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Abstract. We introduce a new class of selfadjoint compact pseudodifferential opera-
tors, which is analogous to a class of elliptic unbounded pseudodifferential operators and is,
therefore, suitable for obtaining upper and lower estimates on the eigenvalues of operators in
this class. We prove such estimates and, as an application, we show that any operator from
this class belongs to the Schatten-von Neuman class if and only if its symbol belongs to the
Lorentz space.

1. Introduction. For a symbolσ ∈ C∞(R2d) having derivatives with a common
polynomial growth, we define apseudodifferential operator σ(D, x), according to the Weyl
calculus, to be

σ(D, x)f (x) =
∫∫

e2πi(x−y)ξσ

(
ξ,

x + y

2

)
f (y)dydξ

for f belonging to the Schwartz classS(Rd). Thusσ(D, x) is a continuous operator from
S(Rd) to S(Rd) and extends to a continuous operator fromS′(Rd ) to S′(Rd ) (see [F]), where
S′(Rd) denotes the space of tempered distributions. Ifσ is real, thenσ(D, x) is a symmetric
operator. Moreover, certain growth restrictions on the symbolσ ensure that the closure of
σ(D, x) is a selfadjoint operator (see [G]).

There are two ways to guarantee that a selfadjoint operatorσ(D, x) has a discrete spec-
trum. If σ has bounded derivatives and lim|z|→∞ σ(z) = 0, thenσ(D, x) is compact, there-
fore diagonalizable (see [H]). The other way is to assume that lim|z|→∞ σ(z) = ∞, and that
σ is elliptic, that is, it satisfies certain conditions on the growth of its derivatives (see the
next section for details). In this case we obtain an unbounded diagonalizable operator, which
can be thought of as an inverse of a compact operator. The theory of such unbounded pseu-
dodifferential operators is well developed (see for example [F], [H2]). In particular, many
researchers obtained estimates on eigenvalues of such operators, which permitted studies of
the asymptotic behavior of their spectra. A standard example is the Weyl asymptotic formula,
which approximates the number of eigenvalues ofσ(D, x) smaller thanλ by the area of a set
{z ∈ R2d; σ(z) ≤ λ}:
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N(λ) =
∫

σ≤λ

dz + O(λ−ρ) ,

whereρ > 0 depends on the symbolσ (see [H1], [G], [CR1]).
Another approximation of eigenvalues ofσ(D, x) can be achieved with the use of a

non-decreasing rearrangement of{σ(am, bn)n,m∈Zd }, wherea, b > 0 (see [T], [RT], [CR2]).
The case of compact pseudodifferential operators was approached in a slightly different

manner. Mostly, singular values instead of eigenvalues were studied. Moreover, researchers
were looking for minimal conditions on the symbolσ , which would allow estimates from
above of the singular values ofσ(D, x) (see [R], [HRT], [RT]). This theme is very strong
and goes back to the Calderón-Vaillancourt theorem and the problem of finding the weakest
possible conditions onσ that ensure thatσ(D, x) is bounded onL2(Rd ) (see [HRT]).

In this note we introduce a class of elliptic compact selfadjoint pseudodifferential oper-
ators which originates from a class of elliptic unbounded selfadjoint pseudodifferential oper-
ators. Then we use Beals’s theory on powers of pseudodifferential operators (see [B], [CR1])
to translate already known results about spectral asymptotics for the latter class to the new
setting. As an application of such estimates on eigenvalues ofσ(D, x) we show that, within
the introduced class,σ(D, x) belongs to the Schatten-von Neumann classSp,q if and only if
σ belongs to the Lorentz spaceLp,q(R2d).

We would like to mention that the result on spectral estimates of pseudodifferential op-
erators (Theorem 3.1) depends on the Gabor expansions of their symbols. That is, we use
collections of the form{g m,n(x) = e−2πiam·xg (x − bn); m,n ∈ Zd}, whereg ∈ L2(Rd ), and
a, b > 0. For more details on this subject we refer the reader to [FS] and [G1].

This paper was written while the authors were graduate students at Washington Univer-
sity in St. Louis. We would like to express our gratitude to professors Richard Rochberg, and
Kazuya Tachizawa, for introducing us to this subject, and for helpful discussions. We are also
thankful to professors Hans Georg Feichtinger and Karlheinz Gröchenig for being interested
in this work, and for letting us know about related results.

