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Function spaces with intervals as domain spaces

S by

R. A. McCoy (Blacksburg, Va.)

Abstraet, An exaniple ix givos of a pseudo-complete, separable melvie spaco ¥ such
thal the apace of eonbinuous funetions from the elosed unit interval into ¥ is of first
calivgory, where the topology on the function space may be taken to be any of the
following: supremwm moelrie, compact-open, pointwise eonvergence. Then conditions
are given which guarantee that a function space with an interval as domain space and
with cowpact-open topology he pseudo-complete, and hence of second eategory.

A well-known theorem in topology and analysis says that the supre-
mumn metric on a funetion. space i8 complete whenever the mefric on the
range space is complete (the converse is algo true). In this paper we take
a particular space ~ the cloged unit interval 7 — and consider the general
question as to what “complete-type” properties can one obtain on a fune-
tion, space with domain space I when the property of completeness on
the range space is relaxed. An example is given showing that even if the
ange space s o psendo-complete, separable metric space, with no further
conditions the function space with domain space I may be of first cote-
gory — far from complete. However, we then give certain conditions on
the range gpace (which do not imply completeness) insuring that the fune-
tion gpace with [ as domain space be pseudo-complete, and hence of
gecond category. ’

1. Basic definitions. A subset of the topological space X is of first
eategory dn X provided that it can be written as the eountable union of
noewhere dense subsety of A7 (e, subsets of X whose closures lhave no
fnterior points). T a subset of X i not of fivst eategory in X, then it is
af socond category in X. A space iy of first category (second catogory, vespec-
tively) if it s of first category (second category, respectively) in itwelf,
A space having the property that every open subspace is of second category
iy called a Baire space.

The Baire Category Theorem says that every complete metrie spaco
is & Baive space. In some cases one needs to have o completo space only
to uge such a theorem ag the Baire Category Theorem, so that a matural
question is whether one may wepken the completeness property on the
range space and still retain some generalization of completeness, such ag
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Baire space, on the function space. A property which is very close fio
compleieness is that of psendo-complefeness. A space Is psewdo-complete
pravided that i is a quasi-regular space having o sequence {#,} of pieudo-

e =¥
bages such that if P, « T, and P, ., C I’ for each w, then (M} P, 4 3, where
il

quusi-regular and psendo-Dase are defined as follows, A space iy guasi-
regular it every nonemply open seb containg the closure of soine nonepiy
open seb; and a collection of nonerpty open sets is & preudo-base For a spaee
it each noneniply open set condadns soine meher of this colleetion. Wyery
psendo-complete space is known o be a Bajve spaec. Alse It wag shown
in [1] that » metrizable space is psendo-cowplebe i wnd only if it containg
o dense topologically complete subspace.

We ghall be concerned with three different commounly wsed topelogies
on fuonetion spaces — the supremum wetrie topology (topology of wniferin
convergence), the compact-open topology, and the topology of peintwise
convergence. If X and Y ave topological spaces, the set of continuous
functions from X into ¥ will be denoted-by C{&, 1), In the case that
(T, d) is a bounded metrie space, 1 moetrie fl, called the supremum metrie,
can be defined on CCY, ¥) by d(f, g) = sup{d(f{x), g(@))] @ e X} We
shail wse the notation O (&, ¥) for this metric space. Also O, ¥) with
the compact-open topology will be denoted by Op(X, 1), where the com-
pact-open. topology is the topology on ¢(X, 1) gencrabed by flie subbase
of all sets (K, U = {fe C(X, )| f(E)C U}, where K iy compact in A
and T is open in Y. In the cage that 2 i compact and (Y, d) is a Dounded
mefric gpace, it Is u standard theorem that (X, ¥) und (%X, ¥) are
identical spaces. Tinally, the topology of pointwise convergence on ¢(X, F)
is defined the same as the compact-open topology except thab points are
used instead of emupact sets. This space will Tie denoted by €LY, X),
and ean be congidered as a subspace of [ Y, with the product topology,
where each ¥, is a copy of Y. oo .

