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Figure 1: Volumetric capture results of various challenging scenarios using Function4D.

Abstract

Human volumetric capture is a long-standing topic in

computer vision and computer graphics. Although high-

quality results can be achieved using sophisticated off-line

systems, real-time human volumetric capture of complex

scenarios, especially using light-weight setups, remains

challenging. In this paper, we propose a human volumet-

ric capture method that combines temporal volumetric fu-

sion and deep implicit functions. To achieve high-quality

and temporal-continuous reconstruction, we propose dy-

namic sliding fusion to fuse neighboring depth observa-

tions together with topology consistency. Moreover, for de-

tailed and complete surface generation, we propose detail-

preserving deep implicit functions for RGBD input which

can not only preserve the geometric details on the depth

inputs but also generate more plausible texturing results.

Results and experiments show that our method outperforms

existing methods in terms of view sparsity, generalization

capacity, reconstruction quality, and run-time efficiency.

1. Introduction

Real-time volumetric capture of human-centric scenar-

ios is the key to a large number of applications ranging

from telecommunications, education, entertainment, and so

on. And the underlying technique, volumetric capture, is

a challenging and long-standing problem in both computer

vision and computer graphics due to the complex shapes,

fast motions, and changing topologies (e.g., human-object

manipulations and multi-person interactions) that need to

be faithfully reconstructed. Although high-end volumetric

capture systems [4, 13, 25, 5, 27, 36] based on dense camera

rigs (up to 100 cameras [8]) and custom-designed lighting

conditions [47, 14] can achieve high-quality reconstruction,

they all suffer from complicated system setups and are lim-

ited to professional studio usage.

In contrast, light-weight volumetric/performance capture

systems are more practical and attractive. Given a pre-

scanned template, [22, 59, 15] track dense surface de-

formations from single-view RGB input [17, 18]. How-

ever, the prerequisite of a fixed-topology template restricts

their applications for general volumetric capture. In 2015,

DynamicFusion [33] proposed the first template-free and

single-view dynamic 3D reconstruction system. The fol-

lowing works [53, 54, 51, 42] further improve the recon-

struction quality for human performance capture by incor-

porating semantic body priors. However, it remains chal-

lenging for them to handle large topological changes like

dressing or taking-off clothes. Recently, a line of research

[32, 37, 38, 23] leverages deep implicit functions for tex-

tured 3D human reconstruction only from a single RGB

image. However, they still suffer from off-line reconstruc-

tion performance [38, 37] or over-smoothed, temporally

discontinuous results [23]. State-of-the-art real-time volu-

metric capture systems are volumetric fusion methods like

Fusion4D [10] and Motion2Fusion [9]. But both of them

rely on custom-designed high-quality depth sensors (up to

15746



120 fps and 1k resolution) and multiple (up to 9) high-end

GPUs, which is infeasible for consumer usage.

In this paper, we propose Function4D, a volumetric cap-

ture system using very sparse (as sparse as 3) consumer

RGBD sensors. Compared with existing systems, our sys-

tem is able to handle various challenging scenarios, in-

cluding human-object manipulations, dressing or taking off

clothes, fast motions and even multi-person interactions, as

shown in Fig. 1.

Our key observations are: To generate complete and tem-

poral consistent results, current volumetric fusion methods

have to fuse as much temporal depth observations as pos-

sible. This results in heavy dependency on accurate and

long-term non-rigid tracking, which is especially challeng-

ing under severe topology changes and large occlusions. On

the contrary, deep implicit functions are good at complet-

ing surfaces, but they cannot recover detailed and temporal

continuous results due to the insufficient usage of depth in-

formation and severe noise from consumer RGBD sensors.

