*> GOPET applies a Support Vector Machine (SVM),
a machine learning technique, using BLAST results (including alignment length
and E-value), GO term frequency, GO term relationships between homologs, anno-
tation quality of the homologs, and the level of annotation within the GO hierarchy
as inputs to predict GO terms for a query sequence.*6

There are also several sequence-based methods that do not rely on comparison
by alignment. ProtFun®” uses post-translational modifications to classify human
proteins into functional categories by neural network. Cai et al.*® use an SVM to
classify proteins between functionally distinguishable groups. Vries et al.*?
Bayesian probabilistic model to analyze the distribution of contiguous sequences of
four amino acids, and they found that these sequences could be used to distinguish
between Pfam families 70% of the time. These methods can be useful for deriving
functional clues in the absence of significant annotated homologous sequences in
searchable databases.

use a

2.1.2. Accuracy and limitations

Sequence similarity searches are generally considered to be simple and accurate
methods of inferring function annotation, and the most reliable methods for func-
tion prediction (Table 1). SSEARCH®®! is the most accurate of the similarity
searching algorithms but is slow. Initial searches can accurately and easily be car-
ried out with FASTA or one of the BLAST variants (BLAST, PSI-BLAST). Within
these, FASTA is slightly more accurate then BLAST.?? PSI-BLAST should be used
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Table 1. Web resources for sequence-based function prediction.

‘Website Description URL
Tools
GoFigure GO annotation by homology search http://udgenome.ags.udel.edu/
frm_go.html
FASTA Sequence homology search http://www.ebi.ac.uk/fasta33/

BLAST suite
Pfam

Sequence homology search
Protein family alignment database

http://www.ncbi.nih.gov/BLAST/
http://www.sanger.ac.uk/Software/
Pfam/

PROSITE Functional motif database http://us.expasy.org/prosite/
Blocks Database of conserved regions of http://blocks.there.org/
proteins

SMART Domain-based annotation resource http://smart.embl-heidelberg.de/

PRINTS Protein fingerprint database http://bioinf.man.ac.uk/dbbrowser/
PRINTS/

ProtFun GO functional category prediction http://www.cbs.dtu.dk/services/
ProtFun/

PFP GO function prediction server http://dragon.bio.purdue.edu/pfp

Gotcha GO function prediction software http://www.compbio.dundee.ac.uk/
Software/Gotcha/gotcha.html

Databases

KEGG Genes  Genome sequence collection http://www.genome.jp/kegg/genes.html

COG Clusters of orthologous groups of http://www.ncbi.nlm.nih.gov/COG/

proteins

to find more distant homologies. Significant sequence similarity is a very strong indi-
cator of homology. Even insignificant hits in a similarity search can offer functional
clues,?® but these scores generally indicate a more distant relationship and are less
reliable than strong hits.??

Experimentalists relying on sequence alignment for annotation of a query pro-
tein must be careful when evaluating the results of sequence similarity searches.
Top hit sequences (using BLAST) for open reading frames in E. coli fail to rep-
resent the closest phylogenetic neighbor 27.3% of the time.?* This rate is higher
for less well characterized organisms but improved upon by using techniques that
combine multiple similar sequences to predict annotations.*'#> The associative
data mining used by PFP can add up to 20% coverage to a BLAST search.*!
All sequence similarity-based annotation is limited by the availability of charac-
terized and accurately annotated sequences in public databases. Many BLAST
hits are hypothetical or electronically annotated proteins. Erroneous electronic
annotations can easily be propagated through a sequence database and contam-
inate search results with inaccuracies.’® Sequence similarity can be a powerful
method for function annotation, but researchers should be cautious that simi-
larity does not always imply homology, and be aware of inaccurate annotations
in public databases. The presence of erroneous annotations in public databases
is a concern for any predictive technique utilizing this data for training or
evaluation.
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Protein family, fingerprint, and motif searching ranges between highly accurate
and questionable, depending on the particular motifs recognized in a query protein.
This is directly dependent on the strength of conservation and the length of the
found motif. Some short motifs such as phosphorylation sites produce lots of false
positives so that careful manual inspection is needed.