Throughout this paper, ¥ will be assumed 4o have webrie d whenever
the space O,(, ) is diseussed, otherwise X need not De o metrizable
space unless explicitly stated. In certain cases, the domain space X will
be taken to be the cloged interval from ¢ to L with the nsual topology;
thig space will be denoted by I. The ferm o will he used to denote an
avbitrary inferval. Also N will denote the set of natural numbers,

2, A first category function space with psesdo-complete range space. The
first theorem gives a condition on a subspuee of a fanction space implying
that it he of first category, and will be used to establish Theovrems 2.9
and 2.5.

Tanorem 2.1. Let T be a subspuce of either 00X, V), (X, V)

.
) i
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(=]
O (X, V) such that for some x e X, {f(w)| feT}= ) Yau, where each X is
n=1

closed ond nowhere dense in ¥, and for every positive inleger n, for every
fel with f(») ¢ Yo, and for every neighborhood W of f in I, there ewists
o geW such that ¢{x) ¢ Yo. Then T is of first category.

Proof. TFor cach w e N, lot Py=={fe ] f(a) e ¥u)

To see that ench 7y, i# closed in I, let f e I . Now let V- be a neigh-
borhood of f(r) contained in Y\Y¥,. In the case that I is a subspace of
X, X¥), such a neighborbood can be taken fo be the ¢-nieghborhood
about f(x) for some & > 0. Then ot W be the s-neighborhood about fin F.
Tn the case that I is a subspace of Cu(X, ¥) or Cp(X, ¥), define W to
bo <{w}, V> ~ I, In any ease, if g ¢ W, then ¢{w) ¢ F\Yn, 50 that ¢ e F\Fy.
Therefore W is o neighborhood of f contained in F\Fy, o that Fy is closed.
Now by the hypotheses, each I has no interior point, so iy nowhere dense.

e
Bince = | ) I, then ¥ is of firgt category.
el

THROREM 2.2. There evisls a psendo-complete, separable meiric spuace
(¥, d) such that O(I, Ty, Cu(I, ¥), and Og(I, ¥) are all of first category,

Proof. Let L, bo the dyadie rationals in I, and leb I, be the irrationals
in I Define ¥ to be the seb (I, x ) w (I, % I,), and let it have the metric d
which is inherited from the usual metric on the plane. Notice that ¥ is
pseudo-complete sinee I, x T, is a topologically complete dense subspace -
of Y. We shall only consider the case of Cx(K, ¥) since the proof for the
case of O,(I, ¥) is gimilar and sinee I, ¥) and Cx{I, ¥) are identical
(becanse I is compact). -

T I, = {r,| neN}, detine ¥, = {f| m () = {r,)}} and let F'= U F,.

M=l
Also for each =, define Yy = {rs} x I, which ig closed and nowhere dense
in ¥. We wigh (o establish that ¥ and {T,} satisfy the hypotheses of Theo-
rem 2.1. Lot n e N, let £ ¢ Fy, and lot W be a neighborhood of finF. We
may suppose that We= Ky, Vi A e g Vi ~F where Ky, ooy K
ave eompact i I and Vy, .., Ve arve open in ¥, Tet

e D @), TNV A 1 ey )

which is positive siuee each K is compact. Now there cxigts an m <« N such
that max{0, l—e} < ra <1. Defing o: YT by a(s? t)= (rms, t). Lot
¢ = o s f, which by congtroction of « is in NFi. Also since « moves each
point lexs that &, g ¢ W. Therefore by Theorem 2.1, I is of hrst: category.

