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Abstract. Functional encryption supports restricted decryption keys that allow users
to learn specific functions of the encrypted messages. Although the vast majority of
research on functional encryption has so far focused on the privacy of the encrypted
messages, in many realistic scenarios it is crucial to offer privacy also for the functions
for which decryption keys are provided. Whereas function privacy is inherently limited
in the public-key setting, in the private-key setting it has a tremendous potential. Specif-
ically, one can hope to construct schemes where encryptions of messagesm1, . . . ,mT
together with decryption keys corresponding to functions f1, . . . , fT , reveal essentially
no information other than the values { fi (m j )}i, j∈[T ]. Despite its great potential, the
known function-private private-key schemes either support rather limited families of
functions (such as inner products) or offer somewhat weak notions of function privacy.
We present a generic transformation that yields a function-private functional encryption
scheme, starting with any non-function-private scheme for a sufficiently rich function
class. Our transformation preserves the message privacy of the underlying scheme and
can be instantiated using a variety of existing schemes. Plugging in known constructions
of functional encryption schemes, we obtain function-private schemes based either on
the learning with errors assumption, on obfuscation assumptions, on simple multilinear-
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maps assumptions, and even on the existence of any one-way function (offering various
trade-offs between security and efficiency).

Keywords. Functional encryption, Symmetric encryption, Function privacy.

1. Introduction

The most classical cryptographic scenario, dating back 1000s of years, consists of two
parties who wish to secretly communicate in the presence of an eavesdropper. This
classical scenario has traditionally led the cryptographic community to view the security
provided by encryption schemes as an all-or-nothing guarantee: The encrypted data can
be fully recovered using the decryption key, but it is completely useless without it. In
a wide variety of modern scenarios, however, a more fine-grained approach is urgently
needed. Startingwith the seminal notion of identity-based encryption [7,15,29], this need
has recently motivated the cryptographic community to develop a vision of functional
encryption [14,28,31], allowing tremendous flexibility when accessing encrypted data.
Functional encryption supports restricted decryption keys that allow users to learn

specific functions of the encrypted data and nothing else. More specifically, in a func-
tional encryption scheme, a trusted authority holds a master secret key known only
to the authority. When the authority is given the description of some function f as
input, it uses its master secret key to generate a functional key sk f associated with the
function f . Now, anyone holding the functional key sk f and an encryption of some
message m can compute f (m) but cannot learn any additional information about the
message m. Extensive research has recently been devoted to studying the security of
functional encryption schemes and to constructing such schemes (see, for example,
[4,6,11,14,16,18,23,25,28,31] and the references therein).

Function Privacy in Functional Encryption. The vast majority of research on functional
encryption to date has focusedon the privacyof encryptedmessages. In various scenarios,
however, one should consider not only privacy for the encrypted messages but also
privacy for the functions for which functional keys are provided. Consider, for example,
a user who subscribes to an online storage service for storing her files. For protecting
her privacy, the user locally encrypts her files using a functional encryption scheme
prior to uploading them to the service. The user can then remotely query her data by
providing the service with a functional key sk f corresponding to any query f . Without
any additional privacy guarantees, the functional key sk f may entirely reveal the user’s
query f to the service, which is clearly undesirable whenever the query itself contains
sensitive information.
Scenarios of such flavor havemotivated the research of function privacy in various dif-

ferent settings, intuitively asking that functional keys reveal no unnecessary information
on their functionality. In the private-key setting, Shen et al. [30] explored function pri-
vacy for attribute-based encryption, and Goldwasser et al. [23] explored function privacy
in the context of reusable garbled circuits and token-based obfuscation. In the public-key
setting, Boneh et al. [12,13] explored function privacy for identity-based encryption and
for various generalizations of identity-based encryption. Their work was followed by
Agrawal et al. [1] who formalized general notions of function privacy in the broader
context of functional encryption, in both the private-key and the public-key settings.
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The extent to which function privacy can be satisfied differs dramatically between
the settings of private-key and public-key encryption. Specifically, in the public-key
setting, where anyone can encrypt messages, only a limited form of function privacy
can be satisfied. This is because given a functional key sk f and the public key pk of the
scheme, a malicious user can learn information about the function f by evaluating it on
any pointm of his choosing (by first encryptingm and then using sk f to decrypt f (m)).
This process reveals non-trivial information about f and in some cases may entirely leak
the function’s description (unless additional restrictions are imposed, see [1,12,13] for
more details). As a result, function-private functional encryption schemes in the public-
key setting are quite restricted and furthermore such have only been presented respective
to limited function families (e.g., point functions and inner products).

Our Work: Function Privacy in the Private-Key Setting. In this work, we focus on func-
tion privacy in the private-key setting. In this setting, function privacy has significantly
more potential than in the public-key setting, both as a stand-alone feature and as a very
useful building block (see Sect. 1.2 for subsequent work). Specifically, one can hope
to achieve the following notion of privacy (stated informally): Any user that obtains
encryptions of messages m1, . . . ,mT , and functional keys corresponding to functions
f1, . . . , fT , learns essentially no information other than the values { fi (m j )}i, j∈[T ]. This
is a strong notion of privacy, which we formalize via an indistinguishability-based defi-
nition is likely to have great potential for a wide variety of applications.
Despite its great potential, the known function-private private-key schemes either

support only the inner-product functionality for attribute-based encryption [1,30] or
offer only somewhat weak notions of function privacy [17,23]. We refer the reader to
Sect. 1.3 for a detailed discussion of the known function-private schemes. This state of
affairs has motivated us to explore the following fundamental question:

Canwe construct private-key functional encryption schemes that support rich
and expressive families of functions while offering strong notions of function
privacy?

1.1. Our Contributions

Our work provides a positive answer to the above fundamental question. We present
private-key functional encryption schemes that support rich and expressive families of
functions, while offering strong notions of function privacy.
Specifically, we put forward a generic transformation that yields a function-private

private-key functional encryption scheme based on any (possibly non-function-private)
private-key functional encryption scheme that supports all functions that are computable
by bounded-size circuits. In particular, our transformation can be instantiated by the
recently developed functional encryption scheme of Goldwasser et al. [23] that is based
on the LWE assumption, by the schemes of Garg et al. [18], Boyle et al. [6], Ananth
et al. [2], and Waters [33] that are based on obfuscation assumptions, by the scheme of
Garg et al. [19] that is based on simple assumptions on multilinear maps, and even by the
scheme of Gorbunov et al. [25] which is somewhat less efficient but can be based on any
one-way function (we refer the reader to Sect. 2.2.1 for more details). Although most
of these constructions are in fact public-key schemes, they are in particular private-key
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ones (i.e., in some sense, these schemes currently seem significantly more powerful than
what is required for our transformation).
Thenotions of functionprivacy that are satisfiedbyour transformation are the strongest

notions that have been proposed so far (we refer the reader to Sect. 3 for a detailed
discussion of these notions). In addition, the resulting scheme inherits the message
privacy of the underlying scheme (i.e., full vs. selective security, and one-key vs. many-
keys security) and supports all functions that are computable by circuits whose size is
slightly smaller than those supported by the underlying scheme. Finally, we note that
our transformation is in fact oblivious to the computational model that is supported by
the underlying scheme and to its representation (e.g., circuits vs. Turing machines), as
long as the scheme supports a universal function for the model and a few additional
basic operations (see Sect. 1.4 below).

1.2. Subsequent Work

Our generic construction and proof techniques have already been proved fruitful by
Komargodski et al. [26] and by Ananth et al. [3] beyond the context of function-private
functional encryption as its own primitive. Komargodski et al. presented a construction
of a private-key functional encryption scheme for randomized functions based on any
private-key functional encryption scheme for deterministic functions that is sufficiently
expressive. Their work follows up on the work of Goyal et al. [21] who put forward the
notion of functional encryption for randomized functionalities and constructed a public-
key functional encryption scheme for randomized functionalities based on the (seem-
ingly significantly stronger) assumption of indistinguishability obfuscation.Ananth et al.
presented a construction of a fully secure functional encryption scheme from any selec-
tively secure functional encryption scheme that is sufficiently expressive (their trans-
formation applies in both the private-key setting and the public-key setting). Previous
constructions of fully secure schemes were based on assumptions that seem significantly
stronger, such as obfuscation and multilinear maps assumptions [2,6,19,33].
One of the key insights underlying both of theseworks is that in the private-key setting,

where encryption is performed honestly by the owner of the master secret key, the power
of obfuscation may not be needed. Instead, they observed that in some cases one can rely
on the weaker notion of function privacy. More specifically, both Komargodski et al. and
Ananth et al. showed that any sufficiently expressive functional encryption scheme may
be appropriately utilized via our function-privacy techniques for implementing some of
the proof techniques that were so far implemented based on obfuscation (including, for
example, a variant of the punctured programming approach of Sahai and Waters [32]).