Depending on the nature of function annotations associated with hits, sequence-
based similarity searching algorithms can reveal functions in any or all of the GO
categories. That is, if the molecular function, biological process, or cellular com-
ponent of a homologous or orthologous protein is defined, that definition can be
predicted for the query sequence. Motif searches will often reveal signaling peptides
that can localize a protein to a certain component of the cell or specific binding or
active sites that confer distinct molecular function to a region of the protein. Either
of these two predictions can be made without the knowledge of homologous proteins.
A biological process, however, can only be matched by sequence-based searching if
there is strong global sequence alignment and a defined biological process for the
matching homolog to the input sequence.

2.2. Structure-based

The function of a protein is inherently linked to its structure. This association is the

56,57 which can

source of a variety of structure-based function prediction methods,
be grouped into either global fold similarity searching methods or local structure
definition (active site characterization).

The advent of structural genomics projects,”® where structures are solved
for novel proteins of unknown function extracted from genomics data, presents
strong need for function prediction directly from structural knowledge. For protein
sequences lacking both experimentally determined functions and structures, a pre-
dicted structure can provide sufficient structural signatures for function prediction.
Methods for structure prediction are increasingly more abundant and accurate,?”%°
including homology modeling,%' ab initio modeling®®%2765 and threading®® ™!
methods, which thread a query sequence through a library of known protein folds.
Recently, the structures of 60-70% of the proteins from a single genome can be
predicted.%0-72

Proteins that share 30% sequence similarity are generally recognized as hav-
ing similar folds,”® and global folds tend to be more conserved than amino acid
sequence in the course of evolution.”" Thus in many cases evolutionary rela-
tionship, i.e. similarity in function, can be further inferred by comparing protein
structures beyond what is found in just the sequence. Protein structure classifica-
tion databases, which catalogue relationships between protein structure and func-
tion, such as SCOP (Structural Classification of Proteins)™® and CATH,”"" have
thus become useful resources for predicting protein function. Analysis of the CATH
domain database indicates that structural alignments can predict family homology
for 80-90% of the entries in PDB" that currently lack sequence matches®® and
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that fold is conserved through biological pathways, where a small molecule may
be passed successively from protein to protein.®' Functional similarity based on
CATH fold conservation is accurate to 95%.%2 It should be noted, however, that
there are several examples of protein families in which global fold similarity does
not correlate with functional similarity, including the TIM barrel fold, ferredoxin
fold, and Rossmann fold. Function assignment in these cases can be confirmed by
conservation of the residues in the active site.56:83

Although global fold similarity can be used in many cases to assign a degree of
functional similarity, predictions of specific biochemical or enzymatic function can
be more accurately obtained from local fold similarity, i.e. in and around the pro-
tein active site. An active site of an enzyme can be described by a template which
consists of mutual distances and angles of catalytic amino acid residues. A catalytic
triad of serine protease can be intuitively represented by this description.®* A prac-
tical advantage of this approach is that it is relatively simple for implementation
and matching so that large-scale scanning is possible.®3:%% Catalytic Site Atlas is
a hand-annotated collection of catalytic sites of enzymes which can be used for
large-scale function prediction.®6

A different approach to describing binding sites of small chemical compounds,
including active sites of enzymes, is to represent the three-dimensional surface shape
of the local sites. Most binding sites can be identified geometrically as a local cavity
region on a protein surface.8” 89 CASTp is a database of cavities of proteins which
allows users to compute cavities of a protein of the user’s interest.” eF-site is a
database of the geometric surface shape and the chemical properties of functional
sites of proteins.”!

