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Abstract

In this article we are interested in modeling the relatiopdletween a scalak,, and a functional
predictor,X(t). We introduce a highly flexible approach called "Functiofdaptive Model Estimation”
(FAME) which extends generalized linear models (GLM), gatired additive models (GAM) and pro-
jection pursuit regression (PPR) to handle functional joteds. The FAME approach can model any
of the standard exponential family of response distrimgithat are assumed for GLM or GAM while
maintaining the flexibility of PPR. For example standaratdin or logistic regression with functional
predictors, as well as far more complicated models, calydasiapplied using this approach. A func-
tional principal components decomposition of the predifoctions is used to aid visualization of the
relationship betweeK(t) andY. We also show how the FAME procedure can be extended to déal wi
multiple functional and standard finite dimensional préatis, possibly with missing data. The FAME
approach is illustrated on simulated data as well as on thdigtion of arthritis based on bone shape.
We end with a discussion of the relationships between stdrrégression approaches, their extensions
to functional data and FAME.

Some key wordsFunctional predictor; Functional principal componer@eneralized linear models; Generalized
additive models; Projection pursuit regression.

1 Introduction

It is increasingly common to encounter regression probhlemere either the predictor, the response or both
are functional in nature. A majority of the previous work st area involves a functional response. For
instance, Moyeed and Diggle (1994) and Zeger and Diggled)l@®@del the relationship between response,
Y(t), and predictorX(t), both measured over time, using the equation,

Y(t) = ao(t) + Bo X (t) +£(t) (1)

whereag(t) is a smooth function df, B, is a fixed but unknown vector of regression coefficients ghyis

a zero mean stationary Gaussian process. Haostval (1998), Wuet al. (1998) and Lin and Ying (2001)
use the varying-coefficient models proposed in Hastie abdhfiani (1993) to extend (1) by allowing the
regression coefficients to vary over time. Fahrmeir and Tu®94) and Liang and Zeger (1986) suggest
an even more general framework where the response is moaeleanember of the exponential family of
distributions.
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Figure 1:Two dimensional images of the intercondylar notch from theekjoint of three skeletons exhumed from St.
Peter’'s Church, Barton-upon-Humber.

We are interested in an alternative situation where theigtaed are functional but the response is
scalar. An example of such a situation is provided in Figurel'hese images come from an excavation
in the north of England that exhumed the skeletons of 200@tsadating from between 1000 and 1500
C.E. (Shepstonet al,, 1999). The plots show two dimensional cross-sectiondinast of the intercondylar
notch from the knee joint on the femur bone of three such iddals. For each joint in the sample an
indicator of osteoarthritis of the knee was recorded. Famgde the first two joints here contained no
evidence of osteoarthritis while the third did. It has beenjectured that certain bone shapes may affect
the biomechanics of the joint and lead to osteoarthritimadeene are interested in whether the shape of the
bone can be used as a predictor of osteoarthritis and if sotyb@of shape provides the strongest evidence.

This type of structure arises in numerous applications. |él@nd Stadtmuller (2004) provide illustra-
tions in astronomy (Haléet al, 2000), DNA expression arrays with repeated measuresr(éital., 2000)
and engineering (Hakt al., 2001). However, there has been limited methodologicakviorthis area.
Hastie and Mallows (1993), Ramsay and Silverman (1997)p@hd 0 and Cardatt al. (2003b) discuss
performing linear regression where the response is a saaththe predictors functional. Ferraty and Vieu
(2002) develop a nonparametric regression procedure.sJanteHastie (2001) and Ferraty and Vieu (2003)
use functional linear discriminant analysis models to quenf classification for categorical responses with
functional predictors. Marx and Eilers (1999), James (2G0®1 Muller and Stadtmuller (2004) suggest
somewhat more general methods which provide extensionsrwdrglized linear models (McCullagh and
Nelder, 1989) to functional predictors. In this article wm&réduce a procedure that facilitates the modeling
of highly non-linear response surfaces on general clagsesponse distributions using functional predic-
tors. For standarg-dimensional predictors, non-linearity can be achievedugh the use of procedures
such as generalized additive models (Hastie and Tibshit®$i0) or, if even more flexibility is required,
through projection pursuit regression (Friedman and lkeie1981). Our approach, which we call “func-
tional adaptive model estimation (FAME)”, combines ch&gstics of projection pursuit regression with
generalized linear and additive models.