2. Preliminaries. A positive continuous functionw on R2d is called aweight if

w(z + z′) ≤ C(1 + |z′|)γ w(z)

for everyz, z′ ∈ R2d and some positive constantsC, γ . Furthermore, we say that a weightw

is smooth if w ∈ C∞(R2d). The set of weights is a group under multiplication. Moreover, if
β ∈ R andw is a weight, thenwβ is also a weight. For a fixed weightw, we defineS(w) to
be the set of all functionsf ∈ C∞(R2d) such that for everyα ∈ N2d

0 , there existsCα > 0
such that

|∂αf (z)| ≤ Cαw(z)

for all z ∈ R2d . (In our convention, the set of natural numbersN does not contain zero, and
N0 = N ∪ {0}.) For multiindicesα, β ∈ N2d

0 , we say thatβ ≤ α if βi ≤ αi for all i. We also
define the length ofα to be|α| = ∑

i αi .
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DEFINITION 2.1. Let 0< τ ≤ 1. We say that a smooth weightw is τ−-elliptic if
lim|z|→∞ w(z) = ∞ and for everyα ∈ N2d

0 \ {0}, there is aCα > 0 such that

|∂αw(z)| ≤ Cαw(z)1−τ

for all z ∈ R2d . Similarly, for 0 < τ ≤ 1 we say that a smooth weightw is τ+-elliptic if
lim|z|→∞ w(z) = 0 and for everyα ∈ N2d

0 \ {0}, there is aCα > 0 such that

|∂αw(z)| ≤ Cαw(z)1+τ

for all z ∈ R2d .

The following proposition explains the origin of the class ofτ+-elliptic weights.

PROPOSITION 2.1 A smooth weight w is τ−-elliptic if and only if 1/w is τ+-elliptic.

PROOF. Let w be aτ−-elliptic weight. We will use induction overn = |α| to prove
that 1/w is τ+-elliptic. Let γ ∈ N2d

0 such that|γ | = 1. We have∣∣∣∣∂γ

(
1

w

)∣∣∣∣ =
∣∣∣∣∂

γ w

w2

∣∣∣∣ ≤ Cγ
w1−τ

w2
= Cγ

(
1

w

)1+τ

for someCγ > 0. Let us assume that|∂α(1/w)| ≤ Cα(1/w)1+τ for all 0 < |α| ≤ n. We
claim that for suchα,

(2.1)

∣∣∣∣∂α

(
1

w2

)∣∣∣∣ ≤ Cα
1

w2
.

In fact, to validate (2.1), we use the Leibniz rule:∣∣∣∣∂α

(
1

w2

)∣∣∣∣ ≤
∑

0≤β≤α

Cβ

∣∣∣∣∂β

(
1

w

)
∂α−β

(
1

w

)∣∣∣∣ ≤ Cα

((
1

w

)2+2τ

+
(

1

w

)2+τ)
≤ Cα

1

w2
,

where the last inequality follows from the fact that lim|z|→∞ w(z) = ∞. Therefore, by (2.1),
we obtain for|α| = n and|γ | = 1:∣∣∣∣∂α∂γ

(
1

w

)∣∣∣∣ =
∣∣∣∣∂α

(
∂γ w

w2

)∣∣∣∣ ≤
∑

0≤β≤α

Cβ

∣∣∣∣∂β(∂γ w)∂α−β

(
1

w2

)∣∣∣∣ ≤ Cα
w1−τ

w2 = Cα

(
1

w

)1+τ

.

Thus, by induction, the weight 1/w is τ+-elliptic.
To prove the other implication we denote 1/w by u and repeat the above reasoning to

show that 1/u is τ−-elliptic. For |γ | = 1 we obtain|∂γ (1/u)| ≤ Cγ (1/u)1−τ . If we assume
that |∂α(1/u)| ≤ Cα(1/u)1−τ for 0 < |α| ≤ n, then from the Leibniz rule it follows that,
for suchα, we have|∂α(1/u2)| ≤ Cα(1/u2), since lim|z|→∞ u(z) = 0. Thus, for|α| = n

and |γ | = 1, we obtain|∂α∂γ (1/u)| ≤ Cα(1/u)1−τ , and, by induction, the weight 1/u is
τ−-elliptic. �

For the purpose of this note, we will arrange the eigenvalues{λk}k∈N of a compact selfad-
joint operator in a decreasing order of their absolute values, i.e.,|λ1| ≥ |λ2| ≥ · · · . However,
the eigenvalues{λk}k∈N of an unbounded selfadjoint operator with discrete spectrum, which
is bounded below, will be arranged in a non-decreasing order, that is,λ1 ≤ λ2 ≤ · · · .
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For a measurable real-valued functionf onR2d , we define itsnon-increasing rearrange-
ment f ∗ by

f ∗(t) = inf{λ ∈ R; |{x ∈ R2d; |f (x)| > λ}| ≤ t}
for 0 < t < ∞.

