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ABSTRACT

Heparin-binding EGF-like growth factor (HBEGF) is expressed
by trophoblast cells throughout gestation. First-trimester cyto-
trophoblast cells are protected from hypoxia-induced apoptosis
because of the accumulation of HBEGF through a posttranscrip-
tional autocrine mechanism. Exogenous application of HBEGF is
cytoprotective in a hypoxia/reoxygenation (H/R) injury model
and initiates trophoblast extravillous differentiation to an
invasive phenotype. The downstream signaling pathways in-
duced by HBEGF that mediate these various cellular activities
were identified using two human first-trimester cytotrophoblast
cell lines, HTR-8/SVneo and SW.71, with similar results.
Recombinant HBEGF (1 nM) induced transient phosphorylation
of MAPK3/1 (ERK), MAPK14 (p38), and AKT within 15 min and
JNK after 1–2 h. To determine which downstream pathways
regulate the various functions of HBEGF, cells were treated with
specific inhibitors of the ERK upstream regulator MEK (U0126),
the AKT upstream regulator phosphoinositide-3 (PI3)-kinase
(LY294002), MAPK14 (SB203580), and JNK (SP600125), as well
as with inactive structural analogues. Only SB203580 specifi-
cally prevented HBEGF-mediated rescue during H/R, while each
inhibitor attenuated HBEGF-stimulated cell migration. Accumu-
lation of HBEGF at reduced oxygen was blocked only by a
combination of U0126, SB203580, and SP600125. We conclude
that HBEGF advances trophoblast extravillous differentiation
through coordinate activation of PI3 kinase, ERK, MAPK14, and
JNK, while only MAPK14 is required for its antiapoptotic
activity. Additionally, hypoxia induces an autocrine increase in
HBEGF protein levels through MAPK14, JNK or ERK. These
experiments reveal a complexity of the intracellular signaling
circuitry that regulates trophoblast functions critical for
implantation and placentation.

AKT, apoptosis, cell differentiation, cell migration, mitogen-
activated protein kinases, phosphoinositide-3-kinase, pregnancy,
signal transduction, trophoblast

INTRODUCTION

Blastocyst implantation is a tightly regulated and dynamic
process that establishes a pregnancy. Central to implantation
are the trophoblast cells that populate the exterior of the
blastocyst. These unique cells invade the endometrium
interstitially and intravascularly [1] and can survive the changes
in oxygen concentration that accompany early development of
the placenta [2]. Early in this process, trophoblast cells function
in a relatively hypoxic uterine environment, a condition that is
drastically altered during the 10th week of pregnancy in
humans when extravillous trophoblast cells occluding the
maternal arteries dislodge, allowing highly oxygenated blood
to enter the intervillous space within the developing placenta.
Trophoblasts survive this oxidative challenge and accelerate
the pace of invasion [3]. Oxygen fluctuations occur throughout
pregnancy with great variation among individuals [2]. The
elevation of oxygen after an ischemic episode can damage
trophoblast cells because of the resulting oxidative stress [4],
possibly precipitating pathological outcomes [5].

The epidermal growth factor (EGF) signaling system is
capable of regulating diverse cellular activities, including
survival, invasion and differentiation [6, 7]. EGF-related
growth factors are expressed abundantly in the receptive
endometrium [8, 9], with heparin-binding EGF-like growth
factor (HBEGF) having a prominent role during peri-
implantation development [10–12]. It is specifically expressed
at the site of blastocyst attachment in mice, immediately prior
to implantation [13], and appears cyclically in humans at the
apical surface of luminal epithelial cells during the period when
the endometrium is most receptive for embryo implantation
[10]. Conditional excision of HBEGF in the murine uterus
delays blastocyst implantation and reduces litter sizes [14],
suggesting that HBEGF is important not only for timely
attachment of the blastocyst but also for subsequent invasive
events. Indeed, HBEGF accelerates the differentiation of
mouse trophoblast cells to an adhesive phenotype [15],
increasing the area over which they subsequently migrate
[13]. Similar stimulatory effects of HBEGF have been reported
for human embryos [16]. HBEGF is implicated in both the
successful invasion and the survival of human cytotrophoblast
cells [17–19]. Members of the EGF family, including HBEGF,
EGF, and TGFA, are capable of inducing altered integrin
expression and accelerating trophoblast migratory and invasive
activity in first-trimester human cytotrophoblast cells [17, 20].
EGF is capable of preventing cytokine-induced apoptosis in
term cytotrophoblast and syncytiotrophoblast [21, 22], and
both EGF [23] and HBEGF [24] block apoptosis resulting from
exposure to hypoxia. During the first trimester, trophoblast
cells have the ability to survive and proliferate in the very low
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oxygen environment present at the implantation site [25, 26].
Investigation of their survival capacity revealed that cytopro-
tective activity is provided as HBEGF accumulates in
cytotrophoblast cells exposed to low oxygen tension [18].