1.3. Additional Related Work

Function Privacy. As mentioned above, Shen et al. [30] initiated the research on predi-
cate privacy in attribute-based encryption in the private-key setting. They constructed a
predicate-private inner-product encryption scheme in the private-key setting. Boneh et
al. [12,13] initiated the research on function privacy in the public-key setting. They con-
structed function-private public-key functional encryption schemes for point functions
(equivalently, anonymous IBE) and for subspace membership. Since their work is in the
public-key setting, their framework assumes that the functions come from a distribution
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of sufficient entropy, as otherwise it seems that no realistic notion of function privacy
can be satisfied.
Agrawal et al. [1] then presented a general framework for function-private functional

encryption both in the private-key setting and in the public-key setting and explored
their plausibility. Most relevant to our work, they presented the full security notion for
function-private functional encryption in the private-key setting and presented improved
constructions for the inner-product functionality in this model. We note that we refer to
their notion of full security as full function privacy (see Definition 3.2).

Reusable Garbled Circuits. The related notion of reusable garbled circuits (ruGC) is
defined as follows. Given a secret key, two procedures can be carried out: garbling a
circuit C (which corresponds to generating a function key) and encoding of an input x
(which corresponds to an encryption of a message). Given a garbled C and an encoded
input x , it is possible to publicly computeC(x). The security requirement is that an adver-
sary that choosesC to be garbled and then a sequence of inputs x1, . . . , xt to be encoded
cannot learn more than C(x1), . . . ,C(xt ). Security is formalized in a simulation-based
model: The simulator is required to simulate the garbled circuit without knowing C ,
and then it is fed with C(xi ) in turn and is required to simulate the encoded inputs.
Goldwasser et al. [23,24] constructed a simulation-secure functional encryption scheme
(without function privacy) and showed how ruGC follows from that primitive.1 The
similarity to function-private functional encryption is apparent, but there are some sig-
nificant differences. It follows from the result of [4] that ruGC, much like simulation-
secure functional encryption, cannot securely support an a priori unbounded number
of circuits, whereas we are able to guarantee function privacy for any polynomial (a
priori unknown) number of function keys. A very similar argument shows that the sit-
uation where C is chosen after the inputs xi is also impossible in the context of ruGC
(at least under a natural definition of the simulation process), whereas we would like
the inputs and functions to be adaptively introduced in arbitrary order. On the flip side,
ruGC provides simulation-based security which seems to be a stronger notion than
indistinguishability-based security achieved by our construction.

Multi-input Functional Encryption. Goldwasser et al. [17] have recently introduced
the notion of multi-input functional encryption (MIFE) schemes. As the name sug-
gests, MIFE allows functional keys to correspond to multi-input functions which can
be evaluated on tuples of ciphertexts. Slightly simplified, the dream notion of secu-
rity (specifically, indistinguishability-based security in the private-key setting, which is
most relevant to this work) is that of an adversary that is allowed to make functional key
queries and alsomessage queries containing pairs ofmessages (m0,m1), and in response
it gets an encryption of mb, where b is a secret bit. We would like the adversary to not
be able to guess b unless it obtained a key to a function that behaves differently on the
m0’s and on the m1’s. This dream version of security, even just for two inputs, implies
function-private private-key functional encryption: We will use the first input coordinate
to encrypt the description of the function and the second to encrypt the input, and pro-
vide a function key for the universal two-input function. However, Goldwasser et al. [17]

1Additional constructionswere presented byBoneh et al. [8]whowere able to reduce the garbling overhead
from multiplicative to additive in either the size of the circuit or the size of the encoded input.
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fall short of achieving this dream version, since their adversary is not allowed to make
message queries adaptively. Furthermore, their construction relies on strong notions of
obfuscation (indistinguishability obfuscation and differing-input obfuscation), whereas
the construction in this paper only relies on private-key function encryption (which is
currently known to be implied by obfuscation, but no reverse derivation is known and it is
quite possible that they can be constructed under milder assumptions—see Sect. 2.2.1).

1.4. Overview of Our Approach

In this section, we provide a high-level overview of our approach and techniques. We
begin with a brief description of the notions of function privacy that we consider in this
work and then describe the main ideas underlying our construction.

Function Privacy. Our notion of function privacy is that of Agrawal et al. [1, Def. 2.7]
(generalizing Shen et al. [30]), which considers the privacy of functional keys and the
privacy of encrypted messages in a completely symmetric manner. Specifically, we
consider adversaries that issue both key-generation queries of the form ( f0, f1) and
encryption queries of the form (m0,m1). These queries are answered by providing a
functional key for fb and an encryption ofmb, where all queries are answered using the
same bit b ∈ {0, 1}. We allow adversaries to adaptively issue any polynomial number
of such queries (this number does not have to be bounded in advance), and their goal is
to distinguish the experiment where b = 0 and the experiment where b = 1. Our only
requirement from such adversaries is that for all key-generation queries ( f0, f1) and
for all encryption queries (m0,m1) it holds that f0(m0) = f1(m1). In addition to this
notion, we also consider two “selective” relaxations, and we refer the reader to Sect. 3
for more details on our notions of function privacy.

A Failed Attempt. Our starting point is any given private-key functional encryption
scheme without function privacy. A natural approach toward achieving function privacy
is to modify its key-generation algorithm so that it provides functional keys containing
only encrypted descriptions of the associated functions. Namely, for generating a func-
tional key for a function f , we will first encrypt the description of f using a symmetric
encryption scheme SKE = (SKE.KG,SKE.Enc,SKE.Dec) to obtain a ciphertext
c f ← SKE.Enc(SKE.k, f ), where SKE.k is a key for the scheme SKE (which does
not change throughout the lifespan of the scheme). Then, the key-generation algorithm

would provide a functional key for the function Uc f (m, k)
def= (SKE.Dec(k, c f ))(m)

(that is, the function that first decrypts c f using the candidate key k, and then applies
the resulting function onm). The semantic security of SKE guarantees that the function
Uc f hides the description of f , as long as the key SKE.k is not known. In order to main-
tain the functionality, the message encryption algorithm must also change: Rather than
encrypting the message m alone using the underlying functional encryption scheme,
we will now encrypt the pair (m,SKE.k). One can verify that the functionality of the
scheme still holds since clearly Uc f (m,SKE.k) = f (m).
One could hope to prove that this construction is function private. Indeed, Goldwasser

et al. [23] used this exact scheme to construct reusable garbled circuits.2 This approach

2A similar approach was also taken by De Caro et al. [16] and Ananth et al. [3] who used a private-key
encryption scheme for embedding “trapdoors” into functional keys. The main difference, however, is that De
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by itself, however, is insufficient for our purposes. On the one hand, during the proof
of security we would like to rely on the semantic security of SKE for arguing that the
functionUc f hides the description of f . This implies that the key SKE.k should be kept
completely secret. On the other hand, the functionality of the scheme must be preserved
even during the proof of security. Thus, in order to allow adversaries to use the functional
key for the function Uc f , the key SKE.k must be used while encrypting messages as
above. This conflict is the main challenge that our construction overcomes.
We note that also in the construction of reusable garbled circuits of Goldwasser et

al. [23] this conflict arises. However, they consider only a selective single-function secu-
rity notion asking adversaries to specify a challenge function f prior to receiving any
encryptions. Within such a selective framework, the conflict is easily resolved: During
the proof of security, one can preserve the functionality by modifying the encryption
algorithm to encrypt f (m) instead of encrypting m itself. Thus, the description of the
function f is in fact not needed, but only the value f (m) is needed for each encrypted
message m [note that f (m) is anyway known to the adversary]. This approach, how-
ever, seems inherently limited to a selective framework, whereas we would like to allow
adversaries to adaptively query the key-generation and encryption oracles, at any point
in time, and for any polynomial number of queries.3