Tinally we wish to establigh that Cx(I, T)NF, call it Iy, is nowhere
dense in Cp(T, ¥). Because continuous funetions preserve corvmec’oedness,
T, consists only of the constant maps from I into Ipx Ip. Now suppose
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that fe 0T, ¥) with f not a constant map. Then T f (L) = [a, V] for
some 05 a<db<L Lot e= (b—a)2, leb t;, & eI such that m,f(t) = a
and mf(t,) = b, and let V; and ¥V, be e-neighborhoods in ¥ about F(t)
;und‘ J(ty), respectively. Then i W= {{t,}, V> {{&t, Vo>, f e W. By tliLc
-choice of &, WC Op(l, XINFp, s0 that Fy C{fe Cu(I, T)| /: iy a constant
map}. {This lagt containment is actually an equalify.) To é(-e. that 7, hm
no 1.nt01'io1‘ point, let feFy and let Wes (K, Vid o m (i Vs hé
h nmghlprhood of f. Bince f is a constant map, say thab cnns\ta..ub’ i (is- 3
there exists s >0 such thati the z-neighborhood of {8, ) iy (1()11‘(&1&1106[7 ui
TineonVy Choogse an meXN such fhat 8| < de,  and ](t
o=max{0,t—§s} and b= min{l,-3cl. Define (/e"()ﬁ;(I ¥ Dv
9(2) = (ru, (b~ a)p+a). It can be scen that g« W and g is not o ’c(nm‘hufﬁt
map. Therefore W ~ [Ox(I, TNFo] # 0, s0 that I, i nowhere dcmm
Since Ou(l, Y) =T v Fp, it follows that Cu(l, ¥) is of first cznto-.,r_{()ry;

TaEoREM 2.3. If X is compact and (Y, d) has an open i(:p()lc;q-ffrenzlll«p/
complete subspace, then O X, ) has an open topologivally (.‘o?)lj)leie sub-
space, and hence s of second category.

]_?roof. Let Z be an open topologically complete subspace of Ve
Consider Cy(X, Z) as a subspace, call it Oy, of Uy(X, Y )- Liet p he u corpleto
bounded metric on Z. Then since X is compaet, C,(X, Z) hag the Q:‘u}lo
topology as C,(X, Z). Since (Z, o) ig complete, then c‘0 (X, Z) is complete
Therefore 'y is topologically complete. Now let Je 0;, so, that f“(X‘)VC Z
Let € be the distance between f(X) and Y~Z. Then the a-ms.ig‘hborhomi
of fin OgX, ¥} is confained in 'y, 50 that (5 is open in 'U@(X,‘l').

THEOREM 2.4. If X is compact and Y has an open complotely metric-
able subspace, then Ox(X, ¥) has an open completely metrizable g;'ubs'pa('e
and hence is of second cotegory. o

Prooi‘.. This is similar to the proof of Theorem 2.3,

We might add that the analog to Theorem 2.4 for Op(X, 1) ingtend
of Ou(X, ¥) is false sinee Op(1 s B1) 18 not metrizable [3] wlm’r(a It 1s the
seb of real numbers with the usual topology. o B I

TuroREM 2.5. There ewisis suparable metric space (37, d) which has
a (Z¢¢a,se: open, arewise connected, topologically nuva[lm.u x*u.b.s-';)rw(; such ‘I./;,a:‘&
Cd([ , 1}_), 0@(1 , I’), and Oull, X) are all not Boire .s‘pa.é(e,\'. {(HTowener
Caoll, X¥) and Cu(I, ¥) are of second category by Theorems 2.3 and 2.-1v)i

Propf. We shall modify the example in Theorem 2.2 and shall use
the 1.;e1-m111010gy defined in that proof. Also, as in Theorem 2.3 .w; ﬂv’nll‘ '
conszderﬂ only the case for Ox(I, X). Define ¥ to be the set Iy >< 7[ X {(‘)})L\L;
;l(‘:f pXIpx T ) w{IxIx {1})., and let it have the metrie d which is in-

erited frou} the usnal metric on Buclidean 3-space. The desived denge
open, arcwise oconnected, topologically complete qltl)ﬂr'n,d(;”cl)f I; i
(s X Iy X IN(O}) © (L X Ix {1}) o )
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Tt Z e Ty T {0}, and lot F={fe On(I, ¥)| f(I)CZ and f is
not n eongtant map}. By using Theorom 2.1, as was done in the proof
of Wheorem 2.2, it can be seen that F is of first category. Alse F can be
ghown to be open. in Oy(I, ¥) in a way very similar to the way in which Ty
was shown o be nowhere dense in the proof of Theorem 2.1. Therefore
Cil(l, Y)Y is wot a Baire space.

The underlying reason that Ox(f, ¥) is not 2 Baire space in Theo-
por 2.0 1% thad Y 98 not loeally connected. This can De seen from Theo-
rom 4.1, which will be proved in Section 4. However, we shall first need
to diseuss the topie of when o continuous function from a closed sub-
gpaee of an interval J into some spaee has a continuous extension to all of J.