Failure of trophoblast cells to survive and invade maternal
tissues interferes with the remodeling of uterine spiral arteries
required to increase blood flow to the growing conceptus and is
thought to contribute to pre-eclampsia [27–29], intrauterine
growth restriction [30, 31], and spontaneous abortion [2]. The
physiological interaction of trophoblast cells with oxygen
during pregnancy is complex, with a preference for low levels
during the first trimester. It has been hypothesized that
fluctuations in oxygen during early pregnancy create hypoxia/
reoxygenation (H/R) episodes that produce oxidative stress,
which may compromise trophoblast survival [4, 5, 32]. Indeed,
activation of the EGF signaling system with HBEGF or related
growth factors can prevent apoptosis due to oxidative stress
caused by exposing first-trimester cytotrophoblast cells to H/R
[19]. Examination of placentas delivered by women with pre-
eclampsia reveals a dramatic reduction in HBEGF expression
[33] and suggests the important role of this signaling system.

Although HBEGF appears to have many important
functions in trophoblast cells, the underlying mechanisms have
not yet been assessed. To this end, we have initiated
experiments to identify intracellular signaling pathways that
are responsible for the multiple outcomes of HBEGF signaling.
Using two immortalized, human, first-trimester cytotrophoblast
cell lines, we have examined the downstream signaling
circuitry that regulates the ability of HBEGF to autoregulate,
induce migration, and inhibit apoptosis. As with all EGF family
ligands, HBEGF initially binds to and activates members of the
HER/ERBB receptor tyrosine kinase family [6, 7]. EGFR,
ERBB2, and ERBB4 (HERs 1, 2, and 4) but not ERBB3
(HER3) possess functional intracellular tyrosine kinase activ-
ities that, on ligation and dimerization, induce cross phosphor-
ylation of their intracellular domains. Phosphorylated tyrosine
residues then serve as docking sites for intracellular proteins
that direct downstream signaling pathways, including phos-
phoinositide-3-kinase (PIK3) and MAPK cascades. Using
inhibitors of the most common MAPK pathways and PIK3,
we have examined their roles downstream of HBEGF in
trophoblast cell extravillous differentiation and survival and in
the upregulation of HBEGF during hypoxia.

MATERIALS AND METHODS

Cell Culture and Reoxygenation Injury

Two immortalized, first-trimester, human cytotrophoblast cell lines, HTR-
8/SVneo [34] (provided by Dr. Charles Graham of Queens University) and

SW.71 [35] (provided by Dr. Gil Mor of Yale University), were cultured at 2%
or 20% O

2
, as previously described [17, 19]. The HTR-8/SVneo cell line

originates from first-trimester villous explants and is immortalized by stably
expressing the large T viral antigen [34]. The SW.71 cell line also originates
from first-trimester villous explants but is immortalized by overexpressing the
telomerase enzyme [35]. SW.71 cells resemble extravillous trophoblasts,
including their expression of hCG, vimentin, cytokeratin-7, and their invasion
of Matrigel.