Our Scheme. To get around the aforementioned obstacle, we show that the Naor–Yung
“double encryption” methodology [27] can be adapted to our setting. Instead of encrypt-
ing the description of f only once, we encrypt it twice using two independent symmetric
keys. For preserving the functionality of the system, only one out of the two keys will be
explicitly needed, and this allows us to attack the other key. Combined with the message
privacy of the underlying functional encryption scheme, this approach enables us to
prove the security of our scheme.
More specifically, the master secret key of our scheme consists of a master secret

key msk for the underlying functional encryption scheme, and two keys, SKE.k and
SKE.k′, for a symmetric-key CPA-secure scheme. In order to generate a functional key
for a function f ,wefirst generate two symmetric encryptions c ← SKE.Enc(SKE.k, f )
and c′ ← SKE.Enc(SKE.k′, f ) of the description of f . Then, we issue a functional key
for the functionUc,c′ which is defined as follows on inputs of the form (m,m′, k, k′): If
k �= ⊥ then decrypt c using k for obtaining a function f , and output f (m). Otherwise, if
k = ⊥, then decrypt c′ using k′ for obtaining a function f ′, and output f (m′). In order
to encrypt a messagem, we will use the encryption scheme of the underlying functional
encryption scheme to encrypt (m,⊥,SKE.k,⊥) using its master secret keymsk. Note
that this scheme works quite similarly to the aforementioned intuitive idea, only it has
“placeholders” for elements that will be used in the proof.

Footnote 2 continued
Caro et al. and Ananth et al. use such trapdoors only within the proof of security, whereas Goldwasser et al.
use them for implementing the standard behavior of their scheme.

3The approach of Goldwasser et al. can be extended to deal with any a priori bounded number of functions,
as long as they are specified in advance (this is done using [25]). In this case, the length of ciphertexts in their
scheme would be linear in the number of functions. This is in fact inherent to their setting, as they consider a
simulation-based notion of security [4]. We consider indistinguishability-based notions of security and would
like to inherit the (either full or selective) security of the underlying functional encryption scheme.



Function-Private Functional Encryption in the Private-Key Setting 209

Toward illustrating some of the ideas underlying the proof of security, consider an
adversary that makes just one encryption query (m0,m1), and just one key-generation
query ( f0, f1) in some arbitrary order [(recall that we require f0(m0) = f1(m1)]. The
view of this adversary consists of an encryption ofmb and a functional key for fb for a
uniformly chosen bit b ∈ {0, 1}. The proof starts bymodifying the functional key: Instead
of computing c′ ← SKE.Enc(SKE.k′, fb) we compute c′ ← SKE.Enc(SKE.k′, f1).
Note that since the key SKE.k′ is in fact not being used, and since the functionality of
the functional key is not hurt (c′ is anyway not used for decryption), the CPA security of
the symmetric scheme implies that this goes unnoticed. Next, we modify the encryption
algorithm to encrypt (⊥,m1,⊥,SKE.k′) instead of (mb,⊥,SKE.k,⊥). This time the
adversary will not notice the change due to the message privacy of the underlying func-
tional encryption scheme, since the new and old ciphertexts will decrypt to the same
value fb(mb) = f1(m1) under the modified functional key. Finally, we modify the func-
tional key once again: Instead of computing c ← SKE.Enc(SKE.k, fb) we compute
c ← SKE.Enc(SKE.k, f1). As before, since the key SKE.k is in fact not being used,
and since the functionality of the functional key is not hurt, then the CPA security of the
symmetric scheme implies that this goes unnoticed. At this point, we observe that the
view of the adversary is in fact completely independent on the choice of the bit b, and
the result follows. We refer the reader to Sect. 4 for the formal description and proof of
our scheme.

1.5. Open Problems

Our work raises various open problems on the feasibility and the design of functional
encryption schemes. Some of these are outlined below.

Private-Key Versus Public-Key Functional Encryption. Our construction relies on any
private-key functional encryption schemes, but in fact, most of the existing constructions
of such schemes are secure even in the public-key setting (see Sect. 2.2.1). Clearly, any
functional encryption scheme that is secure in the public-key setting is also secure in the
private-key one. However, the existing constructions either apply in a restricted setting or
rely on somewhat strong assumptions that are related to program obfuscation. Our work
provides additional motivation for studying private-key functional encryption in hope
for achieving constructions with better efficiency or under improved assumptions. Alter-
natively, perhaps it is possible to construct a public-key functional encryption scheme
based on any private-key one.
Significant progress along these lines was recently made by Asharov and Segev [5]

and by Bitansky et al. [10]. On the one hand, Asharov and Segev showed that as long as
a private-key functional encryption scheme is used in a black-box manner, it does not
imply any public-key primitive—not even a key-agreement protocol (their framework
does allow generating functional keys for circuits that rely on one-way functions in a
black-boxmanner). On the other hand, relying on the non-black-box usage of private-key
functional encryption due to Brakerski et al. [9], Bitansky et al. showed that it does imply
public-key cryptography, and even program obfuscation. Specifically, they showed that:
(1) Private-key functional encryption with sub-exponential security, together with any
(nearly) exponentially secure pseudorandom generator, imply a public-key encryption
scheme and (2) private-key functional encryptionwith sub-exponential security, together
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with public-key encryption with sub-exponential security, imply indistinguishability
obfuscation.

Simulation-Based Function Privacy. Following Shen et al. [30] and Boneh et al. [12,13],
we consider indistinguishability-based notions of function privacy. As already observed
[14,28], in some cases indistinguishability-based notions do not provide realistic security
guarantees for functional encryption schemes. A (somewhat relaxed) simulation-based
notion of function privacy was recently formalized by Agrawal et al. [1], and an interest-
ing open problem is to further explore its relation to our notions and to our construction.

Relying on Restricted Function Families. Our construction relies on any private-key
functional encryption scheme that supports a sufficiently rich function class.Although, as
discussed above, various such schemes are known to exist, an interesting open problem is
to construct a function-private scheme based on any scheme that supports more restricted
function classes (e.g., inner products or subspace membership).

1.6. Paper Organization

The remainder of this paper is organized as follows. In Sect. 2, we introduce the basic
notation and tools underlying our construction. In Sect. 3, we introduce the notions of
function privacy that are considered in this work. In Sect. 4, we present and prove the
security of our generic construction of a function-private scheme.

2. Preliminaries

In this section, we present the notation and basic definitions that are used in this work.
For a distribution X , we denote by x ← X the process of sampling a value x from the
distribution X . Similarly, for a set X , we denote by x ← X the process of sampling a
value x from the uniform distribution over X . For an integer n ∈ N we denote by [n]
the set {1, . . . , n}. A function ν : N → R

+ is negligible if for any polynomial p(·) there
exists an integer N such that for all n > N it holds that ν(n) ≤ 1/p(n).

We rely on the following standard notion of a left-or-right oracle when formalizing
the security of encryption schemes:

Definition 2.1. (Left-or-right oracle) Let O be a probabilistic two-input functional-
ity. For each b ∈ {0, 1} we denote by Ob the probabilistic three-input functionality

Ob(k, x0, x1)
def= O(k, xb).

2.1. Private-Key Encryption

A private-key encryption scheme over a message space M is a triplet (KG,Enc,Dec)
of probabilistic polynomial-time algorithms. The key-generation algorithm KG takes
as input the unary representation 1λ of the security parameter λ ∈ N and outputs a
secret key k. The encryption algorithm Enc takes as input a secret key k and a message
m ∈ M, and outputs a ciphertext c. The decryption algorithm Dec takes as input a
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secret key k and a ciphertext c, and outputs a messagem or the dedicated symbol ⊥. In
terms of correctness, we require that for any key k that is produced by KG(1λ) and for
every message m ∈ M it holds that Dec(k,Enc(k,m)) = m with probability 1 over
the internal randomness of the algorithms Enc and Dec.
In terms of security, we rely on the standard notion of a CPA-secure private-key

encryption scheme that is formulated using a left-or-right encryption oracle. Recall (Def-
inition 2.1) that for an encryption scheme Π = (KG,Enc,Dec) and for any b ∈ {0, 1}
we denote byEncb the left-or-right encryption oracleEncb(k,m0,m1)

def= Enc(k,mb).