To overcome all the limitations above, we propose a

novel volumetric capture framework that organically com-

bines volumetric fusion with deep implicit functions. By

introducing dynamic sliding fusion, we re-design the vol-

umetric fusion pipeline to restrict tracking and fusion in a

sliding window and finally got noise-eliminated, topology-

consistent, and temporally-continuous volumetric fusion re-

sults. Based on the sliding fusion results, we propose detail-

preserving deep implicit functions for final surface recon-

struction to eliminate the heavy dependency on long-term

tracking. Moreover, by encoding truncated projective SDF

(PSDF) values explicitly and incorporating attention mech-

anism into the multi-view feature aggregation stage, our

networks not only achieve detailed reconstruction results

but also orders of magnitude faster than existing methods.

Our contributions can be summarized as:

• The first real-time volumetric capture system which com-

bines volumetric fusion with deep implicit functions us-

ing very sparse consumer RGBD sensors.

• Dynamic Sliding Fusion for generating noise-eliminated

and topology consistent volumetric fusion results.

• Detail-preserving Implicit Functions specifically de-

signed for sufficient utilization of RGBD information to

generate detailed reconstruction results.

• The training and evaluation dataset, which contains 500

high-resolution scans of various poses and clothes, will

be publicly available to stimulate future research.

2. Related Work

In the following, we focus on 3D human volumet-

ric/performance capture and classify existing methods into

4 categories according to their underlying techniques.

Volumetric capture from multi-view stereo. Multi-view

volumetric capture is an active research area in the computer

vision and graphics community. Previous works use multi-

view images for human model reconstruction [20, 41, 25].

Shape cues like silhouette, stereo, shading, and cloth priors

have been integrated to improve reconstruction/rendering

performance [41, 25, 49, 48, 47, 4, 31, 36, 50]. State-of-the-

art methods build extremely sophisticated systems where

up to 100 cameras [8] and even custom-designed gradient

lighting [14] for high-quality volumetric capture. In partic-

ular, the methods by [8] and [14] first perform multi-view

stereo for the point cloud generation, followed by mesh

construction, simplification, tracking, and post-processing

steps such as UV mapping. Although the results are com-

pelling, the reliance on well-controlled multi-camera stu-

dios and a huge amount of computational resources prohibit

them from being used in living spaces.

Template-based Performance Capture. For perfor-

mance capture, some of the previous works leverage pre-

scanned templates and exploit multi-view geometry to track

the motion of the templates. For instance, the methods

in [46, 13, 5] adopted a template with an embedded skeleton

driven by multi-view silhouettes and temporal feature con-

straints. Their methods are then extended to handle mul-

tiple interacting characters in [27, 26]. Besides templates

with an embedded skeleton, some works adopted non-rigid

deformation for template motion tracking. Li et,al [22] uti-

lized embedded deformation graph in [43] to parameter-

ize the non-rigid deformations of the pre-scanned template.

Guo et,al. [15] adopted an ℓ0 norm constraint to generate

articulated motions for bodies and faces without explicitly

constructing a skeleton. Zollhöfer et, al. [59] took advan-

tage of GPU to parallelize the non-rigid registration algo-

rithm and achieved real-time performance of general non-

rigid tracking. Recently, capturing 3D dense human body

deformation with coarse-to-fine registration from a single

RGB camera has been enabled [52] and improved for real-

time performance [17]. DeepCap [18] introduced a deep

learning method that jointly infers the articulated and non-

rigid 3D deformation parameters in a single feed-forward

pass. Although template-based approaches require less in-

put than multi-view stereo methods, they are incapable of

handling topological changes due to the prerequisite of a

template with fixed topology.