Exposure to H/R has been previously described [19]. Briefly, cells were
cultured at 2% O

2
for 2 h, and then media was replaced with fresh media pre-

equilibrated at 20% O
2

for an additional 6 h of culture at 5% CO
2

and ambient
O

2
. Cells cultured at 2% O

2
for 8 h served as a control. Where indicated, cells

were cultured in the presence of 1 nM recombinant human HBEGF (R&D
Systems) with or without addition of inhibitors. Inhibitors and their inactive
structural analogues (Table 1 [36–41]) were purchased from Calbiochem
(EMD) and were specific for JNK (JNK Inhibitor II and negative control),
MAPK14 (p38) (SB203580 and SB202474), PIK3 (PI3K) (LY294002 and
LY303511), and MEK (U0126 and U0124). Inhibitors of EGFR/ERBB2/
ERBB4 (ERBB/HER Inhibitor) tyrosine kinase activity (catalog no. 324840)
and HBEGF signaling (cross-reacting material 197; CRM197) were also
purchased from Calbiochem.

Cell Death Assay

Cells fixed with 4% paraformaldehyde for 20 min were permeabilized with
0.1% Triton-X100 for 15 min and terminal deoxynucleotidyl transferase-
mediated deoxyuridine 5-triphosphate nick end-labeled (TUNEL) using a kit
from Roche Applied Science, as previously described [18]. Briefly, cell nuclei
were counterstained with 1 mg/ml DAPI to obtain a ‘‘TUNEL Index’’ by
calculating a ratio of TUNEL-positive nuclei to DAPI-positive nuclei.
Previously, we determined that cell death in cytotrophoblast exposed to H/R
or hypoxia alone in the absence of HBEGF signaling was due to apoptosis
rather than necrosis [18, 19].

Migration Assay

A modified Boyden chamber assay was conducted using sterile transwell
inserts with polycarbonate membrane filters containing 8-mm pores (Corning)
to examine the extravillous differentiation of trophoblast cells to a migratory
phenotype. Transwell inserts were coated top and bottom with 10 lg/ml human
plasma fibronectin (Invitrogen) in sterile PBS at 48C overnight. Fibronectin was
removed from each well, and 500 ll of prewarmed serum-free media were
added to the lower chamber. Treatments were carried out prior to conducting
the migration assays. For each treatment, cells were first serum starved for 24 h
by culturing in DMEM/F-12 containing 5 mg/ml BSA. Media was then
exchanged for either fresh serum-free media (vehicle control) or serum-free
media containing 10 nM recombinant HBEGF without (positive control) or
with (experimental groups) inhibitor. After 4 h of culture, cells were washed
twice with 2 ml of serum-free media, and culture was continued for an
additional 20 h. After their pretreatments, 50 000 cells were added to the upper
chamber of triplicate transwell inserts in a final volume of 200 ll. Transwell
plates were incubated at 378C for 9 h. Cells migrating to the underside of the
membrane were trypsinized into the lower well, combining with cells that had
detached from the underside of the membrane during culture. The cells were
fixed with 10% formalin and mixed by pipetting. After allowing the cells to
settle for 15 min, they were counted using a phase-contrast inverted light
microscope at 1003, viewing 10 different fields in each well. From the average

TABLE 1. Inhibitors and inactive structural analogs used in this study.

Inhibitor [reference] Target Chemical structure IC
50

Working
concentration

ERBB/HER Inhibitor [41] ERBB1 N-(4-((3-Chloro-4-fluorophenyl)amino)pyrido[3,4-d]pyrimidin-6-yl)2-butynamide 1 nM 10 nM
ERBB2
ERBB4

CRM197 [40] HBEGF CRM197 is a nontoxic diphtheria toxin with a G52E point mutation 10 lg/ml
U0126 [37] MEK 1,4-Diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)butadiene 75 nM 1 lM
U0124 Control 1,4-Diamino-2,3-dicyano-1,4-bis(methylthio)butadiene .100 lM 1 lM
SP600125 [38] JNK 1,9-Pyrazoloanthrone 100 nM 1 lM
JNK Control Control N0-Methyl-1,9-pyrazoloanthrone 20 lM 1 lM
SB203580 [39] p38 4-(4-Fluorophenyl)-2-(4-methylsulfonylphenyl)-5-(4-pyridyl)1H-imidazole, HCl 600 nM 1 lM
SB202474 Control 4-Ethyl-2(p-methoxyphenyl)-5-(40-pyridyl)-IH-imidazole 1 lM
LY 294002 [36] PI3K 2-(4-Morpholinyl)-8-phenyl-4H-1-benzopyran-4-one 1.4 lM 10 lM
LY 303511 Control 2-Piperazinyl-8-phenyl-4H-1-benzopyran-4-one .100 lM 10 lM
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number of cells per field, the total number of cells in the lower well was
calculated.