Definition 2.2. (CPA security) A private-key encryption scheme Π = (KG,Enc,
Dec) is CPA-secure if for any probabilistic polynomial-time adversary A, there exists
a negligible function ν(λ) such that

AdvCPAΠ,A(λ)
def=

∣
∣
∣Pr

[

AEnc0(k,·,·)(λ) = 1
]

− Pr
[

AEnc1(k,·,·)(λ) = 1
]∣
∣
∣ ≤ ν(λ),

where the probability is taken over the choice of k ← KG(1λ) and over the randomness
of Enc and A.

2.2. Private-Key Functional Encryption

We rely on the standard indistinguishability-based notions of full security and selective
security for functional encryption schemes (see, for example, [11,14,28]), by adapting
them to the private-key setting. In this paper, as we consider security notions for both
messages and keys, we refer to the standard notions of security and selective security as
message privacy and selective-message privacy.
A private-key functional encryption scheme over a message space M and a func-

tion space F is a quadruple (Setup,KG,Enc,Dec) of probabilistic polynomial-time
algorithms. The setup algorithm Setup takes as input the unary representation 1λ of
the security parameter λ ∈ N and outputs a master secret keymsk. The key-generation
algorithm KG takes as input a master secret key msk and a function f ∈ F , and
outputs a functional key sk f . The encryption algorithm Enc takes as input a master
secret key msk and a message m ∈ M and outputs a ciphertext c. In terms of cor-
rectness, we require that for every function f ∈ F and message m ∈ M it holds that
Dec(KG(msk, f ),Enc(msk,m)) = f (m) with all but a negligible probability over
the internal randomness of the algorithms Setup,KG,Enc, and Dec.

In terms of message privacy, we require that encryptions of any two adversarially
chosen messages, m0 and m1, are computationally indistinguishable for any adversary
that may adaptively obtain functional keys for any function f ∈ F as long as f (m0) =
f (m1). This is formalized via the following definitions. Recall (Definition 2.1) that for
a private-key functional encryption scheme Π = (Setup,KG,Enc,Dec) and for any

b ∈ {0, 1}wedenote byEncb the left-or-right encryption oracleEncb(msk,m0,m1)
def=

Enc(msk,mb).

Definition 2.3. (Valid message-privacy adversary) A probabilistic polynomial-time
algorithmA is a validmessage-privacy adversary if for all private-key functional encryp-
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tion schemes Π = (Setup,KG,Enc,Dec), for all λ ∈ N and b ∈ {0, 1}, and for all f
and (m0,m1) with whichA queries the oracles KG and Encb, respectively, it holds that
f (m0) = f (m1).

Definition 2.4. (Full message privacy) A private-key functional encryption scheme
Π = (Setup,KG,Enc,Dec) over a message space M = {Mλ}λ∈N and a function
space F = {Fλ}λ∈N is fully message private if for any valid message-privacy adversary
A, there exists a negligible function ν(λ) such that

AdvMP
Π,A(λ)

def=
∣
∣
∣Pr

[

AKG(msk,·),Enc0(msk,·,·)(λ) = 1
]

− Pr
[

AKG(msk,·),Enc1(msk,·,·)(λ) = 1
]∣
∣
∣

≤ ν(λ),

where the probability is taken over the choice of msk ← Setup(1λ) and over the
randomness of KG, Enc and A.

Definition 2.5. (Selective-message message privacy) A private-key functional encryp-
tion scheme Π = (Setup,KG,Enc,Dec) over a message spaceM = {Mλ}λ∈N and a
function spaceF = {Fλ}λ∈N is T -selective-message message private, where T = T (λ),
if for any probabilistic polynomial-time adversary A there exists a negligible function
ν(λ) such that

AdvsMP
Π,A,T (λ)

def=
∣
∣
∣Pr

[

ExptsMP
Π,A,T (λ, 0) = 1

]

− Pr
[

ExptsMP
Π,A,T (λ, 1) = 1

]∣
∣
∣ ≤ ν(λ),

where for each b ∈ {0, 1} and λ ∈ N the experiment ExptsMP
Π,A,T (λ, b) is defined as

follows:

1. msk ← Setup(1λ).
2.

((

m0,1, . . . ,m0,T
)

,
(

m1,1, . . . ,m1,T
)

, state
) ← A(1λ), where m0,i ,m1,i ∈

Mλ for all i ∈ [T ].
3. c∗

i ← Enc(msk,mb,i ) for all i ∈ [T ].
4. b′ ← AKG(msk,·)(c∗

1, . . . , c
∗
T , state), where for each of A’s queries f to

KG(msk, ·) it holds that f (m0,i ) = f (m1,i ) for all i ∈ [T ].
5. Output b′.

Such a scheme Π is selective-message message private if it is T -selective-message
message private for all polynomials T = T (λ).

Definition 2.6. (Selective-function message privacy) A private-key functional encryp-
tion scheme Π = (Setup,KG,Enc,Dec) over a message spaceM = {Mλ}λ∈N and a
function spaceF = {Fλ}λ∈N is T -selective-function message private, where T = T (λ),
if for any probabilistic polynomial-time adversary A there exists a negligible function
ν(λ) such that

AdvsfMP
Π,A,T (λ)

def=
∣
∣
∣Pr

[

ExptsfMP
Π,A,T (λ, 0) = 1

]

− Pr
[

ExptsfMP
Π,A,T (λ, 1) = 1

]∣
∣
∣ ≤ ν(λ),
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where for each b ∈ {0, 1} and λ ∈ N the experiment ExptsfMP
Π,A,T (λ, b) is defined as

follows:

1. msk ← Setup(1λ).
2. ( f1, . . . , fT , state) ← A(1λ), where fi ∈ Fλ for all i ∈ [T ].
3. sk fi ← KG(msk, fi ) for all i ∈ [T ].
4. b′ ← AEncb(msk,·,·)(sk f1 , . . . , sk fT , state), where for each of A’s queries

(m0,m1) to Encb(msk, ·, ·) it holds that fi (m0) = fi (m1) for all i ∈ [T ].
5. Output b′.

Such a scheme Π is selective-function message private if it is T -selective-function
message private for all polynomials T = T (λ).

2.2.1. Known Instantiations

Private-key functional encryption schemes that satisfy the notions presented in Defini-
tions 2.4–2.6 (and support circuits of any a priori bounded polynomial size) are known
to exist based on various assumptions. Most of the known schemes are in fact public-key
schemes, which are in particular private-key ones.4 Each of these scheme can be used
to instantiate our generic transformation.
Specifically, a scheme that satisfies our notion of selective-message message privacy

was constructed by Garg et al. [18] based on indistinguishability obfuscation. Schemes
that satisfy the stronger notion of full message privacy (Definition 2.4) were constructed
by Boyle et al. [6] and by Ananth et al. [2] based on differing-input obfuscation, by
Waters [33] based on indistinguishability obfuscation, and by Garg et al. [19] based on
multilinear maps. Moreover, a generic transformation from selective-message message
privacy to full message privacy was recently showed by Ananth et al. [3].
A scheme that satisfies the notion of 1-selective-function message privacy was con-

structed by Gorbunov et al. [25] under the sole assumption that public-key encryption
exists. In the private-key setting, their transformation can in fact rely on any private-
key encryption scheme (and thus on any one-way function). By assuming, in addition,
the existence of a pseudorandom generator computable by small-depth circuits (which
is known to be implied by most concrete intractability assumptions), they construct a
scheme that satisfies the notion of T -selective-function message privacy for any prede-
termined polynomial T = T (λ). However, the length of the ciphertexts in their scheme
grows linearly with T and with an upper bound on the circuit size of the functions that
the scheme allows (which also has to be known ahead of time). Goldwasser et al. [23]
showed that based on the learning with errors (LWE) assumption, T -selective-function
message privacy can be achieved where the ciphertext size grows with T and with a
bound on the depth of allowed functions.