There are several other online resources for structure and structural motif clas-
sification (Table 2). ProFunc?? combines various structure matching techniques,
including searching against superfamily HMMs, existing PDB global structures, 3D
functional templates, surface cleft and nest analysis, and a variety of sequence-based
searches to provide probable GO annotations to a query structure.”® Q-SiteFinder
identifies hydrophobic patches on a protein surface which are possible ligand bind-
ing sites.”* WebFEATURE® exhaustively searches an input structure for conserved
radial microenvironments that represent a distinct set of protein active and binding
sites.%

2.2.1. Accuracy and limitations

Structural similarity is also a very accurate method of predicting function. The
global fold of a protein determines the shape and the location of active and binding
sites, and the local structural environment determines the catalytic mechanisms of
enzymes. There are caveats to using structures to imply homology, however. As
mentioned above, there are several examples of global folds that are known to per-
form varying functions. Identification of a conserved active site is straightforward
for predicting function, but methods which do this are relatively new and still in
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Table 2. Web resources for structure-based function prediction.

Website Description URL

Tools

ProFunc 3D functional template http://www.ebi.ac.uk/thorntonsrv/
matching databases/ProFunc/

Q-Site Finder Hydrophobic binding site  http://www.bioinformatics.leeds.ac.uk/
search gsitefinder/

WebFEATURE 3D active site matching http://feature.stanford.edu/ webfeature/

Databases

CATH Structure classification http://www.biochem.ucl.ac.uk/ bsm/cath/
database

SCOP Structure classification http://scop.berkeley.edu/
database

Catalytic Site Atlas  Catalytic site http://www.ebi.ac.uk/thorntonsrv/
database databases/CSA/

CASTp Protein binding site http://cast.engr.uic.edu/cast/
database

PROCAT 3D active site template http://www.biochem.ucl.ac.uk/
database bsm/PROCAT / PROCAT.html

SURFACE Protein binding site http://cbm.bio.uniroma?2.it/surface/
database

eF-site Protein binding site http://ef-site.protein.osaka-u.ac.jp/eF-site/
database

development. They rely on not only strong conservation to make a reliable pre-
diction, but also the presence of enough examples to build an accurate model for
searching. As more structures become available, active site searching will become a
much more reliable means of function prediction. For now, though, structure-based
approaches should be followed by close manual inspection of prediction results and
coupled with sequence-based or additional methods for reliability.

Specific predictions of active sites and small molecule binding sites can lead
directly to predictions of biochemical activity. These kinds of interactions are
described by the GO molecular function category. Protein—protein binding sites
can give clues toward either specific functions or biochemical pathways. If an inter-
action can be predicted with a particular protein, it is likely that their functions
correlate in some way. Conserved global fold, because of its similarity to sequence
conservation, can be an indicator of specific function, but it can additionally predict
process relatedness to a group of proteins.

2.3. Association-based (genomic context)

The genome as a physical entity provides a set of distinct methods for prediction of
protein function. Gene organization is a fundamental source of contextual cues, both
within organisms and across species. There are three distinct genomic associations
that can be linked to functional associations: (1) conservation of genomic proximity,
or conservation of gene order; (2) gene/domain fusion events; and (3) similarity of
phylogenetic profile (Fig. 2).
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Fig. 2. Association-based methods (“Q” is the query protein, “A” through “G” are other proteins):
[A] Genomic proximity — consistent neighbors (“A”, “B,” and “C”) to the query protein indicate
functional association. Note that gene orientation and order are not necessarily conserved; [B]
gene/domain fusion — fusion of a gene (‘D’) with the query protein in some species indicates
functional and likely physical association; and [C] phylogenetic profiles (1 and 0 bits indicate the
presence or absence of the gene in the species, respectively) — similar profiles (similarity to the
query protein: “” > “F” > “@”) indicate functional association.

A classic example of genomic context being linked to functional association is the
operon: a group of genes at a single locus that operate under a common regulatory
mechanism and perform functions leading to a common goal.”” Operons are evolu-
tionarily conserved in terms of organization, occurrence, and regulation. Although
all genes are not associated to others this strictly, conserved gene orders among
genomes can serve as important clues for assigning functions to uncharacterized
gene products. If two genes retain close proximity even across large phylogenetic
distances, the likelihood of a functional association is high because that indicates
the presence of a selective evolutionary force maintaining the gene organization.
But of course, conversely, a lack of conserved proximity does not indicate a lack of
functional association.