The Lorentz space Lp,q(R2d), where 0 < p < ∞, 0 < q ≤ ∞, is the set of all
measurable functionsf on R2d that satisfy∫ ∞

0
tq/p−1f ∗(t)qdt < ∞ , q < ∞ ,

and

sup
t>0

t1/pf ∗(t) < ∞ , q = ∞ .

If {cm,l}m,l∈Zd is a sequence of real numbers, then we denote the non-increasing re-
arrangement of{|cm,l|}m,l∈Zd , if it exists, by {c∗

k}k∈N. For 0 < p < ∞, 0 < q ≤ ∞,

we define a discrete version of the Lorentz space,L
p,q
d (Z2d), to be the set of all sequences

{cm,l}m,l∈Zd that satisfy
∞∑

k=1

kq/p−1(c∗
k)

q < ∞ , q < ∞ ,

and

sup
k∈N

k1/pc∗
k < ∞ , q = ∞ .

We say that a compact selfadjoint operator belongs to theSchatten-von Neumann class
Sp,q , where 0< p < ∞, 0 < q ≤ ∞, if its eigenvalues{λk}k∈N satisfy

∞∑
k=1

kq/p−1|λk|q < ∞ , q < ∞ ,

and

sup
k∈N

k1/pλk < ∞ , q = ∞ .

3. Estimates on eigenvalues of compact pseudodifferential operators. In his paper
[T], K. Tachizawa showed that a class of elliptic unbounded pseudodifferential operators can
be approximately diagonalized in the Wilson basis. This result was repeated in [RT] for the
same class of operators and local trigonomertic bases. A similar diagonalization was proven
in [CR2] for a more general class of operators (whose symbols areτ−-elliptic weights) where
Gabor frames, instead of orthonormal bases, were used. In particular, the approximate diago-
nalization result allows us to estimate the eigenvalues of such operators by a non-decreasing
rearrangement of{σ(am, bn)}m,n∈Zd , a, b > 0. To be more precise, let us cite the following
result of [CR2]:

THEOREM 3.1. Suppose that the symbol σ is a τ−-elliptic weight. Then σ(D, x) is
an unbounded selfadjoint operator with discrete spectrum λ1 ≤ λ2 ≤ · · · , and there exist



FUNCTION SPACES AND PSEUDODIFFERENTIAL OPERATORS 135

positive constants C(a, b) and C(c, d) such that for large enough k ∈ N

µ
a,b
k − C(a, b)(µ

a,b
k )

1−τ ≤ λk ≤ µ
c,d
k + C(c, d)(µ

c,d
k )

1−τ
,

where a, b, c, d are positive constants, satisfying ab < 1, cd > 1, and the sequence {µa,b
k }k∈N

is the non-decreasing rearrangement of {σ(am, bn)}m,n∈Zd , and, similarly, {µc,d
k }k∈N is the

non-decreasing rearrangement of {σ(cm, dn)}m,n∈Zd .

The above theorem can be used to prove similar estimates on eigenvalues of operators
whose symbols areτ+-elliptic weights. In fact, Proposition 2.1 indicates that such oper-
ators can be viewed (at least intuitively) as inverses of elliptic unbounded operators com-
ing from τ−-elliptic weights. Therefore, all estimates on eigenvalues of the latter can be
transformed into analogous estimates on the eigenvalues of operators whose symbols are
τ+-elliptic weights. However, the formal arguments, which we shall present below, require
Beals’s theory on powers of pseudodifferential operators (see [B] for the Kohn-Nirenberg
calculus, or [CR1] for the Weyl calculus).

THEOREM 3.2. Suppose that the symbol σ is a τ+-elliptic weight. Then σ(D, x) is
a compact selfadjoint operator with eigenvalues {λk}k∈N, and there exist positive constants
C(a, b) and C(c, d) such that for k ∈ N large enough

C(c, d)µ
c,d
k ≤ λk ≤ µ

a,b
k + C(a, b)(µ

a,b
k )1+τ ,

where a, b, c, d are positive constants, satisfying ab < 1, cd > 1, and the sequence {µa,b
k }k∈N

is the non-increasing rearrangement of {σ(am, bn)}m,n∈Zd , and, similarly, {µc,d
k }k∈N is the

non-increasing rearrangement of {σ(cm, dn)}m,n∈Zd .