Volumetric Fusion for Dynamic 3D Reconstruction. To

get rid of template priors and realize convenient deploy-

ment, researchers turn to use one or sparse depth sensors for

3D reconstruction. In 2015, DynamicFusion [33] proposed

the first template-free, single-view, real-time dynamic 3D

reconstruction system, which integrates multiple frames

into a canonical model to reconstruct a complete surface

model. However, it only handles controlled and relatively

slow motions due to the challenges of real-time non-rigid

tracking. In order to improve the robustness of Dynam-
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Figure 2: Overview. We focusing on geometry reconstruction in this figure. For color inference please refer to Fig.5.

icFusion, the following works incorporated killing/sobolev

constraints [39, 40], articulated priors [21], skeleton track-

ing [53], parametric body models [54], sparse inertial mea-

surements [55], data-driven prior [42] or learned correspon-

dences [3] into the non-rigid fusion pipeline. However,

all of these methods are prone to tracking failure in invis-

ible areas, which is an inherent drawback of single-view

systems. To overcome this limitation, Fusion4D [10] and

Motion2fusion [9] focused on real-time multi-view setups

using high-end custom-design sensors, with the notion of

key volume updating and learning-based surface matching.

Even though the pipelines were carefully designed in [10]

and [9], they still suffer from incomplete and noisy recon-

structions when severe topological changes occur especially

under very sparse system setups.

Learning-based 3D Human Reconstruction. Fueled by

the rapid developments in neural 3D representations(e.g.,

[34, 35, 6, 29] etc.), a lot of data-driven methods for 3D

human reconstruction have been proposed in recent years.

Methods in [58, 1] proposed to deform a parametric body

model to fit the image observations including keypoints,

silhouettes, and shading. DeepHuman [57] combined the

parametric body model with a coarse-scale volumetric re-

construction network to reconstruct 3D human models from

a single RGB image. Some methods infer human shapes

on 2D image domains using multi-view silhouettes [32]

or front-back depth pairs [12]. PIFu [37] proposed to

regress an implicit function using pixel-aligned image fea-

tures. Unlike voxel-based methods, PIFu is able to recon-

struct high-resolution results thanks to the compactness of

the implicit representations. PIFuHD [38] extended PIFu

to capture more local details. However, both PIFu [37]

and PIFuHD [38] fail to reconstruct plausible models in

cases of challenging poses and self-occlusions. PaMIR [56]

resolved this challenge by using the SMPL model as a

prior but suffers from run-time inefficiency since it requires

a post-processing optimization step. IFNet [7] and IP-

Net [2] can recover impressive 3D humans from partial

point clouds, but the dependency on multi-scale 3D con-

volutions and parametric body models block the realization

of real-time reconstruction performance.

3. Overview

As shown in Fig. 2, the proposed volumetric capture

pipeline mainly contains 2 steps: Dynamic Sliding Fusion

and Deep Implicit Surface Reconstruction. Given a group

of synchronized multi-view RGBD inputs, we first perform

dynamic sliding fusion by fusing its neighboring frames to

generate noise-eliminated and temporal-continuous fusion

results. After that, we re-render multi-view RGBD images

using the sliding fusion results in the original viewpoints.

Finally, in the deep implicit surface reconstruction step, we

propose detail-preserving implicit functions (which consists

of multi-view image encoders, a feature aggregation mod-

ule, and an SDF/RGB decoder) for generating detailed and

complete reconstruction results.

4. Dynamic Sliding Fusion (DSF)

Different from previous volumetric fusion methods, the

proposed DSF method aims at augmenting current obser-

vations but not completing surfaces. So we re-design the

fusion pipeline to make sure we can get topologically con-

sistent and noise-eliminated results for current observations.

The proposed DSF mainly contains 3 steps: topology-

aware node graph initialization, non-rigid surface tracking,

and observation-consistent truncated SDF (TSDF) fusion.

To eliminate the heavy dependency on long-term tracking,

instead of fusing all frames as in previous methods, we only

perform fusion in a sliding window in DSF. Specifically, we

allow a 1-frame delay for the reconstruction pipeline and

fuse the current frame (indexed by t) only with its preced-
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Figure 3: Topology-aware node graph initialization. (a) and

(b) are the preceding and the current frame, respectively.