Practically, comparative genomics analysis has two steps: It starts with iden-
tifying corresponding genes, i.e. orthologous genes, or more permissive, highly



Function Prediction of Uncharacterized Proteins 11

homologous genes in a set of input genomes. Then a cluster of genes is defined
as a set of genes locating on a same strand and within a certain distance (e.g.
within 300 base pairs?®). The COG database,”®1%° Pfam database,®” KEGG,!! or
MBGD'°! will provide a pre-calculated set of orthologous genes. Note here that the
conservation of the gene order basically suggests functional association of included
genes in the cluster and not necessarily physical association, although in some cases
it does.'? The function of some classes of membrane proteins, which can account
for 30% of some genomes, can be inferred from the number of transmembrane
103 and the neighboring genes,'04:105
genomic context information.

helices i.e. by a combination of structural and

Another clue for functional association is the presence of domain fusion events,
wherein two proteins that are expressed as independent proteins in one organism
are expressed as two domains fused into a single protein in another organism.!06-107
This kind of permanent evolutionary linkage is a strong indicator of some functional
association. In this case, it is most likely that physical association of the gene
products in addition to functional association could be predicted.

The third genomic approach is to examine the co-occurrence of genes. Those
genes that show correlated presence and absence across genomes are assumed to
be functionally linked.!%%1% The co-occurrence and the co-absence of a gene in
genomes are expressed as a vector of one or zero bits, which is called a “phylogenetic
profile.” Genes with a similar phylogenetic profile are predicted to have functional
association.

STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) is
an interactive database of known and predicted functional interactions between
genes.'1% A primary sequence can be searched either as a protein or as a Clus-
ter of Orthologous Groups (COG) against over 440,000 genes from 110 organ-
isms (release 5.1). Functional associations are predicted via genomic neighborhood,
domain fusions, co-occurrence, co-expression pattern in microarray analyses, and
previous knowledge mined from PubMed abstracts.''! The likelihood of interac-
tion through each of these methods is normalized and summed for each predicted
partner, and the top-scoring hits are listed as predicted functional associations.

2.3.1. Accuracy and limitations

Comparative genomics methods are indirect methods for inference of functional
association, and accuracy varies widely with the strength of the conserved asso-
ciation. Phylogenetic profiling in yeast yielded 50% specificity and 58% sensitiv-
ity for mitochondrial proteins.!!? This is consistent with contextual genomic clues
in Mycoplasma genitalium, where approximately 50% of genes can be character-
ized by strong conserved gene order, neighborhood, fusion, and co-occurrence.!'3 Tt
should be cautioned that even strong genomic association does not necessarily indi-
cate functional similarity but could instead indicate an opposite or complementary
functional association.
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Taking advantage of the increasing number of complete genome sequences, the
association-based (comparative genomics) methods have become a promising and
rich source of information for protein function prediction. These methods can pre-
dict the biological process and/or cellular component of genes.

2.4. Proteomics experiment-based (cellular context)

Proteomics is driven by high-throughput experimental techniques that generate
tremendous volume of data. Conceptually, the computational analysis of proteomics
data falls into one of two categories which are discussed here: interaction-based
methods, which utilize protein—protein and genetic interaction data, and expression-
based methods, which utilize microarray gene expression data.

The field of proteomics has generated and is generating tremendous amounts of

physical interaction data through mass spectrometry® !4 2D gel electrophoresis,”

515,116 and protein chips.!'” High-throughput protein—

yeast two-hybrid methods
protein interaction screens offer novel and increasingly more accurate and com-
prehensive association data that can be utilized to predict functions for unchar-
acterized proteins.''® Marcotte et al.''® constructed an interaction network for
Saccharomyces cerevisiae proteins that yielded 93,750 functional links using hard
experimental data as well as predicted interactions from genomic and phylogenetic
context, including co-expression, domain fusions, and phylogenetic profiles. Using
this network, a general function was assigned to 1600 previously uncharacterized
proteins. Since then, protein—protein interaction networks have become a focus of
functional proteomics.*

There are several resources available for the study of protein interactions, includ-
ing the Database of Interacting proteins (DIP),!?° Biomolecular Interaction Net-
work Database (BIND),'217123 and Molecular Interaction (MINT) database,'?* all
of which serve as an excellent starting point for bioinformatics analyses (Table 3).