PROOF. For the purpose of this proof, given a smooth weightw, we will introduce a
new class of symbols, denoted byS(w), to be the set of all functionsa ∈ C∞(R2d) such that
for all k ∈ N0:

max|α|≤k
‖w−1∂αa‖∞ < ∞ .

As mentioned before, the fact thatσ is real and decays to zero at infinity implies that
σ(D, x) is a compact selfadjoint operator. Therefore, we will concentrate only on proving the
estimates on its eigenvalues.

By Proposition 2.1 it is immediate that the symbol 1/σ satisfies assumptions of Theorem
3.1, thus, there existsK > 0 such that the operator(1/σ)(D, x) + K is positive. Letδ =
(1/σ) + K. By Corollary 2.4 of [CR1] we obtainδ◦−1 = 1/δ + r−1, wherer−1 ∈ S(δ−1−τ )

andδ◦−1 denotes the symbol ofδ(D, x)−1.
We claim that

(3.1) δ◦−1 = σ + r ,

wherer ∈ S(δ−1−τ ). In fact, we have 1/δ = σ − Kσ 2/(1 + Kσ). Therefore, it is enough to
prove thatσ 2/(1 + Kσ) = σ/δ ∈ S(δ−2) ⊂ S(δ−1−τ ). Sinceσ is aτ+-elliptic weight, from
Proposition 2.1 it follows thatδ is aτ−-elliptic weight. Thus, using Proposition 2.1 again, we
obtain that 1/δ is aτ+-elliptic weight, which implies that 1/δ ∈ S(δ−1). Moreover, sinceσ
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is aτ+-elliptic weight, we haveσ ∈ S(σ) ⊂ S(δ−1), where the last inclusion follows from
σ ≤ M/δ for someM > 0. To finish the proof of our claim, we observe thatσ, 1/δ ∈ S(δ−1)

impliesσ/δ ∈ S(δ−2).
By (3.1) we haveσ(D, x) = δ(D, x)−1 − r(D, x). From Corollary 2.6 in [CR1], it

follows that there existsL > 0 such that

−Lδ(D, x)−1−τ ≤ r(D, x) ≤ Lδ(D, x)−1−τ .

Therefore

(3.2) δ(D, x)−1 − Lδ(D, x)−1−τ ≤ σ(D, x) ≤ δ(D, x)−1 + Lδ(D, x)−1−τ .

From Proposition 2.1 it follows thatδ satisfies the assumptions of Theorem 3.1, and hence we
obtain fork ∈ N large enough

(µ
a,b
k )−1+K−C(a, b)((µ

a,b
k )−1+K)1−τ ≤ γk ≤ (µ

c,d
k )−1+K+C(c, d)((µ

c,d
k )−1+K)1−τ ,

whereγ1 ≤ γ2 ≤ · · · are the eigenvalues ofδ(D, x). From the above inequality it follows
that we can enlarge the constantsC(a, b), C(c, d) to get

(µ
a,b
k )−1 − C(a, b)((µ

a,b
k )−1)1−τ ≤ γk ≤ (µ

c,d
k )−1 + C(c, d)((µ

c,d
k )−1)1−τ

for large enoughk ∈ N. Therefore, for suchk’s, we obtain

(3.3) µ
c,d
k − C(c, d)(µ

c,d
k )1+τ ≤ γ −1

k ≤ µ
a,b
k + C(a, b)(µ

a,b
k )1+τ .

Applying the “min-max” principle (see [SW]) to (3.2) yields for large enoughk ∈ N:

1

C
γ −1
k ≤ γ −1

k − Lγ −1−τ
k ≤ λk ≤ γ −1

k + Lγ −1−τ
k ,

which, together with (3.3), gives us the desired estimates:

C(c, d)µ
c,d
k ≤ λk ≤ µ

a,b
k + C(a, b)(µ

a,b
k )1+τ . �

4. Schatten classes. One of the first results concerning the Weyl calculus and the
Hilbert-Schmidt class of operators was proven by J. Pool, [P]. There it is shown that the
operatorσ(D, x) belongs to the Hilbert-Schmidt class if and only if its symbolσ belongs
to L2(R2). Moreover,‖σ(D, x)‖HS = ‖σ‖2. Other results related to pseudodifferential
operators and Schatten classesSp or more general Schatten-von Neumann classesSp,q can
be found in [H], [HRT] and [RT]. In particular, from Theorem 5 in [RT] it follows that if
the symbolσ is aτ+-elliptic weight andσ ∈ Lp,q(R2d), thenσ(D, x) ∈ Sp,q . We will use
methods similar to those of [RT] to show that, in fact, one has equivalence of these conditions.