(c) is the overlay of the current frame and the warped node

graph of the preceding frame; erroneous nodes can be found

around the pillow and arms where large topological changes

occur. (d), (e) and (f) are the cleared node graph, the addi-

tional nodes (green) for newly observed surfaces, and the

final node graph for the current frame, respectively.

ing frame (t-1) as well as its succeeding frame (t+1) to min-

imize the topological changes and tracking error accumula-

tion. Note that we only need to perform non-rigid surface

tracking for the succeeding frame since the deformation be-

tween the current frame and the preceding frame has already

been tracked. Regarding the TSDF fusion stage, we propose

observation-consistent TSDF fusion to fuse multi-view ob-

servations of frame t+1 into frame t.

4.1. Topology­aware Node Graph Initialization

Previous fusion methods initialize the embedded defor-

mation graph (ED graph) [43] in the canonical frame [33].

However, such an ED graph cannot well describe the topo-

logical changes in live frames. Different from previous

methods, we have to initialize the ED graph exactly for

the current frame to guarantee that the topology of the node

graph is consistent with the current observations. However,

it is inefficient to initialize the node graphs from scratch for

every frame because of the complexity of node selection,

graph connection, and volume KNN-field calculation. To

overcome this limitation, we propose topology-aware node

graph initialization, which can not only leverage the node

graph of the previous frame for fast initialization but also

has the ability to generate a topologically-consistent node

graph for the current observations.

As shown in Fig. 3, we first initialize the current node

graph using the live node graph from the preceding frame.

This is achieved by warping the node graph of the preceding

frame to the current frame directly. Due to tracking errors

and topological changes, the live node graph may not be

well aligned with current observations (Fig. 3(c)). So we

clear those nodes that are located far from current observa-

tions by constraining their TSDF values in the current TSDF

volume (Fig. 3(d)). Specifically, if the magnitude of the nor-

malized TSDF value corresponding to a node is greater than

δt, we suppose that it is relatively far from the observations

Figure 4: Evaluation of dynamic sliding fusion. From (a) to

(d) are multi-view RGB references and depth masks, multi-

view depth input rendered in a side viewpoint, results with-

out and with dynamic sliding fusion, respectively.

and we delete this node to maintain the current mesh topol-

ogy. Finally, considering that there may still exist newly

observed surfaces that are not covered by the cleared node

graph, we further refine it based on the current observations

by sampling additional nodes (Fig. 3(e)) as in DynamicFu-

sion [33] to make sure that all of the surfaces can be covered

by the final node graph (Fig. 3(f)).

4.2. Non­rigid Surface Tracking

For non-rigid surface registration, we follow previ-

ous methods to search projective point-to-plane correspon-

dences between the surface at frame t and the multi-view

depth observations at frame t+1. The definition of the non-

rigid tracking energy is:

Etracking = λdataEdata + λregEreg, (1)

where Edata and Ereg are the energies of data term and reg-

ularization term respectively. The data term measures the

fitting error between the deformed surface and the depth ob-

servations, while the regularization term enforces local as-

rigid-as-possible surface deformations. A Gauss-Newton

solver with Preconditioned Conjugate Gradient algorithm

(PCG) is used to solve this non-linear optimization problem

efficiently on GPU. Please refer to [33] for more details.

4.3. Observation­consistent TSDF Fusion

After non-rigid surface tracking, we warp the volume of

frame t to the depth observations at frame t+1 for TSDF

fusion. Since we are focusing on augmenting the current

observations but not completing surfaces, we propose an

aggressive TSDF fusion strategy to eliminate the impact of

tracking errors and severe topological changes. Specifically,

in our fusion method, a voxel in the volume of frame t will

update its TSDF value if and only if: i) the tracking er-

ror corresponding to this voxel is lower than a threshold δe,

and ii) there exist valid voxels (voxels that in the truncated

band of current observations) located around this voxel (the

searching radius is set to 3 in our implementation).
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Calculating the tracking error for a specific voxel is not