Protein—protein interaction data can be represented as interaction graphs or
networks. Functional association can be roughly inferred from an interaction graph
quite easily just by assuming that proteins that lie within short distances of each
other are more likely to share functional qualities than those that are separated fur-
ther. Early interaction-based methods took this approach, either assigning function

125

to a protein based directly on the most common functions'“° or interaction part-

)126,127

ners (clusters shared by its direct neighbors in the graph. Another approach

is to annotate uncharacterized proteins in order to minimize the number of pro-
tein interactions between different functional categories.!?® It is also common to
use clustering methods to distinguish groups of proteins sharing a high number

129,130 131

of interactions or close proximity ®* among themselves. In these interaction

networks, molecular function is often shared by proteins interacting with a com-
mon partner (e.g., A and B may share a function if both interact with C'). These
proteins are referred to as second-level interaction partners as they are separated

by two edges in an interaction graph.'3?
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Table 3. Web resources for association-based, interaction-based, expression-based, and process-
based function prediction.

Website Category Description URL
Tools
PathoLogic Process Pathway hole filler software  contact ptools-support
@ai.sri.com
GOMiner Microarray Microarray analysis software http://discover.nci.nih.gov/
gominer/
GenMAPP Microarray ~Microarray analysis software http://www.genmapp.org/
Databases
NCBI GEO Microarray Microarray data repository http://www.ncbi.nlm.nih.gov/
geo/
ArrayExpress Microarray Microarray data repository http://www.ebi.ac.uk/ arrayex-
press/
Stanford Microarray Microarray data repository http://genome-
Microarray wwwb.stanford.edu/
Database
OU Microarray Microarray ~Microarray data repository http://www.ou.edu/
Database microarray/
STRING Association Functional association http://string.embl.de/
database
DIP Interaction Protein—protein interaction  http://dip.doe-mbi.ucla.edu/
database
BIND Interaction  Biomolecular interaction http://bind.ca/
database
MINT Interaction Molecular interaction http://mint.bio.uniroma2.it/
database mint/
MIPS Interaction Protein function, expression  http://mips.gsf.de/
and interaction database
POINT Interaction  Orthologous interactions http://point.nchc.org.tw/
database
KEGG Pathway  Process Metabolic pathway database http://www.genome.jp/kegg/

pathway.html

The concept of protein—protein interactions serves as a base for several derivative

methods that can be of use in function annotation. Using the idea that physical
interactions are homologous across organisms, 3 Yu et al.'** mapped homologous
protein—protein interactions (interologs) and protein-DNA interactions (regulogs)
for several organisms. Studies in systems biology also frequently characterize
“genetic” interactions, which characterize epistatic, epigenetic, and environmen-
tal factors by systematic targeted gene mutation and subsequent phenotypic
analysis.'3% 139 The results of these genetic interaction studies are analyzed in com-
plex, multi-dimensional maps similar to those based on physical protein—protein
interactions. '4°

Microarrays examine expression patterns of hundreds to tens of thousands of
genes in a single experiment. Since its development in 1995,'417143 this technol-
ogy has become a standard experimental method used in a wide-range of research
fields in biology.!44 146 Gene expression data can be analyzed to extract statistically
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significant clusters of genes that are likely to be involved in similar or coordinate bio-
logical processes.'7 %! Recently, several tools have been created to map microarray
data onto biologically significant frameworks. GOMiner!®? translates genes into GO
terms and displays them on the GO tree so that enriched functional subgraphs can
be easily identified, and GenMAPP!%3:154 visualizes microarray data on KEGG or
user-customizable biological pathways. Because of the high volume of publicly avail-
able data, microarrays have become a rich source of data for functional analysis.