PROPOSITION 4.1. Let σ be a weight and a, b > 0. If there exists a non-increasing
rearrangement of {σ(am, bn)}m,n∈Zd , then {σ(am, bn)} ∈ L

p,q

d (Z2d) if and only if σ ∈
Lp,q(R2d).

PROOF. Let {µk}k∈N denote the non-increasing rearrangement of{σ(am, bn)}m,n∈Zd ,

and letmk, nk be defined byµk = σ(amk, bnk) for k ∈ Nd . Sinceσ is a weight, we have, for
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(ξ, x) satisfying|ξ − amk| ≤ a/2, |x − bnk| ≤ b/2, that

1

C
µk ≤ σ(ξ, x) ≤ Cµk

for some positiveC. Therefore, we obtain∣∣∣∣
{
(ξ, x); σ(ξ, x) >

1

C
µk

}∣∣∣∣ ≥ ck

and

|{(ξ, x); σ(ξ, x) > Cµk}| ≤ ck ,

wherec is a positive constant depending only ona andb. This implies that there exists a
constantC > 0 such that for everyk ∈ N,

1

C
µk ≤ σ ∗(ck) ≤ Cµk .

Now, if 0 < p ≤ q < ∞, we have

∫ ∞

0
tq/p−1σ ∗(t)qdt = A

∞∑
k=0

∫ k+1

k

tq/p−1σ ∗(ct)qdt ≥ A

∞∑
k=0

kq/p−1σ ∗(c(k + 1))q

≥ A

∞∑
k=0

kq/p−1µ
q

k+1 ≥ A

∞∑
k=1

kq/p−1µ
q
k ,

and ∫ ∞

0
tq/p−1σ ∗(t)qdt ≤ Aσ ∗(0)q + A

∞∑
k=1

(k + 1)q/p−1σ ∗(ck)q

≤ Aσ ∗(0)q + A

∞∑
k=1

kq/p−1µ
q
k ,

whereA denotes a constant (that may possibly differ from line to line), which depends on
the functionσ . In the second sequence of inequalities, we have used the fact thatσ > 0.
Here,σ ∗(0) = limt→0+ σ ∗(t). The assumptions thatσ is a weight, and that there exists a
non-increasing rearrangement of{σ(am, bn)}, imply thatσ ∗(0) < ∞. If 0 < q < p < ∞,
then

∫ ∞

0
tq/p−1σ ∗(t)qdt ≥ A

∞∑
k=0

(k + 1)q/p−1σ ∗(c(k + 1))q

≥ A

∞∑
k=0

(k + 1)q/p−1µ
q

k+1 ≥ A

∞∑
k=1

kq/p−1µ
q

k ,
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and ∫ ∞

0
tq/p−1σ ∗(t)qdt ≤ A

∫ 1

0
tq/p−1σ ∗(t)qdt + A

∞∑
k=1

kq/p−1σ ∗(ck)q

≤ Aσ ∗(0)q + A

∞∑
k=1

kq/p−1µ
q
k ,

with the same remarks as above. Ifq = ∞, then

sup
k∈N

{k1/pµk} ≤ A sup
k∈N

{k1/pσ ∗(ck)} ≤ A sup
t>0

{t1/pσ ∗(ct)} ≤ A sup
t>0

{t1/pσ ∗(t)} ,

and
sup
t>0

{t1/pσ ∗(t)} ≤ A sup
t>0

{t1/pσ ∗(ct)} ≤ Aσ ∗(0) + A sup
k∈N

{k1/pσ ∗(ck)}

≤ Aσ ∗(0) + A sup
k∈N

{k1/pµk} . �

THEOREM 4.2. Suppose that the symbol σ is a τ+-elliptic weight. Then the compact
operator σ(D, x) ∈ Sp,q if and only if σ ∈ Lp,q(R2d).