straightforward since non-rigid tracking is established be-

tween the reference surface and the depth maps [9]. So we

first calculate the tracking error for each node on the ED

graph and then calculate the tracking error for each voxel by

interpolation. Suppose C = (vi, pi) is the correspondence

set after the last iteration of non-rigid tracking, where vi is

the ith vertex on the reference surface and pi is the corre-

sponding point of vi on live depth inputs. The tracking error

corresponding to the jth node can be calculated as:

e(nj) =

∑
vi∈Cj

r(v′i, pi)∑
vi∈Cj

w(vi, nj) + ǫ
, (2)

where r(v′i, pi) = ‖pnT
i · (v′i − pi)‖

2
2 is the residue of vi

after non-rigid tracking, v′i the warped position of vi, pni

the surface normal of pi, Cj a subset of C which includes

all the reference vertices controlled by node j, w(vi, nj) =
exp(−‖vi − nj‖

2
2/(2d

2)) the blending weight of node j on

vi, in which d is the influence radius of nj and ǫ = 1e − 6
is used to avoid zero division.

For a voxel xk, its tracking error is then interpolated

using its K-Nearest-Neighbors on the node graph N (xk)
(where K = 4) as:

e(xk) =
∑

j∈N (xk)

w(xk, nj) · e(nj). (3)

5. Deep Implicit Surface Reconstruction

After dynamic sliding fusion, we can get noise-

eliminated surfaces. However, the surfaces are by no means

complete due to the very sparse inputs and occlusions. The

goal of the deep implicit surface reconstruction step is to

generate complete and detailed surface reconstruction re-

sults using deep implicit functions. Since we have al-

ready fused a 3D TSDF volume in dynamic sliding fu-

sion, a straightforward idea is to use a 3D convolution-

based encoder-decoder network to “inpaint” the volume.

And the methods in [7, 2] have achieved complete 3D

surface reconstruction results by proposing multi-scale 3D

convolution networks. However, the dependency on inef-

ficient 3D convolution limits their applications in real-time

systems, and the huge memory consumption restricts them

from generating high-resolution results. In contrast, real-

time implicit surface reconstruction can be achieved using

2D pixel-aligned local features combined with positional

encoding as shown in [23]. However, it was designed

for using only RGB images and can only generate over-

smoothed results. Finally, regarding the RGBD-based im-

plicit functions proposed in [24], we can see that simply

adding depth input as an additional input channel still can-

not preserve the geometric details on the depth inputs.

To resolve the limitations above, we propose a new deep

implicit surface reconstruction method that is specifically

Figure 5: Network structures of GeoNet and ColorNet.

designed for RGBD input. The implicit surface reconstruc-

tion contains two steps: First, we re-render the multi-view

RGBD images from the fused surface after dynamic slid-

ing fusion. And then, given multi-view RGBD inputs, we

propose detail-preserving implicit functions to reconstruct

a complete surface with texture for the current frame.

5.1. Multi­view RGBD Re­rendering

In this step, we re-render multi-view RGBD images from

the fused surfaces using input camera viewpoints. The re-

rendered RGBD images contain much less noise than the

original inputs thanks to the dynamic sliding fusion step.

Note that another benefit of multi-view RGBD re-rendering

is that we can manually fix the perspective projection pa-

rameters for all the rendered RGBD images to make sure

they are consistent with the projection parameters that were

used for rendering the training dataset.

5.2. Detail­preserving Implicit Functions

We propose two networks, GeoNet and ColorNet, for

inferring detailed and complete geometry with color from

multi-view RGBD images. As shown in Fig. 5, GeoNet

and ColorNet share similar network architectures. Different

from [37, 23], we explicitly calculate the truncated PSDF

feature in GeoNet for preserving geometric details on depth

maps. Moreover, we use a multi-head transformer network

for multi-view feature aggregation in ColorNet to gener-

ate more plausible color inference results. Empirically, we

found that using only depth images is enough for training

the GeoNet, so we eliminate the RGB information for ge-

ometry reconstruction for efficient reconstruction.
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Figure 6: Illustration of the truncated PSDF feature. The

green line represents the depth input. Note that we visual-

ize the absolute of PSDF values here for simplicity, and the

darker the grid, the larger the absolute PSDF values.