Several large microarray repositories collect this large-scale expression data
and make it publicly available. These include NCBI's Gene Expression Omnibus
(GEO),*® EBI’s ArrayExpress,'®® the Stanford Microarray Database (SMD),®7
and the Oklahoma University Microarray Database. Together these databases hold
data produced from on the order of hundreds of thousands of experiments. Gen-
erally, interpretation of these data focuses on clustering genes which are expressed
coordinately under certain conditions or along a timescale. Genes which follow sim-
ilar expression patterns are assumed to be participating in a common biological
process or response. Thus, algorithms which aim to identify these statistically sig-
nificant groups make up the vast majority of available tools. For prediction of gene
function, methods examine enrichment of GO terms in significant clusters'®?:'%® and
mine patterns of expression among groups of similar GO terms (so-called “prior-
knowledge based clustering”).!®® Once a significant function is determined for a
cluster of genes, it can be annotated to all the genes in that cluster.

2.4.1. Accuracy and limitations

One of the problems in the use of these methods to predict protein function is
the presence of intrinsic errors in genome-scale proteomics data. In an earlier
study, comparison of the interaction data sets from different yeast genome-wide
experiments showed that the overlap of detected interactions among them is not
large.81607163 Interaction and expression can be spatially and temporally unique,
and readily change in different cell types and under different conditions. There-
fore, these data should be used in combination, as Marcotte et al. have done (see
above). But there are efforts from the computational side to reduce the noise and
extract only reliable information from interaction data. Those include assessment
of the quality of the interaction data by comparing expression profiles of the protein

162 comparison of the function category and subcellular locations of the pro-

161,164,165

pairs,
tein pairs using the Gene Ontology (GO) database,
164

a statistical approach
using various data from the experiments, ®* and comparison of topological resem-
blance between interaction networks.'®® The POINT database'” uses orthologous
interaction pairs, that is, if orthologous proteins in different organisms are detected
to form an interaction, those interactions are likely to be more reliable. They com-
bined the orthologous interactions with localization data from GO and microarray
expression clusters from both human and yeast cell cycle microarray databases. In

the same way, predictions made using microarray data have been cross-validated
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and supplemented with predictions made from interaction data.!6%169 In consid-
ering any kind of high-throughput preoteomics data in a prediction technique, it
is important to consider that these experimental methods are a trade-off between
accuracy and scale. Therefore, the most accurate predictive techniques will involve
combining several types of heterogeneous data for validation and noise reduction
(see Sec. 2.6).

Interaction and coordinate expression data lead to the prediction of biological
process association. Second-level interactions could be used to predict a molecular
function, but generally the data from large interaction networks do not translate
well into specific functions. If a particular process or interaction partner is localized
to a distinct region of the cell, however, cellular components can be predicted by
interaction-based methods.

2.5. Process-based (metabolic context)

Evolution of the cell has established organized networks in the form of metabolic
pathways. These can be taken advantage of as an additional method for the predic-
tion of protein functions. The uniqueness of utilizing metabolic pathways to predict
the function of uncharacterized proteins is that gaps or holes in known pathways
can be and have been intuitively assigned a function, and that function simply
awaits a protein to be characterized to match it.!”® The KEGG pathway database
of metabolic pathways maps all of the known metabolic pathways, including reac-
tions that do not yet have a protein or enzyme associated with them.'!

Because this is a fairly new approach, not many attempts have been made to
use metabolic pathways to predict the protein function on a genomic scale. A recent
publication by Green and Karp!'™ analyzed PathoLogic, an algorithm designed to
produce a predicted set of metabolic pathways (including holes) using an organ-
ism’s genomic information, then mine the uncharacterized genes in that organism
for potential functional matches to holes in those pathways.'”" Potential matches,
or “candidate genes,” are found by using BLAST to search isozymes (from other
organisms) of missing enzymes in the target organism against the entire genome
of the target organism. The matches are then scored using a Bayesian approach
according to the probability that they might perform the function of the missing
enzyme. The pathway to protein approach takes advantage of being able to search
isozyme sequences against the existing, limited genome of the target organism. This
kind of global approach is of interest because the most practical limiting boundary
to functional genomics is the genome itself, i.e. all of the information needed to
assign function to an organism’s gene products should exist within the genome.