4For indistinguishability-based message privacy in the public-key setting, considering one challenge is
equivalent to considering a left-or-right encryption oracle [25]. Therefore, as public-key schemes are also
private-key ones, in our indistinguishability-based definitions we directly consider left-or-right encryption
oracles.



214 Z. Brakerski, G. Segev

3. Modeling Function Privacy in the Private-Key Setting

In this section, we introduce the notions of function privacy that are considered in
this work. We consider three notions: full function privacy, selective-message function
privacy, and selective-function function privacy. These are indistinguishability-based
notions whose goal is to guarantee that functional keys reveal no unnecessary informa-
tion on their functionality. Specifically, these notions ask that any efficient adversary
that obtains encryptions of messages m1, . . . ,mT , and functional keys correspond-
ing to functions f1, . . . , fT , learns essentially no information other than the values
{ fi (m j )}i, j∈[T ]. Our notions generalize the standard message-privacy notions for func-
tional encryption (see Sect. 2.2) by taking into account function privacy in addition to
message privacy.

Full Function Privacy. The strongest notion that we consider, which we refer to as
full function privacy, was recently put forward by Agrawal et al. [1] who generalized
the notion of Shen et al. [30] for predicate privacy in attribute-based encryption. This
notion considers both privacy of functional keys and privacy of encrypted messages in
a completely symmetric manner. Specifically, we consider adversaries that interact with
a left-or-right key-generation oracle KGb(msk, ·, ·), and with a left-or-right encryption
oracle Encb(msk, ·, ·) (where both oracles operate using the same bit b).5 We allow
adversaries to adaptively interactwith these oracles for anypolynomial number of queries
(whichdoes not have to bebounded in advance), and the adversaries’ goal is to distinguish
the cases b = 0 and b = 1. Our only requirement from such adversaries is that for all
( f0, f1) and (m0,m1) with which they query the oracles KGb and Encb, respectively,
it holds that f0(m0) = f1(m1). We note that this is clearly an inherent requirement.

Definition 3.1. (Valid function-privacy adversary) A probabilistic polynomial-time
algorithmA is a valid function-privacy adversary if for all private-key functional encryp-
tion schemes Π = (Setup,KG,Enc,Dec), for all λ ∈ N and b ∈ {0, 1}, and for all
( f0, f1) and (m0,m1) with which A queries the oracles KGb and Encb, respectively,
the following three conditions hold:

1. f0(m0) = f1(m1).
2. The messages m0 and m1 have the same length.
3. The descriptions of the functions f0 and f1 have the same length.

Definition 3.2. (Full function privacy) A private-key functional encryption scheme
Π = (Setup,KG,Enc,Dec) over a message space M = {Mλ}λ∈N and a function
space F = {Fλ}λ∈N is fully function private if for any valid function-privacy adversary
A, there exists a negligible function ν(λ) such that

AdvFPΠ,A(λ)
def=

∣
∣
∣Pr

[

AKG0(msk,·,·),Enc0(msk,·,·)(λ) = 1
]

−Pr
[

AKG1(msk,·,·),Enc1(msk,·,·)(λ) = 1
]∣
∣
∣ ≤ ν(λ),

5Recall (Definition 2.1) that for a probabilistic two-input functionality O and for b ∈ {0, 1}, we denote
byOb the probabilistic three-input functionalityOb(k, x0, x1)

def= O(k, xb).
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where the probability is taken over the choice of msk ← Setup(1λ) and over the
randomness of A.

SelectiveNotions.Weconsider two relaxations of our notion of full function privacy from
Definition 3.2. The first, whichwe refer to as selective-message function privacy restricts
the access that adversaries have to the left-or-right encryption oracle. Specifically, this
notion asks that adversaries choose in advance their set of encryption queries. We note
that adversaries are still given oracle access to the left-or-right key-generation oracle,
withwhich they can interact in an adaptivemanner for any polynomial number of queries.
The second, which we refer to as selective-function function privacy restricts the access
that adversaries have to the left-or-right key-generation oracle. Specifically, this notion
asks that adversaries choose in advance their set of key-generation queries. We note
that adversaries are still given oracle access to the left-or-right encryption oracle, with
which they can interact in an adaptive manner for any polynomial number of queries. In
addition,we note that our definition of a valid function-privacy adversary (Definition 3.1)
naturally extends to the selective setting.

Definition 3.3. (Selective-message function privacy) A private-key functional encryp-
tion scheme Π = (Setup,KG,Enc,Dec) over a message spaceM = {Mλ}λ∈N and a
function spaceF = {Fλ}λ∈N is T -selective-message function private, where T = T (λ),
if for any probabilistic polynomial-time adversary A there exists a negligible function
ν(λ) such that

AdvsmFP
Π,A,T (λ)

def=
∣
∣
∣Pr

[

ExptsmFP
Π,A,T (λ, 0) = 1

]

− Pr
[

ExptsmFP
Π,A,T (λ, 1) = 1

]∣
∣
∣ ≤ ν(λ),

where for each b ∈ {0, 1} and λ ∈ N the experiment ExptsMP
Π,A,T (λ, b) is defined as

follows:

1. msk ← Setup(1λ).
2.

((

m0,1, . . . ,m0,T
)

,
(

m1,1, . . . ,m1,T
)

, state
) ← A(1λ), where m0,i ,m1,i ∈

Mλ for all i ∈ [T ].
3. c∗

i ← Enc(msk,mb,i ) for all i ∈ [T ].
4. b′ ← AKGb(msk,·,·)(c∗

1, . . . , c
∗
T , state), where for each of A’s queries ( f0, f1) to

KGb(msk, ·, ·) it holds that f0(m0,i ) = f1(m1,i ) for all i ∈ [T ].
5. Output b′.

Such a scheme Π is selective-message function private if it is T -selective-message
function private for all polynomials T = T (λ).

Definition 3.4. (Selective-function function privacy) A private-key functional encryp-
tion scheme Π = (Setup,KG,Enc,Dec) over a message spaceM = {Mλ}λ∈N and a
function spaceF = {Fλ}λ∈N is T -selective-function function private, where T = T (λ),
if for any probabilistic polynomial-time adversary A there exists a negligible function
ν(λ) such that

AdvsfFPΠ,A,T (λ)
def=

∣
∣
∣Pr

[

ExptsfFPΠ,A,T (λ, 0) = 1
]

− Pr
[

ExptsfFPΠ,A,T (λ, 1) = 1
]∣
∣
∣ ≤ ν(λ),
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where for each b ∈ {0, 1} and λ ∈ N the experiment ExptsMP
Π,A,T (λ, b) is defined as

follows:

1. msk ← Setup(1λ).
2.

((

f0,1, . . . , f0,T
)

,
(

f1,1, . . . , f1,T
)

, state
) ← A(1λ), where f0,i , f1,i ∈ Fλ for

all i ∈ [T ].
3. sk∗

i ← KG(msk, fb,i ) for all i ∈ [T ].
4. b′ ← AEncb(msk,·,·)(sk∗

1, . . . , sk
∗
T , state), where for each ofA’s queries (m0,m1)

to Encb(msk, ·, ·) it holds that f0,i (m0) = f1,i (m1) for all i ∈ [T ].
5. Output b′.

Such a scheme Π is selective-function function private if it is T -selective-function
function private for all polynomials T = T (λ).

Finally,we observe that due to the symmetry between the roles of the encryption oracle
and the key-generation oracle in these two selective notions, they are in fact equivalent
when switching between the encryption algorithm and key-generation algorithm of any
given scheme. That is, a private-key functional encryption scheme (Setup,KG,Enc,
Dec) is selective-message function private if and only if the scheme (Setup,Enc,
KG,Dec) is selective-function function private. To be a little more accurate, replacing
the roles of functions f and message m may require some standard “type casting” to
represent a message as function and function as message. This is done using universal
machines: To cast a function f as a message, we consider its description as the message
to be encrypted. This means that if Enc only takes bounded length messages, then the
new scheme will only support functions with bounded description lengths. To cast a
message m as a function, we consider a universal function that accepts a description of
a function f and outputs f (m). Again, depending on the computational model under
consideration, this may impose some restrictions. For example, if working over circuits
then the universal circuit imposes an upper bound on the size of the functions supported
by the new scheme, whereas that may not have been required in the original scheme
before the switch (however, in this example, if the function size was a priori unbounded
in the original scheme, then the message space after the switch will become a priori
length unbounded).