3. Absolute extensors of finite-dimensional metric spaces. Let Y De
a space and lot x be a elass of spaces. Then Y is called an absolute extensor
for y provided that for uny closed subspace 4 of any X e %, every conbinu-
ous funetion. f: A—'¥ has 3 continuous extengion to all of X. In the case
that y == {X}, we shall say that ¥ ig an absolule extensor for X.

The coneept of #-counccbedness will appear in the next couple of
theorems. Tt # is o noonegative integer, a space ¥ is called n-connected
provided that for cvery integer % with 0 k<n, every continuons
funetion from the Z-sphere, 8%, (lying in Tuclidean (k--1)-space, BE+
into ¥ hag n confinuous extension to all of B Also Y is called locally
si-connected 1T Tor overy infeger k with 0 <k <Cn, for every ¥ « X, and
for every neighborhood U of y in ¥, there exists a neighborhood ¥V of ¥
contadned in T el that every continnous function from 8% into ¥V extends
to o continuons funckion from B** into U. Finally, the abbreviation
Aim.X will be used to denote the covering dimension of X.

The following two theorems can be deduced from resulbs of Dugundji
in [21.

Tumorast 8.1, Let n be @ positive integer, let ¥ be a metric spave, and
Ity be any class of matrie spaces sweh thab:

1) for e X ey, dimX < n, ond

9 there eeists X ey such that X conlaing @ copy of B" embedded n it.

Then Y is an absolute extensor of ¢ if ond only 4f X 48 (n—1)-con-
1) - connected.

neabed, and Iocally (v

A wpuee iy pathwise connoctod it it is 0-connected, and it is Tocally
pathweise connected iL it is locally 0-connected. It is not difficult to see
that a eonnected, locally pathwise conneeted space is pathwise connected.
Now as a corvollary to Theorem 3.1, we get the following regult which
will he nsed in the next seotion.

CoratrAry 3.3, Let J be an inlerval and let ¥ be a metric space. Then
Y is ani absolute extensor of J if and only if ¥ 4s conmected and locally path-

wise connecled.
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Omne half of this corollary ecan be generalized as follows.

THEOREM 3.4. Let X be a Hausdorff space eontaining some nonde-
generale pail. Then 4f ¥ ds a first countable absolule extensor of X, T must
be pathwise connected and locally pathwise conmected.

Proof. Let g: T->X be o nondegenerate path in X. Since X is o Maus-
dorff space, g(I) is arewise connected, so that there oxists an embedding
h: I—X. Clearly ¥ must be pathwise connected. Now supposs that ¥ is
not locally pathwise connected. Then there exist yye ¥ and neighhor-
hood V of g, in ¥ such that for every neighborhood W of 4, tontained
in ¥, there exists w e W such that there is no path Hom w to Yo whose
image lies cntively within V. Let {Bi| i< ¥} be a countable local bage
at yo with B, , CB; for every ¢ ¢ N and B, CV. Then for every 4 e N,
let y; e By such that there is no path from ¥; to ¥, whose image lies entirely

in V. Let K = {0} u {1
[

ieN}, which iy closed in I and hence compact.
Therefore h(f) is compact and thus closed in X. Define the continuous

fanetion f: h(IK)— X by f{h(0)]= y, and for avery i e N , let f,:h(g%)] =y

1 - L .
and f[h(zT;—l)] = y;. Now suppose F: X— ¥ is a continuous extension

1 1
of f. Then for each ¢ ¢ W, thz 1 ;:D is the image of a path from y;
— 3

to g, so there exists ¢; such that

L . ‘
51 <y << % and Fhit) ¢ V. Bub

{#s] e N} converges to 0, while {Fh{t)] ¢ ¥} cannot converge to v,

= Fh(0). Hence Fh is not continuous — which is o contradiction. There-

fore f has no eontinnoug extension to Y, so that ¥ would not he an ab-

solute extensor of I, Thus ¥ must be loeally pathwise connected aftor all,

The first countability hypothesis in Theorem 3.4 cannot he omitted,

as the following example shows. Lot X Dbe thoe real line with disereto

topology except that the neighborhoods of 0 are precisely all subsols

of X with countable complements. Let ¥ = (X3 DA < {0} with the

quotient topology. Now ¥ is neither first countable nor locadly pathwiso

comnected at the point (0, 1). To see that T is an absoluto axtensor of 1,

et I7 he a closed subspace of I and let Ji £—Y be continuons. Set ¥,
= {w e X| there existy 0 < i< 1 with (@, 1) e fLE)}. It X, were unconut-