2.5.1. Accuracy and limitations

A process-based approach introduced here does not directly predict the function
of a gene by itself, but rather it will indicate that there should be “missing genes”
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in a genome that need to fill holes in pathways. If genes can be identified which
correspond to missing links in a metabolic pathway, biological process of the genes
are literally predicted, most probably together with their molecular function and
cellular component.

2.6. Combined methods (multi-context)

In this review, we have introduced and summarized the recent developments of
computational protein function prediction (Table 4). Stress has been placed on novel
and creative methods which directly and indirectly predict biochemical function,
interacting protein partners, cellular localization, and even biological pathways of
uncharacterized sequences.

Most of these methods predict one or just a few functional aspects of the query
protein. In compensating for the limitations of each prediction method, it is effec-
tive to integrate many types of function predictions together with available high-
throughput proteomic data to form a prediction system (Fig. 3). Deng et al.'™ have

Table 4. Web resources for multi-context function prediction.

‘Website Category Description URL
Tools
ProKnow  Seq./Struct. GO function prediction http://www.doe-mbi.ucla.edu/
server Services/ProKnow/

Sequence-based Prediction Servers
Proknow, ProtFun, PFP

Association Mining Sequence Motif Searches
STRING Pfam, PROSITE
Structural Alignments
CATH, SCOP
Sequence Alignment Structure Prediction
FASTA, BLAST, ROBETTA
PSI-BLAST
'/A‘ Structural Motif Searches

ProFunc, Proknow,

i Interaction Network C-Sits Finder,

Mlcroarr_ay ! WebFEATURE,
Analy5|s AnaIYSIS Catalytic Site Atlas

Fig. 3. A practical flowchart for the prediction of a single unknown query sequence. The best
starting searches are FASTA, BLAST, and PSI-BLAST, which provide accurate and fast database
searching for known similar sequences. If this search does not produce satisfactory results, one may
perform several related queries to sequence and structure motif prediction servers (if the structure
is not available) or analyses based on high-throughput experimental results (if the experimental
data is available).
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developed a method that integrates many types of function predictions into an inter-
action network created from the MIPS Comprehensive Yeast Genome Database!™
using Markov random fields (MRFs).!™ Here, the network weights protein—protein
and genetic interaction data, correlated expression data, and protein domain struc-
ture information to assign posterior probability of a gene having a particular func-
tion. PathoLogic!™ approaches the problem of filling gaps in biological pathways
from multiple directions, including sequence similarity and genomic context. Essen-
tially, this approach identifies orthologous pathways and fits gene candidates in the
target organism to the profile of the protein performing the orthologous reaction.
POINT7 uses the concept of interologs to identify novel interactions in the human
proteome, and references these interactions to available cell cycle microarray expres-
sion information and cellular localization. MAGIC'5® incorporates protein—protein
and genetic interaction data sets along with transcription factor binding sites into a
Bayesian framework to group genes into functional clusters. Marcotte et al. combine
phylogenetic data with interaction and expression data to predict function.''”
Certainly, utilizing a variety of contextual clues can filter out noise inherent in
computational methods for function annotation. In each of these methods, the sig-
nificant question involves how to combine data from heterogeneous sources. Most of
these applications use simple elimination or some form of Bayes’ conditional proba-
bility to reduce noise, although in the future, artificial intelligence and classification
techniques such as neural networks and SVMs are sure to be incorporated in this
task. In all of these cases, a common functional vocabulary, e.g. GO, is indispensable
for integration of results from varying methods in a function prediction system.

2.7. Application and evaluation

There are several cases where application of contextual clues has resulted in func-
tional discovery of a protein or series of proteins. Here we will discuss two examples.
First, the thiamine biosynthesis pathway has been found by comparative genomics
to include gaps, or reactions for which some species have no identifiable homolog
by sequence similarity. Morett et al.!”™ use the concept of analogous gene replace-
ment to find likely candidates for these gaps. Analogous proteins are functionally
equivalent but lack sequence and structural similarity because of evolutionary inde-
pendence. In their investigation, Morett et al. identify analogs by anti-correlation
in the phylogenetic profiles of several genes related to thiamine biosynthesis and
also use sequence and structural analyses to strengthen their predictions. In this
case, the predictions were validated by experimental verification of the predicted
functions. Second, the gene frataxin/cyaY, implicated in the neurodegenerative dis-
ease Friedreich’s ataxia, lacks both experimental characterization and identifiable