Western Blotting

Western blots were performed as previously described [42]. Cellular lysates
were diluted in SDS sample buffer containing 5% b-mercaptoethanol, run on
precast 4%–20% Tris-HCl gradient gels (BioRad), and blotted with primary
antibodies. Antibodies against AKT1/2/3 (monoclonal rabbit), phospho-AKT1/
2/3 (pAKT; Ser473; monoclonal rabbit), JNK1/2/3 (polyclonal rabbit),
phospho-JNK1/2/3 (pJNK; Thr183/Tyr185; monoclonal mouse), MEK1/2
(polyclonal rabbit), and phospho-MEK1/2 (pMEK; Ser217/221; polyclonal
rabbit) were purchased from Cell Signaling Technologies. Antibodies against
HBEGF (polyclonal goat), MAPK14 (polyclonal rabbit), phospho-MAPK14
(pMAPK14; Thr180/Tyr182; polyclonal rabbit), MAPK3/1 (ERK; monoclonal
mouse), and phospho-ERK (pERK; pERK1 at Thr202/Tyr204 and pERK2 at
Thr185/Tyr187; monoclonal rabbit) were purchased from R&D Systems.
Secondary anti-rabbit, anti-goat, and anti-mouse antibodies purchased from
Cell Signaling Technologies were detected by enhanced chemiluminescence
(Amersham Pharmacia Biotech). Bands were observed for MEK/pMEK, ERK/
pERK, MAPK14/pMAPK14, AKT/pAKT, and JNK/pJNK at 45, 40/45, 40/45,
60, and 46/54 kDa, respectively.

Immunocytochemistry

Cells were fixed in 4% paraformaldehyde, permeabilized with 0.1% Triton-
X100, and stained for the presence of HBEGF protein, as previously described
[17, 42]. For secondary antibody labeling, a horseradish peroxidase-conjugated
anti-mouse/anti-rabbit kit was used (Dako EnVision System-HRP), as
described by Armant et al. [18]. Image analysis was performed according to
published procedures [33].

ELISA

ELISA was carried out using the HBEGF DuoSet ELISA Development kit
(R&D Systems), as previously described [18, 19]. The optical density of the
final reaction product was determined at 450 nm using a programmable
multiplate spectrophotometer (Power Wave Workstation; Bio-Tek Instruments)
with automatic wavelength correction.

Statistics

All assays were performed in triplicate, and all experiments were repeated
at least three times and are reported as mean 6 SEM. Statistical significance
was determined at P , 0.05 by analysis of variance with the Student-Newman-
Keuls post hoc test, using SPSS version 12.0 statistics software (SPSS).

RESULTS

HBEGF Activates Multiple Signaling Pathways

In order to identify signaling pathways targeted by HBEGF
in human cytotrophoblast cell lines, cells were treated for 15
min to 6 h with 10 nM recombinant HBEGF. After 15 min,
Western blotting and immunocytochemistry revealed a
marked phosphorylation of MEK, MAPK14, ERK, and
AKT (Fig. 1 and Supplemental Fig. S1 [all Supplemental
Data are available online at www.biolreprod.org], respective-
ly). Phosphorylation was maintained for at least 45 min during
treatment with HBEGF, then declined to levels observed
before treatment. Phosphorylation of JNK, however, was not
significant after 1 h of HBEGF treatment but occurred shortly
thereafter and remained phosphorylated for up to 6 h (Fig. 1
and Supplemental Fig. S1). We conclude that HBEGF induces
a rapid, transient activation of the MAPK14 and ERK and
PIK3 pathways but a slower or delayed activation of the JNK
pathway downstream of ERBB/HER receptor tyrosine ki-
nases.

The rapid phosphorylations of ERK, MAPK14, and AKT
were each attenuated by an inhibitor of ERBB/HER tyrosine
kinase (Table 1) in a dose-dependent manner (Fig. 2A),
establishing that the activity of HBEGF was mediated through

its cognate receptors. If individual pathways were blocked with
their respective inhibitor, HBEGF-induced phosphorylation of
the specific target kinase was blocked but not the other kinases
(Fig. 2, B–D). To validate JNK inhibition, an inhibitor of JNK
blocked its phosphorylation when induced by H/R injury (Fig.
2E). Treating with the inactive structural analogues of these
inhibitors had no effect on the phosphorylation status of any of
the target proteins. None of the treatments altered the total
levels of any protein (data not shown).