PROOF. Let {λk}k∈N be the set of eigenvalues of the operatorσ(D, x). For positive
constantsa, b, c, d, satisfyingab < 1, cd > 1, let the sequence{µa,b

k }k∈N denote the non-

increasing rearrangement of{σ(am, bn)}m,n∈Zd , and, similarly, let{µc,d
k }k∈N denote the non-

increasing rearrangement of{σ(cm, dn)}m,n∈Zd (note that these rearrangements exist, because
lim|z|→∞ σ(z) = 0). Sinceσ satisfies the assumptions of Theorem 3.2, we have

(4.1) 0 <
1

C
µ

c,d
k ≤ λk ≤ Cµ

a,b
k

for large enoughk ∈ N and someC > 0. Thus, ifσ(D, x) ∈ Sp,q , we obtain{σ(cm, dn)} ∈
L

p,q
d (Z2d), which, by Proposition 4.1, implies thatσ ∈ Lp,q(R2d). On the other hand, if

σ ∈ Lp,q(R2d), then from Proposition 4.1 it follows that{σ(am, bn)} ∈ L
p,q
d (Z2d), and

hence (4.1) implies thatσ(D, x) ∈ Sp,q . We would like to remind the reader once again that
this implication has been proved in [RT]. �

Since, for 0< p < ∞, we haveLp,p(R2d) = Lp(R2d) andSp,p = Sp , the usual
Schatten class, we obtain the following

COROLLARY 4.3. If the symbol σ is a τ+-elliptic weight, and 0 < p < ∞, then
σ(D, x) ∈ Sp if and only if σ(ξ, x) ∈ Lp(R2d).

Theorem 3.1 and Proposition 4.1 allow us to obtain the following result related to Theo-
rem 4.2, but concerning operators whose symbols areτ−-elliptic weights.

THEOREM 4.4. Suppose that symbol σ is a τ−-elliptic weight. If the unbounded op-
erator σ(D, x) is invertible, then σ(D, x)−1 ∈ Sp,q if and only if 1/σ ∈ Lp,q(R2d).

PROOF. We will use the same notation as in the proof of Theorem 4.2, with the only
difference that{µa,b

k }k∈N and{µc,d
k }k∈N shall now denote the non-decreasing rearrangements
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(which exist, since lim|z|→∞ σ(z) = ∞). From Theorem 3.1 it follows that

(4.2) 0 <
1

C
µ

a,b
k ≤ λk ≤ Cµ

c,d
k

for k ∈ N large enough and someC > 0. Assume thatσ(D, x)−1 ∈ Sp,q . Since{(µc,d
k )−1}k∈N

is the non-increasing rearrangement of{(σ (cm, dn))−1}m,n∈Zd , from (4.2) it follows that

{(σ (cm, dn))−1} ∈ L
p,q

d (Z2d). Clearly 1/σ is a weight. Therefore, by Proposition 4.1, we
obtain that 1/σ ∈ Lp,q(R2d). To prove the other implication assume that 1/σ ∈ Lp,q(R2d).
By Proposition 4.1 we have{(σ (am, bn))−1} ∈ L

p,q
d (Z2d). Since{(µa,b

k )−1}k∈N is the non-
increasing rearrangement of{(σ (am, bn))−1}m,n∈Zd , we can see that (4.2) givesσ(D, x)−1 ∈
Sp,q . �

EXAMPLE 4.5. Consider the situation where aτ+-elliptic symbol σ ∈ Lp(R2d).
Then, by Theorem 4.2, the operatorσ(D, x) ∈ Sp. If there existsσ(D, x)s , then it belongs
to the Schatten classSp/s . Thus, using Theorem 4.2 again, we easily see that the symbol of
σ(D, x)s must belong toLp/s(R2d).

EXAMPLE 4.6. Consider the functionσ(z) = (2+ |z|2)−d ln−2(2+ |z|2). Then there
exists 0< τ < 1/2d such thatσ is a τ+-elliptic symbol. Observe thatσ /∈ L2

s (R
2d) for

s > d, whereL2
s (R

2d) = {f ; f (x)(1 + |x|)s ∈ L2(R2d)}. Thus, one may not use the
result of Gröchenig and Heil (Theorem 1.2, [GH]) to conclude thatσ(D, x) ∈ S1. However,
σ ∈ L1(R2d), and so, by Theorem 4.2, the operatorσ(D, x) is a trace-class operator.

Yet, we need to mention that the methods of [GH] may be modified to include function
spaces with logarithmic weights ([G2]).
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