176 jdentified two genes, hscA and

homology by sequence similarity. Huynen et al.
hscB, whose phylogenetic distributions across 56 organisms correlate well with the
frataxia gene. All three proteins are known or predicted to localize in the mitochon-

dria, and hscA and hscB are known to be involved in the iron—sulfur cluster protein
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assembly. They conclude, therefore, that frataxin may be involved in this process.
Both of these are examples of focused computational analyses that utilize a variety
of contextual clues to elucidate a putative function for a target protein. Their suc-
cess indicates strong potential for these same types of analyses to be relevant on a
larger scale.

What is currently lacking in the field of function prediction is a real knowledge
of how these techniques perform in their ability to provide unique contextual func-
tional clues on a larger scale. This kind of assessment will be vital for understanding
how to combine data from heterogeneous sources in a biologically appropriate man-
ner, and subsequently implementing that combined data into a function prediction
algorithm. One of the most significant points of concern over the future of the field
of protein function prediction is this assessment of predictive performance. Assess-
ment here covers two major points of concern. First is the lack of a “gold standard”
data set by which new techniques can prove their merit. Several potential candi-
dates exist, e.g. the E. coli or other small, well characterized genomes, but because
function prediction methods many times only predict a certain category of func-
tion (i.e. biochemical activity or metabolic process), assessment against a universal
set of annotations could be difficult and misleading. In several cases, finding the
correct function for a gene is difficult even from literature searching, as there are
often contradictory results in different papers. Second is the lack of an appropriate
method of quantitative assessment of predictions against known annotations. In the
context of GO, semantic similarity seems to be the most informative,!”” 170 but
similarity between GO terms can be assessed purely by the structure of the ontol-
ogy (edge distance) or textual similarity of term definitions as well. In hierarchical
ontologies such as E.C. or SCOP, predictions can be assessed by correct assignment
of Superfamily or Family. The problem of assessment is further complicated by
the fact that each method of function prediction has a different goal. While some
methods attempt to annotate specific biochemical activity to individual residues or
groups of residues in a protein structure, others predict low-resolution function for
the analysis of high-throughput proteomics data wherein significant clusters may
lack any function annotation.

This lack of appropriate assessment methods hinders the practical use of func-
tion prediction data by experimentalists and also development of new and better
predictive techniques. Thus, assessment solutions are a target of many groups in the
function prediction community. Two such efforts are described here. The biennial
Critical Assessment of Techniques for Protein Structure Prediction (CASP) has
included function prediction as a category in the previous two competitions,!80:181
and the annual Automated Function Prediction (AFP) meeting is trying to orga-
nize an ongoing resource for predictions of all types.'™ CASP is a community-wide
assessment of protein structure prediction techniques wherein predictors model tar-
get proteins which are evaluated against experimentally determined structures.
Predictions are made in several categories including structure modeling, domain
prediction, and recently, function prediction. AFP is an annual meeting and forum
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specifically for those working in the field of function prediction. The organizers of
AFP are particularly interested in moderating a CASP-style function prediction
assessment. In the end, two questions need to be considered: How useful are these
assessments in (1) allowing computational biologists to effectively evaluate algo-
rithm performance and (2) communicating algorithm effectiveness and utility to
the experimental biologists who will ultimately use the predictions?

3. Conclusion

The integration of proteomics and computational techniques is vitally important
to both computational biologists and experimental biologists alike. Computational
techniques enhance the ability of experimentalists to design efficient investigations
and ask appropriate questions,'®? and thorough, accurate data sets provide com-
putational biologists with the appropriate resources to develop efficiently targeted
algorithms. The near future of biology will see integration of fields — molecular
biology, genetics, biochemistry, genomics, proteomics, and bioinformatics — to the
end of systems-level investigation and characterization.
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