able, then {f~*({z}x (0,1])] @« X037} would be an wncomntablo disjoint

collection of nmonempty open subsebs of K — which contradicty the fact

that K is separable. Therefore ¥, is countable, so that X, as a subspace
of X has the diserete topology. Let ¥, — (XX DXy % {0}), which, is

then a subspace of ¥ containing f(K). Now ¥, is a connected, loenlly
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pathwise comnected, metrizable space, so thet ¥, ig an absgolnte extensor
of 1 by Corollary 3.3.

4. Pseado-complete function spaces with intervals as domaﬁn spaces.
Throughout this seetion the domain gpace of most of the functfon spaces
will be an arbitrary intorval J. Whenever Z is a subspace of ¥, we shall
eonsider Ux(T, Z) as o subspace of O, X).

Trmores 4.1, Lot ¥ be o locally connected space which contains a dense,
lovally pathnise connected, metrizable .wbspaa{ﬁ % m"‘ﬁh the property ﬁb:bf«
Vo~ s connected whenever Vois connoeted ond open in Y. Then Cu(T, 4)
qg dense tn Opld, X .

o TProof. Tt fe Owld, ¥) and let W= (Hy, Vi o ~ oy Vend 1;)9
a bugic open got containing f, where It , .., Is arve compa;e‘ﬁ indJ { Viyes Vin
are opoen. in Vi and each (Ei, V> = {g< Ou(J, X)| g(E) C Vs In order
to complete the proof, we need to find a g « W such that gl C 2.

Tt Yy be the component of ¥ containing f(J), and 1ejt Zy=Y;n 2,
which is o nonempty connected open subspace of Z and is Iience locally
pathwige connected. For each 1< k< m, let. 8k, 1)y ey 8%, 2(%)) be
all possilble sets of precigely & distinet positive integers 1e'ss than 013 equal
to m such that () (] ne 8%, )} = O for every 1< 4 p(h), if such
sets exish. TE for some 1 < % < m, no sueh sebs exist, let p (k) = 0. Lieb m, be
the largest positive integer less than or equal to m S}lch tlla_ut .?(m(,) > 0.
Now for each 1 < k<< my amd 1< ¢ < p (%), there exists a finite numb.e-r
of components V(k, 4, 1), ., V{k, 1, g(k, @)) of M {Fun :‘?}{ e .S(]c, i)}
such that fTM) {Ka) n eS8k, CTVE, iy 1) e T/’(If, iy (%, i)). I*“or
cach 1< g(hy 8)y lob Z(k;4, )= By nV(5,4,]), which is_connecied
and open in Zy. Also let K (&, 4,7) = [N {Hx] n € 8k, iN] ~ VR, 1,50,
which can be seen to be a compact subget of J. For Qach %g k< Mo
lot K (k)= U B, 4, k<nsm, 1S p(n),.and 1<j < qin, i)k

Now for cach 1 <4< plm) and 1< < g(mg, 1), therp exists & 0?11—
timnous function ¢ (mg, 4, §) J—Z(my, 4, §). Def%ne the contllnu_ous fl}nctl]o;n
glamg): K {my)—Zp by g(mg}(l) = g(mn_,i,j)(.t) if ta]i(mo,w,q). V‘élth t ]c;
intent of defining ¢(1): K (1)—2Z¢ by 1]1(111013109, we suppose that for eac
155 k<0 m, where n << m,, a continuous fonetion

g {mg—Tap- 1)z I (my— B--1)—Z;

hag been defined go that g (me— 7c~]—1)[1§:'(mﬁ‘_ k+1,4,4)1C Z.(mo—- k41, i Jy
for overy 1< i<Cp(me—h+1) and 1< J‘é g (my— Yc+'1, 4). Then de:ﬁmg,
glme—n): K(my—mn)—Z; as follows. First 19,? 1 L1 <K p(Mme—mn) aa:(g