HBEGF Induces Differentiation Using Multiple
Signaling Pathways

HBEGF has previously been shown to induce the
extravillous differentiation of trophoblasts from first-trimester
villous explants as evidenced by an increase in cell migration
[17]. Pharmacological inhibitors were used, with inactive
structural analogues as controls (Table 1), to delineate the
signaling pathways downstream of HBEGF that mediate this
differentiation. A 4-h treatment with HBEGF 20 h prior to
assay was found in preliminary experiments (Supplemental
Fig. S2) to be optimal for stimulation of cell migration. As
displayed in Figure 3, HBEGF induced an increase (P , 0.05)
in migration that was blocked by inhibiting either ERBB/HER
tyrosine kinase activity or HBEGF signaling. When cells were
cultured in the presence of HBEGF and an inhibitor of any of
the three MAPK pathways (MAPK14, MEK, or JNK) or the
PIK3 inhibitor, the increase in migration was blocked (Fig. 3).
The inactive structural analogues of each inhibitor were
without effect. Therefore, all four pathways were utilized by
HBEGF to initiate trophoblast extravillous differentiation.

FIG. 1. Identification of signaling pathways activated by HBEGF. Extracts
were prepared from HTR-8/SVneo (left panels) or SW.71 (right panels) cell
lines at the indicated times after treatment with 1 nM HBEGF and
analyzed by Western blotting. Each lane contained 30 lg of protein
extract and was labeled with antibodies against the indicated proteins
(lower panels) or their phosphorylated forms (upper panels). Images
shown are representative of at least three experiments.
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HBEGF Prevents Apoptosis Using the MAPK14 Pathway

It was recently reported that HBEGF prevents H/R-induced

apoptosis in human cytotrophoblasts by signaling through its

cognate receptors, EGFR and ERBB4 [19]. Cell death detected
by TUNEL was found to be associated with several criteria for
apoptosis. When trophoblast cells were exposed to H/R and
monitored by TUNEL, there was a marked increase in

FIG. 3. Signaling pathways required for HBEGF induction of extravillous differentiation. The number of SW.71 (upper panels) or HTR-8/SVneo (lower
panels) cells migrating through a fibronectin-coated transwell membrane insert and into the lower chamber were measured after culture in the absence
(striped bars) or presence (stippled bars) of 1 nM HBEGF, with kinase inhibitors (black bars) or the corresponding inactive structural analogue (white bars),
as indicated. Values represent the average 6 SEM of at least three experiments; *P , 0.05.

FIG. 2. Characterization of kinase inhibi-
tors by Western blotting. Extracts of HTR-8/
SVneo cells were analyzed by Western
blotting after (A–D) culture for 30 min in the
absence (control) or presence of 1 nM
HBEGF. Where indicated, cells were also
treated with HBEGF plus (A) 1–100 nM
ErbB/HER tyrosine kinase inhibitor (HER
Inh), (B) 1 lM SB203580 (p38 Inh), (C) 10
lM LY294002 (PI3K Inh), or (D) 1 lM
U0126 (MEK Inh) or their inactive structural
analogues (NC Inh), as indicated. In E, cells
were cultured for 8 h at 20% O

2
(control) or

subjected to hypoxia/reoxygenation (H/R),
as described in the Materials and Methods
section, in the absence or presence of 1 lM
SP600125 (JNK Inh) or its inactive structural
analogue (NC Inh). All samples were
labeled with antibody against the indicated
phosphoproteins. Images shown are repre-
sentative of at least three experiments.
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apoptosis, as compared to cells cultured continuously at 2% O
2