4. Our Function-Private Scheme

In this section, we present our generic construction of a function-private private-key
functional encryption scheme. Our construction relies on the following two building
blocks:

• A private-key functional encryption scheme FE = (FE.Setup,FE.KG,FE.Enc,
FE.Dec).

• A private-key encryption scheme SKE = (SKE.KG,SKE.Enc,SKE.Dec).6

Our new functional encryption scheme FPE = (Setup,KG,Enc,Dec) is defined as
follows.

6To be absolutely formal, this building block is implied by the former in an obvious way.
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Fig. 1. Function Uc,c′ .

The Setup Algorithm. On input the security parameter 1λ the setup algorithm Setup
samples FE.msk ← FE.Setup(1λ), SKE.k ← SKE.KG(1λ), and SKE.k′ ←
SKE.KG(1λ). Then, it outputs msk = (FE.msk,SKE.k,SKE.k′).
The Key-Generation Algorithm. On input the master secret key msk = (FE.msk,
SKE.k,SKE.k′) and a function f , the key-generation algorithm KG first computes
c ← SKE.Enc(SKE.k, f ) and c′ ← SKE.Enc(SKE.k′, f ). Then, it computes
FE.SKUc,c′ ← FE.KG(FE.msk,Uc,c′), where the function Uc,c′ is described in Fig. 1.
Finally, it outputs sk f = FE.SKUc,c′ .

The Encryption Algorithm. On input the master secret key msk = (FE.msk,
SKE.k,SKE.k′) and a message m, the encryption algorithm Enc outputs c ←
FE.Enc(FE.msk, (m,⊥,SKE.k,⊥)).

The Decryption Algorithm.On input a functional key sk f and a ciphertext c, the decryp-
tion algorithm Dec outputs FE.Dec(sk f , c).
Note that if the underlying scheme FE supports functions that are computable by

circuits of size at most s, for some sufficiently large polynomial s = s(n), then our
new scheme FPE supports functions that are computable by circuits of size Ω(s).
Specifically, a functional key sk f for a function f in the new scheme consists of a
functional key for the function Uc,c′ in the underlying scheme. The function Uc,c′ is
computable in a straightforward manner by a circuit that contains two copies of a circuit
for computing f , and two copies of SKE’s decryption circuit. The security of our
construction is captured by the following theorem:

Theorem 4.1. Assuming that the scheme SKE is CPA-secure the following hold:

1. If the scheme FE is fully message private then the scheme FPE is fully function
private.

2. If the schemeFE is selective-message message private (resp. T -selective-message
message private) then the schemeFPE is selective-message function private (resp.
T -selective-message function private).

3. If the scheme FE is selective-function message private (resp. T -selective-function
message private) then the schemeFPE is selective-function function private (resp.
T -selective-function function private).

As discussed in Sect. 2.2.1, Theorem 4.1 can be instantiated based on a variety of
known functional encryption schemes (e.g., [2,6,18,23,25]) that offer full message pri-
vacy, selective-message message privacy, and selective-function message privacy.
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Table 1. Differences between the experimentsH(0), . . . ,H(4).

Experiment Encryption oracle Key-generation oracle

H(0) FE.Enc(FE.msk, (m0, ⊥,SKE.k, ⊥)) c ← SKE.Enc(SKE.k, f0), c′ ← SKE.Enc(SKE.k′, f0)
H(1) FE.Enc(FE.msk, (m0, ⊥,SKE.k, ⊥)) c ← SKE.Enc(SKE.k, f0), c′ ← SKE.Enc(SKE.k′, f1)
H(2) FE.Enc(FE.msk, (⊥,m1, ⊥,SKE.k′)) c ← SKE.Enc(SKE.k, f0), c′ ← SKE.Enc(SKE.k′, f1)
H(3) FE.Enc(FE.msk, (⊥,m1, ⊥,SKE.k′)) c ← SKE.Enc(SKE.k, f1), c′ ← SKE.Enc(SKE.k′, f1)
H(4) FE.Enc(FE.msk, (m1, ⊥,SKE.k, ⊥)) c ← SKE.Enc(SKE.k, f1), c′ ← SKE.Enc(SKE.k′, f1)

Adjacent experiments that differ on the generation of c or c′ are proven indistinguishable using the CPA
security of SKE . Adjacent experiments that differ on the input to FE.Enc are proven indistinguishable using
the message privacy of FE

Proof of Theorem 4.1. For concreteness, we first prove the theorem for the case where
the scheme FE is fully message private and then explain the minor adjustments that are
needed for the case where the scheme FE is selectively message private. Let A be a
valid function-privacy adversary for the scheme FPE (recall Definition 3.1). We prove
that there exist a probabilistic polynomial-time adversary B1 attacking the CPA security
of SKE and a probabilistic polynomial-time adversaryB2 attacking the message privacy
of FE , such that

AdvFPFPE,A(λ) ≤ 2 ·
(

AdvCPASKE,B1
(λ) + AdvMP

FE,B2
(λ)

)

.

Wepresent a sequenceoffivehybrid experiments, denotedH(0), . . . ,H(4), andprove that
each two consecutive experiments are computationally indistinguishable fromA’s point
of view.Each such experimentH(i) is completely characterizedby its key-generation ora-
cle [denoted KG(i)] and its encryption oracle [denoted Enc(i)]. The differences between
these experiments are summarized in Table 1.

Experiment H(0)(λ). This experiment is the experiment AKG0(msk,·,·),Enc0(msk,·,·)(λ)

where msk ← Setup(1λ) (see Definition 3.2). That is, we let KG(0) = KG0 and
Enc(0) = Enc0.

Experiment H(1)(λ). This experiment is obtained from the experiment H(0)(λ) by
considering a modified key-generation oracle KG(1)(msk, ·, ·) that is defined as fol-
lows: On input ( f0, f1) it first computes c ← SKE.Enc(SKE.k, f0) and c′ ←
SKE.Enc(SKE.k′, f1 ). Then, it computes FE.SKUc,c′ ← FE.KG(FE.msk,Uc,c′),
where the function Uc,c′ is described in Fig. 1. Finally, it outputs sk f0 = FE.SKUc,c′ .

The encryption oracle is not modified [i.e., Enc(1) = Enc(0) = Enc0].

Claim 4.2. There exists a probabilistic polynomial-time adversary B1 such that

∣
∣
∣Pr

[

AKG(0)(msk,·,·),Enc(0)(msk,·,·)(λ) = 1
]

− Pr
[

AKG(1)(msk,·,·),Enc(1)(msk,·,·)(λ) = 1
]∣
∣
∣

≤ AdvCPASKE,B1
(λ).
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The above claim states that theCPAsecurity of the schemeSKE implies that the exper-
imentsH(0) andH(1) are computationally indistinguishable. Specifically, the difference
between these experiments is that in H(0) the key-generation oracle computes c′ ←
SKE.Enc(SKE.k′, f0 ) whereas in H(1) it computes c′ ← SKE.Enc(SKE.k′, f1 ).

The claim then follows from the fact that the key SKE.k′ is not being used for any other
purpose in these experiments. We refer the reader to “Appendix” for the complete proof
of Claim 4.2.

ExperimentH(2)(λ). This experiment is obtained from the experimentH(1)(λ) by con-
sidering a modified encryption oracle Enc(2)(msk, ·, ·) that is defined as follows: On

input (m0,m1) it outputs c ← FE.Enc(FE.msk, (⊥,m1,⊥,SKE.k′) ). The key-

generation oracle is not modified [i.e., KG(2) = KG(1)].