1< § < glme—n, i), Suppose thatb I {(my—n,y q,,.y)‘n K (my—n—+1) =@
Then there exigty a continnous function y(m.,_—— ;4 D I —E{my—n, i, §).
On the other hand suppose that I {my—n, ¢,§) ~ K (m'“._ n-4-1) % 3. 'I‘hen
by Corollary 3.3, there exisls a continnous funei_non g(me—mn, 4, J):

6 - Fundamenta Mathematicae XC
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o —->‘Z (ng—n, 'z:,j_ ) which is an extension of g (m— T gy, 1) 01 R (g k1) -
Define the continmong funetion g (my—mn): K (my—n)—s 7, ‘b"y’ q(mui- :;(1;)
= g(my—n—+1)(1) if t « W (mg—n-+1) and g{me—n}(f) = glmy—mn, 4, )){1) if

te K (my—mn, 4, §INK (my—n--1) .

Th(_an by linite induction, the continuous funetion g{l):
defmgd 80 t.hm; GO, DICZ (L, d,4) Tor every L=y
1< g(,4). But for each 1< k< m,

K (=2, i
=P (L) and

Ip= UK (1,4,)] L<j<g(1,4)

for some 1 < ¢ <C p(1). Also for thig 4, UZ(1,4,0) 1<d< quL,inc ‘!V
Therefore, for each L<Ck<m, ¢(1) (£ C Vy. CoTEE
Eina.lly, sinee J(1) = U {IG] 1< k< m), it 05 6 closed submet of J
Also £y is connected and locally pathwise comnecled, so that by (?()1\0]-‘
lary 3.3 again, ¢(1) bas a continuous extension. ¢: J— %, whicl 1l
desired element of W. . " e
COROLLARY 4.2. Let ¥ be o lncally conmectod space which condaing a dense
completely metrizable subspace Z (so thai ¥ ig paeudo-complele) L'm;if‘/z T/f’
property that Vo Z ds connected whenever V' is (jruf)‘rwo'(‘lnr.l and 7 PR, 'u Jf .
Then On(J,7) is a dense completely motrizable Subspace 'o;{"( ! (f ’3” ” 0
that Ox(J', X} ds pseudo-complele. . S
(:JOROLLARY 4.3. Let (¥, d) be a locally connected melric space whic)
contains o dense, locally pathwise conmected subspace % with ihe k)lv"o"lnwl L
that V Z is commected whenever V 48 connected und open in Y !ZI']M*;{J o
cvery continaous function f: I—Y and cvery & > 0, there emists a. ;'o'niv/';z'; {W
Junction g: I—Z such that d(f(m), glw))< e for cvery a e 1. e
Oorolla.ry'4.2 follows from Theorem 4.1 singo Z will be locally eon-
neoted‘, and sinee a locally connected, complete motric SPaGO jil ]):‘("JI”'T
bathwise eonnected. Also Corollary 4.3 follows from leor‘(mvl 4 1}'1‘11&’(1“11‘23
tact that whc?u the domain space compach, ag is J, the ﬁrl]u'(ﬁn{*ur; :mcll';‘i‘
on the funei:m_n space generates tho eompact-open, topuflnﬁy o
We saw from Theorem 2.5 that iho Toen] wn11’;(5(5-1:4\(11‘1;\% conditior
on ¥ cannot be omitted from Theorom 4.1 or s um'ol]zﬂi(:r; q’h‘m(s IJ X
:Elgspzwe Zt, of the spzuc:a Y construeted in the proot 01 '-..L‘h.u()‘:::‘:u‘rbu :H» ]1:(1;
i,n 3%).r()]pel ¥ that ¥V ~ Z is eonnoeted whenever ¥ iy connectod and open
Corollary 4.2 hag the following paztinl corverso.
‘ TErOREM 4.4, Let T be locally pathwise
if On{d, ¥) ds pseudo-complete, so is ¥.