Figure 7: Evaluation of the truncated PSDF. (a) is single-

view depth input, (b,c,d) are results generated without

PSDF, with PSDF and with truncated PSDF, respectively.

5.2.1 Truncated PSDF Feature

The feature used for decoding occupancy values in pixel-

aligned implicit functions can be decomposed into a 2D im-

age feature and a positional encoding (z value in [37] or

the one-hot mapping in [23]). The previous method [24]

augments the 2D image feature by enhancing the 2D image

feature using RGBD images as input. Although this can

successfully guide the network to resolve the z-ambiguity

of using only RGB images, it does not preserves the geo-

metric details on the depth inputs. This is due to the fact

that the variation of the geometric details on depth inputs is

too subtle (when compared with the global range of depth

inputs) for the networks to “sense” by 2D convolutions. To

fully utilize the depth information, we propose to use trun-

cated PSDF values as an additional feature dimension. The

truncated PSDF value is calculated by:

f (q) = T(q.z −D(Π(q))), (4)

where q is the coordinate of the query point, Π(·) is the

perspective projection function, D(·) is a bi-linear sampling

function used for fetching depth values on the depth image,

and T (·) is used to truncate the PSDF values in [−δp, δp].
As shown in Fig. 6, the truncated PSDF value is a strong

signal corresponding to the observed depth inputs. More-

over, it also eliminates the ambiguities of using global depth

values. Fig. 7(b) demonstrates that without using the PSDF

values, we can only get over-smoothed results even for the

visible regions with detailed observations. Moreover, with-

out truncation, the depth variations of the visible regions

(the arms on top of the body) will be misleadingly trans-

ferred to the invisible regions (Fig. 6) and finally leads to

ghost artifacts (the ghost arm in the red circle of Fig. 7(c)).

5.2.2 Multi-view Feature Aggregation

Although PIFu [37] has demonstrated multi-view recon-

struction results by averaging the intermediate feature of the

SDF/RGB decoders, we argue that the average pooling op-

eration has limited capacity and cannot capture the differ-

ence in inference confidence between different viewpoints.

For color inference, the network should have the ability to

“sense” the geometric structure and also the visibility in dif-

ferent viewpoints for a query point.

To fulfill this goal, we propose to leverage the attention

mechanism in [45] for multi-view feature aggregation in

ColorNet. Compared with direct averaging, the attention

mechanism has the advantage of incorporating the inter-

feature correlations between different viewpoints, which is

necessary for multi-view feature aggregation. Intuitively,

for a query point that is visible in view0 but fully oc-

cluded in other views, the feature from the view0 should

play a leading role in the final decoding stage. As shown

in Fig. 10, direct averaging of the multi-view features may

lead to erroneous texturing results. On the contrary, using

attention-based feature aggregation can enable more effec-

tive feature merging and thus generate more plausible color

inference results. In practice, we follow [45] to use multi-

head self-attention with 8 heads and 2 layers without posi-

tional encoding. The input is the concatenation of multi-

view geometry features, color features, and RGB values

as in Fig. 5. And we fuse the output multi-head features

through a two layers FC and weighted summation. More-

over, we found that the attention mechanism has limited im-

provement for geometry reconstruction since the visibility

has been encoded by the truncated PSDF feature in GeoNet.

6. Results

The results of our system are shown in Fig. 1 and Fig. 8.

Note that the temporal-continuous results are reconstructed

by our system under various challenging scenarios, includ-

ing severe topological changes, human-object manipula-

tions, and multi-person interactions.