Claim 4.3. There exists a probabilistic polynomial-time adversary B2 such that

∣
∣
∣Pr

[

AKG(1)(msk,·,·),Enc(1)(msk,·,·)(λ) = 1
]

− Pr
[

AKG(2)(msk,·,·),Enc(2)(msk,·,·)(λ) = 1
]∣
∣
∣

≤ AdvMP
FE,B2

(λ).

The above claim states that the message privacy of the scheme FE implies that
the experiments H(1) and H(2) are computationally indistinguishable. Specifically,
the difference between these experiments is that in H(1) the encryption oracle com-
putes c ← FE.Enc(FE.msk, (m0,⊥,SKE.k,⊥) ) whereas in H(2) it computes

c ← FE.Enc(FE.msk, (⊥,m1,⊥,SKE.k′) ). Note that for each functional key
FE.SKUc,c′ that is produced by the key-generation algorithm in these experiments it
holds that c ← SKE.Enc(SKE.k, f0) and c′ ← SKE.Enc(SKE.k′, f1). Therefore, by
the fact that A is a valid function-privacy adversary we know that f0(m0) = f1(m1)

and therefore

Uc,c′ (m0,⊥,SKE.k,⊥) = f0(m0) = f1(m1) = Uc,c′
(⊥,m1,⊥,SKE.k′) .

We refer the reader to “Appendix” for the complete proof of Claim 4.3.

Experiment H(3)(λ). This experiment is obtained from the experiment H(2)(λ) by
considering a modified key-generation oracle KG(3)(msk, ·, ·) that is defined as fol-
lows: On input ( f0, f1) it first computes c ← SKE.Enc(SKE.k, f1 ) and c′ ←
SKE.Enc(SKE.k′, f1). Then, it computes FE.SKUc,c′ ← FE.KG(FE.msk,Uc,c′),
where the function Uc,c′ is described in Fig. 1. Finally, it outputs sk f1 = FE.SKUc,c′ .

The encryption oracle is not modified [i.e., Enc(3) = Enc(2)].

Claim 4.4. There exists a probabilistic polynomial-time adversary B1 such that

∣
∣
∣Pr

[

AKG(2)(msk,·,·),Enc(2)(msk,·,·)(λ) = 1
]

− Pr
[

AKG(3)(msk,·,·),Enc(3)(msk,·,·)(λ) = 1
]∣
∣
∣

≤ AdvCPASKE,B1
(λ).
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The proof of the above claim is essentially identical to the proof of Claim 4.2.
Specifically, the difference between experiments H(2) and H(3) is that in H(2) the key-
generation oracle computes c ← SKE.Enc(SKE.k, f0 ) whereas in H(3) it computes

c ← SKE.Enc(SKE.k, f1 ). The claim then follows from the fact that the key SKE.k
is not being used for any other purpose in these experiments. We refer the reader to
“Appendix” for the complete proof of Claim 4.4.

Experiment H(4)(λ). This experiment is obtained from the experiment H(3)(λ) by
considering a modified encryption oracle Enc(4)(msk, ·, ·) that is defined as follows:
On input (m0,m1) it outputs c ← FE.Enc(FE.msk, (m1,⊥,SKE.k,⊥) ). The

key-generation oracle is not modified (i.e., KG(4) = KG(3)). Note that Enc(4) =
Enc1 and KG(4) = KG1, and therefore this experiment is in fact the experiment
AKG1(msk,·,·),Enc1(msk,·,·)(λ).

Claim 4.5. There exists a probabilistic polynomial-time adversary B2 such that

Pr
[

AKG(3)(msk,·,·),Enc(3)(msk,·,·)(λ) = 1
]

− Pr
[

AKG(4)(msk,·,·),Enc(4)(msk,·,·)(λ) = 1
]∣
∣
∣

≤ AdvMP
FE,B2

(λ).

The proof of the above claim is essentially identical to the proof of Claim 4.3 (it
is in fact somewhat simpler). Specifically, the difference between experiments H(3)

and H(4) is that in H(3) the encryption oracle computes c ← FE.Enc(FE.msk,

(⊥,m1,⊥,SKE.k′) ) whereas in H(4) it computes c ← FE.Enc(FE.msk,

(m1,⊥,SKE.k,⊥) ). Note that for each functional key FE.SKUc,c′ that is pro-
duced by the key-generation algorithm in these experiments it holds that c ←
SKE.Enc(SKE.k, f1) and c′ ← SKE.Enc(SKE.k′, f1), and therefore

Uc,c′
(⊥,m1,⊥,SKE.k′) = f1(m1) = Uc,c′ (m1,⊥,SKE.k,⊥) .

We refer the reader to “Appendix” for the complete proof of Claim 4.5.
We conclude the proof by observing that Claims 4.2–4.5 imply that there exist

polynomial-time adversaries B1 and B2 such that

AdvFPΠ,A(λ)
def=

∣
∣
∣Pr

[

AKG0(msk,·,·),Enc0(msk,·,·)(λ) = 1
]

− Pr
[

AKG1(msk,·,·),Enc1(msk,·,·)(λ) = 1
]∣
∣
∣

≤ 2 ·
(

AdvCPASKE,B1
(λ) + AdvMP

FE,B2
(λ)

)

.

This settles the proof of the theorem for the case where the scheme FE is message
private, showing that the scheme FPE is function private. Finally, in the case where
the scheme FE is selectively message private, an almost identical proof shows that the
scheme FPE offers the same flavor of selective-function private. The only difference is
that the modifications to the left-or-right encryption and key-generation oracles in our
hybrids should be applied at the beginning of the experiments (depending on the flavor
of the selective notion). �
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Appendix: Proofs of Claims 4.2–4.5

In this section, we provide the complete proofs of Claims 4.2–4.5 from Sect. 4.

Proof of Claim 4.2. Consider the following adversary B1 that is given as input the
security parameter 1λ, and has access to the oracle SKE.Encb(SKE.k′, ·, ·), where
b ∈ {0, 1} and SKE.k′ ← SKE.KG(1λ). The adversary B1 first samples FE.msk ←
FE.Setup(1λ) and SKE.k ← SKE.KG(1λ) and then invokes the adversary A on the
security parameter 1λ. Next, B1 simulates to A the left-or-right key-generation and
encryption oracles of the scheme FPE as follows:

• Simulating the encryption oracle. On input (m0,m1), the adversary B1 out-
puts c ← FE.Enc(FE.msk, (m0,⊥,SKE.k,⊥)). Note that B1 knows the keys
FE.msk and SKE.k.

• Simulating the key-generation oracle. On input ( f0, f1), the adversary B1 first
computes c ← SKE.Enc(SKE.k, f ) (note that B1 knows the key SKE.k).
Then, it queries its own encryption oracle SKE.Encb(SKE.k′, ·, ·) with ( f0, f1)
for obtaining a ciphertext c′. Next, B1 computes and outputs FE.SKUc,c′ ←
FE.KG(FE.msk,Uc,c′) (note that B1 knows the key FE.msk).

Finally, B1 outputs the output ofA. We observe that if b = 0 then B1 provides a perfect
simulation of the oracles Enc(0) and KG(0), and if b = 1 then B1 provides a perfect
simulation of the oracles Enc(1) and KG(1). Therefore,

AdvCPASKE,B1
(λ)

def=
∣
∣
∣
∣
Pr

[

BSKE.Enc0
(

SKE.k′,·,·)
1 (λ) = 1

]

− Pr

[

BSKE.Enc1
(

SKE.k′,·,·)
1 (λ) = 1

]∣
∣
∣
∣

=
∣
∣
∣Pr

[

AKG(0)(msk,·,·),Enc(0)(msk,·,·)(λ) = 1
]

−Pr
[

AKG(1)(msk,·,·),Enc(1)(msk,·,·)(λ) = 1
]∣
∣
∣ .