(Fig. 4 and Supplemental Fig. S3). Supplementation with
recombinant HBEGF attenuated the increase in apoptosis. To
identify the pathways utilized by HBEGF to inhibit apoptosis,
cells were cultured with pharmacological inhibitors of PIK3,
MEK, MAPK14, JNK, or their inactive structural analogues
(Table 1). Inhibition of MAPK14 but not the other kinases
blocked the cytoprotective effects of HBEGF during H/R
injury (Fig. 4). The inactive structural analogue of the
MAPK14 inhibitor had no effect. Using the same set of
inhibitors, we found that the MAPK14 pathway is also required
for cytotrophoblast survival at 2% O

2
(Supplemental Fig. S4),

having previously found that apoptosis is specifically prevent-
ed by autocrine HBEGF signaling during hypoxia [18].
Therefore, HBEGF signaling through the MAPK14 pathway
appears to abrogate trophoblast apoptosis induced by H/R
injury and hypoxia.

Hypoxia Increases Synthesis of HBEGF Through Autocrine
Induction of MAPK14, ERK, or JNK

HBEGF cellular and secreted protein levels are significantly
increased in cytotrophoblast cells after 4 h of culture at 2% O

2
[18], but the downstream pathways responsible for its
upregulation have not been identified. Using the HBEGF-
specific antagonist CRM197, it was confirmed by immunohis-
tochemical staining of HBEGF that HBEGF signaling is
required for its upregulation during exposure to hypoxia (Fig.
5). Individual inhibitors of downstream signaling pathways did
not alter the increase in HBEGF observed at 2% O

2
(data not

shown), so cytotrophoblast cells were treated with combina-
tions of the inhibitors during hypoxic culture. By treating with
all possible combinations of inhibitors or inactive structural

analogues, it was determined that the three MAPK pathways
but not PIK3 were each capable of mediating the increase in
HBEGF protein levels at 2% O

2
(Fig. 5 and Supplemental Fig.

S5). HBEGF accumulation was prevented only when all three
MAPK inhibitors were simultaneously applied. These findings
were confirmed by quantifying HBEGF concentrations in cell
lysates and using a specific ELISA (Supplemental Table S1).

DISCUSSION

The present investigation demonstrated that HBEGF
transiently activates the MAPK14, JNK, and ERK MAPK
pathways as well as the PIK3/AKT pathway downstream of the
ERBB/HER tyrosine kinases in human cytotrophoblast cells.
Only the MAPK14 pathway appeared to be utilized to prevent
apoptosis induced by oxygen fluctuations. However, it
functioned in combination with the ERK, JNK, and PIK3
pathways to induce trophoblast extravillous differentiation.
HBEGF signaling is required to increase HBEGF protein levels
when O

2
is decreased to 2% [18], and both immunohisto-

chemical and ELISA data indicated that HBEGF upregulation
can be mediated by any one of the three MAPK pathways.
These data confirm prior reports that HBEGF inhibits apoptosis
[18, 19, 24, 43] and promotes differentiation of trophoblast
cells toward a migratory, extravillous phenotype [15, 17, 44].
Moreover, the new findings identify separate downstream
signaling pathways mediated by HBEGF-induced ERBB/HER
activation that are responsible for each functional outcome.

Although HBEGF utilizes different pathways to mediate its
diverse effects in trophoblasts, much remains to be learned
about the downstream effectors that are involved. Several
factors, in addition to HBEGF, that induce trophoblast
migration include the ubiquitin-type plasminogen activator

FIG. 4. Signaling pathways required for
HBEGF inhibition of apoptosis. The apop-
totic indices were calculated in HTR-8/
SVneo (A) or SW.71 (B) cell lines after
exposure to H/R in the absence (striped
bars) or presence (stippled bars) of 1 nM
HBEGF, with kinase inhibitors (black bars)
or the corresponding inactive structural
analogues (white bars), as indicated. Sig-
nificance was determined with reference to
the apoptosis index observed in control
cells cultured continuously at 2% O

2
(dotted line). Values represent the average
6 SEM of at least three experiments; *P ,

0.05.
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(uPA)/uPA receptor (uPAR) system, insulin-like growth factor
(IGF), IGF-binding protein 1 (IGFBP1), hepatocyte growth
factor, and endothelin 1 [45]. The uPA/uPAR system induces
migration in two ways. It activates matrix metalloproteinases to
initiate extracellular matrix degradation and induces intracel-
lular Ca2þ signaling to activate phospholipase C (PLC), PIK3,
and ERK [46]. Metalloproteinases are necessary for the
shedding and secretion of HBEGF [6], which activated PIK3
and ERK in HTR-8SVneo cells, and can induce intracellular
Ca2þ signaling (Jessmon and Armant, unpublished observa-
tion). IGF signaling also utilizes ERK to induce trophoblast
migration, acting through the IGF type 2 receptor [47]. IGFBP1
induces migration by binding the a