6.1. Real­time Implementation

In order to achieve real-time performance, we imple-

ment our run-time pipeline fully on GPU. Specifically, for

deep implicit surface reconstruction, we use TensorRT with

mixed precision for fast inference. After that, the major

efficiency bottleneck of geometry inference lies in the eval-

uation of an excessive number of voxels when evaluating

every voxel in the volume. Since we already have multi-

view depth maps as input, we can leverage the depth infor-
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Figure 8: Temporal reconstruction results of a fast dancing girl. Our system can generate temporally-continuous and high-

quality reconstruction results under challenging deformations (of the skirt) and severe topological changes (of the hair).

mation directly for acceleration without using the surface

localization method in [23]. Specifically, we first use the

depth images to filter out empty voxels. Then we follow the

octree-based reconstruction algorithm [30] to perform in-

ference for the rest voxels in a coarse-to-fine manner, which

starts from a resolution of 643 to the final resolution of 2563.

To further improve the run-time efficiency, we simplify the

network architectures as follows. For the image encoders,

we follow [23] and use HRNetV2-W18-Small-v2 [44] as

the backbone, setting its output resolution to 64 × 64 and

channel dimension to 32. For the SDF/color decoders, we

use MLPs with skip connections and the hidden neurons as

(128, 128, 128, 128, 128). For dynamic sliding fusion, we

set δt = 0.5, δe = 0.1 and δp = 0.01m for all the cases. We

refer readers to [19, 16] for real-time implementation de-

tails. For multi-view RGBD re-rendering, we render multi-

view RGBD images in a single render pass with original

color images as textures to improve efficiency. Finally, our

system achieves reconstruction at 25fps with 21ms for dy-

namic sliding fusion, 17ms for deep implicit surface recon-

struction (using 3 viewpoints) and 2ms for surface extrac-

tion using Marching-Cubes Algorithm [28].

6.2. Network Training Details

We use 500 high-quality scans for training GeoNet

and ColorNet, which contains various poses, clothes and

human-object interactions. We rotate each scan around the

yaw axis, apply random shifts and render 60 views of the

scan with image resolution of 512×512. For color image

rendering, we use the PRT-based rendering as in [37]. For

depth rendering, we first render ground truth depth maps

and then synthesis the sensor noises of TOF depth sensors

on top of the depth maps according to [11]. Note that we

render all the RGBD images using perspective projection

to keep consistent with real world sensors. During network

training, gradient-based adaptive sampling (in which we use

discrete gaussian curvature and rgb gradient as reference for

query point sampling in GeoNet and ColorNet respectively)

is used for more effective sampling around detailed regions.

We randomly select 3 views from the rendered 60 views of

a subject for multi-view training.

Figure 9: Qualitative comparison. For each subject, from

left to right are results of our method, Motion2Fusion [9]

and Multi-view PIFu [37], respectively.

Method P2S×10−3↓ Chamfer×10−3↓ Normal-Consis↑

Multi-view PIFU [37] 4.594 4.657 0.862
IPNet [2] 3.935 3.858 0.902
GeoNet 1.678 1.719 0.941

Table 1: Quantitative comparison of geometry reconstruc-

tion with multi-view PIFU and IPNet.

6.3. Comparisons

Qualitative Comparison The qualitative comparison with

Motion2Fusion [9] and Multi-view PIFu [37] is shown in

Fig. 9. Given very sparse and low frame rate depth in-

puts from consumer RGBD sensors, Motion2Fusion gener-

ates noisy results under severe topological changing regions

and fast motions due to the deteriorated non-rigid tracking

performance. Moreover, the lack of depth information in

Multi-view PIFu leads to over-smoothed results.