Proof. Let ¢ be an arbitrar i of
- Lo 8 ‘ Y clement of J, and lob py: Ould, 1) ¥
be the projection of' Cold, T) onto ¥ detertatned by 4. Thatb ié, 301 )esucﬁ

conimeeted metrie space, Then
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FeOuld, ¥), polf) = f1). Th is clear that pe is a continuous surjection.
In order to see that p; is also open, let B = (&, V5 ~ ...~ (I, V) be
a nonempty basic open subset of Cu(f, ¥). It ¢ iy contained in some K,
lob W= () {V4| 1€ I} On the other hand, ¢ ¢ 1 v .. w iy, let V= Y.
Now let f e B, and define ¥y to be the component of ¥ which contains f(z).
Let 4 be any element of ¥p. We can find a, b eJ, with e <1< b, such
that the interval [a, ] intersccts only those X which contain ¢ and
flla, b)) CTVy. Define g: {a,d,3-Vy by g(a)= fla), g(d)==f(d), and
g{) == 9. Now ¢ has o continnons extension y: [«, b]—1;. Define i J—F
by Jlw) = gy if @ ¢la, U], und fla) = fz) if e [a,b]. Tt is easy to
sce that fe B and pi(f)=y. Theretoro pyB)= U {Vy| f<B snd Vr is
the component of V oeontaining f()}, which is open in ¥. Hence p; iz
a continuouy open lunetion from the psendo-complete gpace Up(J, Y)
onto the metrie space Y. Then by a theorem in [1], ¥ must be pseudo-
complete.

T X ig a rimcompact (hag a bagse having members with compact
bhoundaries} ausdortt space, then ¢ X will denote the Freudenthal com-
pactification of X. Most of the properties of X used in proving the follow-
ing theorem can be found for example in [4].

TrroreM 4.5, If X ds a connecled, locally pathwise connecled, rim-
compact melric spave, then Ox(d, X) 4s dense in Cu(J, yX).

Proot. To Legin with, yX has the following two properties: (1) for
overy y ¢ p.X and neighborhood V of y in ¢, there exigty an open sub-.
set W of X such that ¥y« WCV and BdW C X, and (2) ¥ ~ X is con-
nected whenever V iy conmected and open in »X and BAV CX. Also
since X i3 connected and locally connected, X will be locally connected.
Therefore we simply need to moedify the proof of Theorem 4.1 to prove
the following: if ¥ is a locally connected space which eontains a denge,
connected, locally pathwise connected, metrizable subspace Z with the
two properties (1) for every # ¢« ¥ and neighborhood ¥ of y in ¥, there
exigts an open subget W of ¥ sueh that y e WCV and BAW CZ, and
(2) ¥ ~Z i3 conneeted whenever V is conmected and open in ¥ and
BAV C Z; then xS, £) is dense in Ox(J, ¥).

This modifieation i done ag follows. Firsh, since Z is connected,
take Zp== % and Yy== X, Algo for each 1< k< m, since f(idx) 18 & com-
pact subset of ¥ contained in Vi, there exists an open subset Wiy of Y
such that f(Kp) C WyC Ve and BdW;C Z. Now in constructing the
V{k, ¢,7) in the modification of the proof of Theorem 4.1 for each 1< k&
< my and 1< j < p(k), take the V(k,d,1), ..., V(k, 4, g{k, 4)] to be com-
ponents of () {Wx| %< 8(k,4)} such that

FIO) ] 16 8y )1C V(g 1) oo v V{iey 4, 0, 4)) -

g
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Each V (%, 1, j) is connected and B4V (k, 4, f) C Z. Therefore each Z(%, 1, j)
=Z ~V(k,1,j) is connected and open in Z. The rest of the proof now
needs no further modification.

Cororrary 4.6. If X is a Peano space, then Ow(J, X) 45 dense in

We might note that if X is a Peano space, (l.e., a connested, locally
-connected, locally compact metric space), then yX iz metrizable, say
with metrie d. Then in this case, the above corollary assures ue that for
-each continunous fanction f: I—pX and for each & > 0, thero exists a con-
tinuous funetion g: I-—»X such that d&(f(1),g(t)) < & for every tel.
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