5
b

1
integrin, which leads to

activation of focal adhesion kinase and ERK [48]. HBEGF also
affects integrin signaling but through integrin switching rather
than direct ligation [17]. TNF-alpha (TNF) also can induce
integrin switching, with upregulation of integrin a

1
and

downregulation of integrin a
6

[49], as well as increased
expression of vascular integrins (a

v
and b

3
) in an immortalized

trophoblast cell line, TCL1 [50]. Endothelin 1 activates two
pathways: one involving PLC and intracellular Ca2þ signaling
and the other involving ERK [51]. EGF also increases
migratory activity in both HTR-8/SVneo cells [17, 52, 53]
and freshly isolated first-trimester human cytotrophoblasts [20]
through the coordinated activation of PIK3/AKT and ERK
pathways [52]. Signaling through the PIK3/AKT pathway
requires p70S6K and MTOR activation but increases migration
only if the ERK pathway is simultaneously activated [52]. It
remains to be ascertained whether EGF and HBEGF operate
through the same intracellular signaling pathways in first-
trimester cytotrophoblast cells. In the human extravillous
cytotrophoblast cell line, SGHPL-4, EGF stimulates cell
motility through the PIK3/AKT, MAPK14, and ERK pathways
[54]. Interestingly, blocking the MAPK14 pathway with
SB203580 also inhibited activation of AKT, suggesting that
the pathways cross talk [54]. In contrast to EGF, the present
study found that the PIK3, MAPK14, ERK, and JNK pathways
mediated HBEGF induction of trophoblast migration without
cross talk. Useful insights would be gained by identifying

potential downstream effectors common to these four path-
ways.

Several intermediates have been implicated in the regulation
of trophoblast apoptosis. In contrast to our finding that
MAPK14 mediates the cytoprotective activity of HBEGF, it
has been reported that H/R induces apoptosis through
MAPK14 activation of the JNK pathway in trophoblasts from
term villous explants [55]. It was recently discovered that H/R
activates ASK1, leading to activation of both MAPK14 and
JNK [56]. This supports the notion that first- and third-
trimester trophoblast cells engage different signaling mecha-
nisms in response to oxidative stress. In another study, JNK
was responsible for inducing apoptosis in human first-trimester
placental trophoblasts exposed to hyperosmolar stress [57]. In
agreement, we have observed activation of JNK by H/R in the
same cell line.

Currently, only a few antiapoptotic factors are known in
trophoblasts. When exposed to reactive oxygen species (H

2
O

2
),

BeWo cells undergo apoptosis, concomitant with an increase in
the tumor suppressor gene, TP53, and a decrease in its
inhibitor, MDM2 [58]. Interestingly, MDM2 is expressed in
trophoblasts throughout early gestation but disappears from
cytotrophoblast cells by the third trimester [59, 60]. Cytotro-
phoblast cells also express nuclear TP53 more strongly in the
first trimester than at term [61, 62]. Taken together, it is likely
that MDM2 suppresses the proapoptotic influence of TP53 in
first-trimester trophoblasts, while TP53 becomes prominent
late in gestation. Indeed, trophoblast apoptosis is relatively low
in the first trimester, even in the face of oxidative stress, but
increases toward term as trophoblast cells become less tolerant
to changes in oxygen [22, 24]. Therefore, MDM2 is a potential
intermediate in the antiapoptotic pathway downstream of
MAPK14 signaling.