Quantitative Comparison We compare with 2 state-

of-the-art deep implicit surface reconstruction methods,

Multi-view PIFu [37](with RGB images as input) and IP-
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Method P2S×10−3↓ Chamfer×10−3↓ Normal-Consis↑

w/o PSDF w.RGBD 2.36 2.458 0.916
w/o PSDF w.depth-only 2.264 2.359 0.918
w. PSDF w.depth-only 1.678 1.719 0.941

Table 2: Ablation study on the truncated PSDF feature.

Net [2](with voxelized point clouds as input). We re-

train their networks using our training dataset and perform

the evaluation on a testing dataset that contains 116 high-

quality scans with various poses, clothes, and human-object

interactions. Tab. 1 shows the quantitative comparison re-

sults. We can see that the lack of depth information de-

teriorates the reconstruction accuracy of Multi-view PIFu.

Moreover, even with multi-view depth images as input, the

heavy dependency on SMPL initialization (which is diffi-

cult to get with large poses and human-object interactions)

restricts the IPNet from generating highly accurate results.

Finally, by explicitly encoding depth observations using the

truncated PSDF values, the proposed GeoNet can not only

achieves accurate reconstruction results but also orders of

magnitude faster than IPNet (approximately 80 seconds for

reconstruction). For a detailed description of the compari-

son, please refer to the supplementary material.

6.4. Ablation Studies

Dynamic Sliding Fusion As shown in Fig. 4(a) and (b), the

depth inputs in different views are not consistent with each

other due to the challenging hair motion. This results in

incomplete results (the orange circle). More importantly,

without using dynamic sliding fusion, the result is much

noisy (the red circle). By using dynamic sliding fusion, we

can get more complete and noise-eliminated reconstruction

results as shown in Fig. 4(d). Please refer to the supplemen-

tary video for more clear evaluations.

Truncated PSDF Feature The qualitative evaluation of the

truncated PSDF feature is shown in Fig.7. Tab. 2 also pro-

vides quantitative evaluation results for the networks with

and without using truncated PSDF values. We conduct two

experiments with RGBD images and depth-mask images

as input, respectively. We can see that without using the

truncated PSDF feature, the depth-only model and RGBD

model produces similar results. Benefiting from the trun-

cated PSDF feature, our GeoNet achieves much accurate re-

sults, which demonstrates the effectiveness of our method.

Attention-based Feature Aggregation In Fig. 10, we com-

pare the models without using a multi-view self attention

mechanism for color inference qualitatively. Benefiting

from the multi-view self-attention mechanism, the color in-

ference results becomes much sharper and plausible espe-

cially around observation boundaries. This is because the

self-attention enables dynamic feature aggregation rather

than the simple average-based feature aggregation, which

enforces the MLP-based-decoder to learn how multi-view

features (including geometric features and texture features)

Figure 10: Evaluation of the attention mechanism in Color-

Net. From left to right are: input RGB images, texture re-

sults with (green) and without (red) attention, respectively.

are correlated with each other in the 3D space.

7. Conclusion

In this paper, we propose Function4D, a real-time volu-

metric capture system using very sparse consumer RGBD

sensors. By proposing dynamic sliding fusion for topology

consistent volumetric fusion and detail-preserving deep im-

plicit functions for high-quality surface reconstruction, our

system achieves detailed and temporally-continuous volu-

metric capture even under various extremely challenging

scenarios. We believe that such a light-weight, high-fidelity,

and real-time volumetric capture system will enable many

applications, especially consumer-level holographic com-

munications, on-line education, and gaming, etc.

Limitations and Future Work Although we can preserve

the geometric details in the visible regions, generating ac-

curate and detailed surfaces&textures for the fully occluded

regions remains challenging. This is because current deep

implicit functions are mainly focus on per-frame indepen-

dent reconstruction. Expanding deep implicit functions for

using temporal observations may resolve this problem in

the future. Moreover, specific materials like black hair may

cause the lack of observations of depth sensors and there-

fore severely deteriorate current system, incorporating RGB

information for geometry reconstruction may resolve this

limitation and we leave this as a future work.
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