�

Proof of Claim 4.3. Consider the following adversary B2 that is given as input the
security parameter 1λ, and has access to the oracles FE.Encb(FE.msk, ·, ·) and
FE.KG(FE.msk, ·), where b ∈ {0, 1} and FE.msk ← FE.Setup(1λ). The adver-
sary B2 first samples SKE.k ← SKE.KG(1λ) and SKE.k′ ← SKE.KG(1λ) and then
invokes the adversary A on the security parameter 1λ. Next, B2 simulates to A the
left-or-right key-generation and encryption oracles of the scheme FPE as follows:

• Simulating the encryption oracle.On input (m0,m1), the adversaryB2 queries its
own encryption oracle FE.Encb(FE.msk, ·, ·) with ((m0,⊥,SKE.k,⊥), (⊥,m1,

⊥,SKE.k′)) for obtaining a ciphertext c. It then outputs c.
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• Simulating the key-generation oracle. On input ( f0, f1), the adversary B2 first
computes c ← SKE.Enc(SKE.k, f0) and c′ ← SKE.Enc(SKE.k′, f1). Next, it
queries its own key-generation oracle FE.KG(FE.msk, ·) with Uc,c′ for obtaining
a functional key FE.SKUc,c′ . It then outputs FE.SKUc,c′ .

Finally, B2 outputs the output ofA. We observe that if b = 0 then B2 provides a perfect
simulation of the oracles Enc(1) and KG(1), and if b = 1 then B2 provides a perfect
simulation of the oracles Enc(2) and KG(2). Therefore,

AdvMP
FE,B2

(λ)
def=

∣
∣
∣Pr

[

BFE.KG(FE.msk,·),FE.Enc0(FE.msk,·,·)
2 (λ) = 1

]

− Pr
[

BFE.KG(FE.msk,·),FE.Enc1(FE.msk,·,·)
2 (λ) = 1

]∣
∣
∣

=
∣
∣
∣Pr

[

AKG(1)(msk,·,·),Enc(1)(msk,·,·)(λ) = 1
]

−Pr
[

AKG(2)(msk,·,·),Enc(2)(msk,·,·)(λ) = 1
]∣
∣
∣ .

Therefore, it only remains to prove that B2 is a valid message-privacy adver-
sary (see Definition 2.3). That is, it remains to prove that for all functions Uc,c′
with which it queries its key-generation oracle, and for all pairs of messages
((m0,⊥,SKE.k,⊥), (⊥,m1,⊥,SKE.k′))withwhich it queries its left-or-right encryp-
tion oracle it holds that Uc,c′(m0,⊥,SKE.k,⊥) = Uc,c′(⊥,m1,⊥,SKE.k′). By the
definition ofB2 for each such functionUc,c′ it holds that c ← SKE.Enc(SKE.k, f0) and
c′ ← SKE.Enc(SKE.k′, f1), where ( f0, f1) is a query made by A to the left-or-right
key-generation oracle of the scheme FPE . The fact that A is a valid function-privacy
adversary (see Definition 3.1) guarantees that f0(m0) = f1(m1), and therefore by the
definition of the function Uc,c′ and the perfect correctness of SKE , it holds that

Uc,c′(m0,⊥,SKE.k,⊥) = f0(m0) = f1(m1) = Uc,c′
(⊥,m1,⊥,SKE.k′) .

�

Proof of Claim 4.4. Consider the following adversary B1 that is given as input the
security parameter 1λ, and has access to the oracle SKE.Encb(SKE.k, ·, ·), where
b ∈ {0, 1} and SKE.k ← SKE.KG(1λ). The adversary B1 first samples FE.msk ←
FE.Setup(1λ) and SKE.k′ ← SKE.KG(1λ) and then invokes the adversary A on the
security parameter 1λ. Next, B1 simulates to A the left-or-right key-generation and
encryption oracles of the scheme FPE as follows:

• Simulating the encryption oracle. On input (m0,m1), the adversary B1 out-
puts c ← FE.Enc(FE.msk, (⊥,m1,⊥,SKE.k′)). Note that B1 knows the keys
FE.msk and SKE.k′.

• Simulating the key-generation oracle. On input ( f0, f1), the adversary B1 first
queries its own encryption oracle SKE.Encb(SKE.k, ·, ·) with ( f0, f1) for obtain-
ing a ciphertext c. Then, it computes c′ ← SKE.Enc(SKE.k′, f1) (note that
B1 knows the key SKE.k′). Next, B1 computes and outputs FE.SKUc,c′ ←
FE.KG(FE.msk,Uc,c′) (note that B1 knows the key FE.msk).
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Finally, B1 outputs the output ofA. We observe that if b = 0 then B1 provides a perfect
simulation of the oracles Enc(2) and KG(2), and if b = 1 then B1 provides a perfect
simulation of the oracles Enc(3) and KG(3). Therefore,

AdvCPASKE,B1
(λ)

def=
∣
∣
∣Pr

[

BSKE.Enc0(SKE.k,·,·)
1 (λ) = 1

]

− Pr
[

BSKE.Enc1(SKE.k,·,·)
1 (λ) = 1

]∣
∣
∣

=
∣
∣
∣Pr

[

AKG(2)(msk,·,·),Enc(2)(msk,·,·)(λ) = 1
]

−Pr
[

AKG(3)(msk,·,·),Enc(3)(msk,·,·)(λ) = 1
]∣
∣
∣ .

�

Proof of Claim 4.5. Consider the following adversary B2 that is given as input the
security parameter 1λ, and has access to the oracles FE.Encb(FE.msk, ·, ·) and
FE.KG(FE.msk, ·), where b ∈ {0, 1} and FE.msk ← FE.Setup(1λ). The adver-
sary B2 first samples SKE.k ← SKE.KG(1λ) and SKE.k′ ← SKE.KG(1λ) and then
invokes the adversary A on the security parameter 1λ. Next, B2 simulates to A the
left-or-right key-generation and encryption oracles of the scheme FPE as follows:

• Simulating the encryption oracle.On input (m0,m1), the adversaryB2 queries its
own encryption oracleFE.Encb(FE.msk, ·, ·)with ((⊥,m1,⊥,SKE.k′), (m1,⊥,

SKE.k,⊥)) for obtaining a ciphertext c. It then outputs c.
• Simulating the key-generation oracle. On input ( f0, f1), the adversary B2 first
computes c ← SKE.Enc(SKE.k, f1) and c′ ← SKE.Enc(SKE.k′, f1). Next, it
queries its own key-generation oracle FE.KG(FE.msk, ·) with Uc,c′ for obtaining
a functional key FE.SKUc,c′ . It then outputs FE.SKUc,c′ .

Finally, B2 outputs the output ofA. We observe that if b = 0 then B2 provides a perfect
simulation of the oracles Enc(3) and KG(3), and if b = 1 then B2 provides a perfect
simulation of the oracles Enc(4) and KG(4). Therefore,

AdvMP
FE,B2

(λ)
def=

∣
∣
∣Pr

[

BFE.KG(FE.msk,·),FE.Enc0(FE.msk,·,·)
2 (λ) = 1

]

− Pr
[

BFE.KG(FE.msk,·),FE.Enc1(FE.msk,·,·)
2 (λ) = 1

]∣
∣
∣

=
∣
∣
∣Pr

[

AKG(3)(msk,·,·),Enc(3)(msk,·,·)(λ) = 1
]

−Pr
[

AKG(4)(msk,·,·),Enc(4)(msk,·,·)(λ) = 1
]∣
∣
∣ .

Therefore, it only remains to prove that B2 is a valid message-privacy adver-
sary (see Definition 2.3). That is, it remains to prove that for all functions Uc,c′
with which it queries its key-generation oracle, and for all pairs of messages
((⊥,m1,⊥,SKE.k′), (m1,⊥,SKE.k,⊥))withwhich it queries its left-or-right encryp-
tion oracle it holds that Uc,c′(⊥,m1,⊥,SKE.k′) = Uc,c′(m1,⊥,SKE.k,⊥). By the
definition of B2 for each such function Uc,c′ it holds that c ← SKE.Enc(SKE.k, f1)
and c′ ← SKE.Enc(SKE.k′, f1), where ( f0, f1) is a query made by A to the left-
or-right key-generation oracle of the scheme FPE . Therefore, by the definition of the
function Uc,c′ it holds that
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Uc,c′
(⊥,m1,⊥,SKE.k′) = f1(m1) = Uc,c′(m1,⊥,SKE.k,⊥).

�
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