In addition to the EGF signaling system component
HBEGF, EGF is cytoprotective for trophoblasts. It can inhibit
apoptosis in term placental explants [63] and isolated term
cytotrophoblasts [22] through the PIK3/AKT pathway [63].
Studies suggest that EGF does not utilize BCL2 to block
cytokine-induced apoptosis in term cytotrophoblasts [64] but
may work by decreasing the amount of ceramide produced

FIG. 5. Signaling pathways required for
increased synthesis of HBEGF during hyp-
oxia. HTR-8/SVneo (A) or SW.71 (B) cells
were labeled with an antibody against
HBEGF after culturing at 20% (gray bars) or
2% O

2
(black bars) in the presence of kinase

inhibitors or their inactive structural ana-
logues (inactive analogues), as indicated by
their target pathway. The HBEGF-specific
antagonist, CRM197, was also used to block
HBEGF signaling. All possible combinations
of inhibitors or their inactive structural
analogues were assessed, but only the most
relevant combinations are shown here.
Image analysis was used to quantify the
relative stain intensity, which is shown in
arbitrary units on the horizontal axis. Values
represent the average 6 SEM of at least
three experiments; *P , 0.05.
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during a proapoptotic signaling event [65]. EGF can activate
PIK3 ERK, JNK, and sphingosine kinase 1 (SPHK1) in these
cells, all of which are required subsequently to inhibit
apoptosis [23, 66]. Interestingly, PIK3 and ERK are needed
to block apoptosis [23], and the activation of SPHK1 is
partially downstream of PIK3 [66]. EGF does activate
MAPK14, but, in contrast to our findings, this pathway is
not involved in the cytoprotective effects of EGF or the
apoptotic pathway induced by cytokines [66]. This could
indicate a difference between pathways activated by EGF and
HBEGF but more likely reflects another difference between
term and first-trimester trophoblasts. However, EGF increases
proliferation of cytotrophoblasts in term villous explants, as
assessed by MKI67 immunostaining [63], while HBEGF is a
weak mitogen for first-trimester cytotrophoblasts [17] and term
trophoblast cells [24]. Although EGF is cytoprotective, it is not
upregulated with HBEGF in first-trimester trophoblast cells in
response to hypoxia and thus is less likely to be part of a
cytoprotective mechanism during early gestation [18].

Previous work demonstrated that the upregulation of
HBEGF in first-trimester cytotrophoblast cells cultured at
low oxygen is unique among the EGF ligand family [18]. It
should be noted that this increase in protein is not accompanied
by any change in its mRNA, indicating that HBEGF is
posttranscriptionally regulated by oxygen. The upregulation of
HBEGF protein during hypoxia is downstream of ERBB/HER
tyrosine kinase signaling and metalloproteolytic shedding of
HBEGF from the cell surface, suggesting that newly secreted
HBEGF activates its own translation through autocrine
signaling. The present study confirmed that the HBEGF-
specific antagonist CRM197 blocks upregulation of HBEGF
and further indicated that this positive feedback loop can utilize
any one of the three major MAPK pathways but not PIK3.
While this is the first report that HBEGF is posttranscription-
ally regulated through MAPK signaling during hypoxia, other
gene products are similarly regulated downstream of MAPK.
For example, MAPK14 enhances translation of interleukin-8 in
airway epithelial cells [67], activates translation of TNF in
Kupffer cells and macrophages [68, 69], and stabilizes mRNA
for interleukin 6 [70] and CCAAT enhancer binding protein-d
[71]. The JNK pathway is involved in the posttranscriptional
regulation of TNF [72] and angiopoietin 2 [73]. The ERK and
PIK3 pathways are both involved in translation of the Naþ/K

þ

exchanger 1 [74] in cervical cancer cells and cyclooxygenase 2
in ovarian cancer cells [75]. In addition, microRNA (miRNA)
is well known to regulate the translation and stability of mRNA
in a gene-specific fashion [76] and has been shown to vary in
HTR-8/SVneo cells in response to changing oxygen concen-
tration [77]. The potential role of miRNA in the translational
regulation of HBEGF by oxygen warrants future exploration.

This investigation has identified several intracellular
signaling pathways activated by HBEGF in first-trimester
trophoblast cells and has linked them to its numerous
physiological effects. Different pathways are utilized by
HBEGF to induce extravillous trophoblast differentiation,
block apoptosis, and autoregulate HBEGF protein levels. This
information provides a foundation for delineating the intracel-
lular circuitry and transcriptional activity linking HBEGF
signaling through its cognate receptors to physiological
outcomes necessary for trophoblast function during implanta-
tion and placentation in humans.
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