In Section 2 we present and motivate the FAME model for dath avsingle functional predictor as well
as providing a fitting algorithm. We also develop asymptotisults under the restriction that the FAME



model can be represented using a finite dimensional basieseTtesults are used to provide confidence
intervals and significance tests for model parameters. r8eggtensions are provided in Section 3. We
first illustrate a procedure for applying the FAME methodplavhere there is measurement error in the
predictors and demonstrate this approach on a simulatedsgat We also provide extensions to multi-
ple functional and finite dimensional covariates and apply mmethod to the femur bone data. Section 4
presents a simulation study which compares the performahttee FAME approach with other possible
methods. Finally, Section 5 provides a discussion of thatimiship of the FAME methodology to other
finite dimensional and functional approaches.

2 Functional adaptive model estimation

In order to motivate our approach we first briefly review gatieed linear models (GLM), generalized
additive models (GAM) and projection pursuit regressioRRP. Generalized linear models provide a flex-
ible framework for regressing response variables from ¥p@rential family of distributions. One models
the relationship between predictaXs= (X1, Xz,...,Xp) and respons® using the link functiong(p) =
Bo + zleijj wherep = E(Y|X). While GLMs cover a wide class of response distributionsy thidl
assume a linear relationship between the predictorgygnd This linearity assumption is relaxed with gen-
eralized additive models using the ligku) = Bo + ZF:l f;(Xj) wheref; is a smooth function estimated as
part of the fitting procedure. GAMs allow for non-linear btitlsadditive relationships between the pre-
dictors andg(p). The additivity of GAM has the advantage that it allows onédentify the effect of each
predictor individually while holding all other predictot®nstant but it significantly restricts the range of
functions that can be fit.

Projection pursuit regression removes the additivity tans by modeling a Gaussian response using

Y=Pot 3 filXTB)+e
k=1

where bothfy and 3, are estimated in the fitting procedure anis arbitrary. PPR has several advantages
over both GLM and GAM. First, it allows one to model a largeasd of functions. For example, GAM
can not model the simple interactigfu) = X3 X, while PPR can. In fact by settinglarge enough one can
model any continuous function. Second, by studying{ie one learns in which directions the variability
of the predictors provide the most information about thpoese. However, because PPR does not utilize a
link function it has less flexibility in terms of responsetdisutions that can be modeled. Roosen and Hastie
(1993) and more recently Lingjaerde and Liestol (1998) negrthis constraint by adding a link of the form

(1) =Bo+ 3 fu(X"By). (2)
k=1

This method is called generalized projection pursuit (GHRe GLM and GAM link functions may both
be considered special cases of (2).



2.1 The FAME Model

The aim of this paper is to extend GPP to data with functiomatligtors using our “functional adaptive
model estimation” procedure. FAME can model non-Gaussapanses with the ease of GLM and GAM,
has the flexibility of PPR to fit non-linear response surfaaed can be applied to functional data. One
possible approach to fitting GPP to such data would be to gathplfunctional predictoiX(t), over a fine
grid of p time points to create a vectot, thus removing the functional aspect of the problem. Howeve
this approach has several potential problems. First, sstates modeling a very high-dimensional vector
of coefficients, which may lead to an extremely unstable fikcdhd, in many applications, individuals
may be measured at different sets of time points and/or hiffieging numbers of observations. For such
data, it is not possible to create finite dimensional predscby simple discretization and so (2) can not be
directly applied. A more successful approach is to replaeesummatiorX B, with its functional analog,
the integral

Zi = / X (1) Bi(t)dit 3)

wheref(t) is a coefficient function giving the weighting placed Xit) at each time. This method has

a couple of advantages over the more ad hoc discretizatiproagh. First, through the use of a smooth

function to estimat@(t), it properly utilizes the inherent correlation betweenrbgdime points, effectively

reducing the high dimensional nature of the data. Seconditiiing smoothing techniques the integral

can be calculated even on sparsely sampled predictors wieedsscretization approach would fail.
Combining (2) and (3) gives the FAME link

r r .
9(H) =Bo+ Y fu(Zi) =Po+ Y fi (/ Xi(t)Bk(t)dt> . (4)
k=1 k=1
Equation 4 extends standard projection pursuit regreseitwo directions by introducing a link function

to allow for non-Gaussian responses and replacing the stiom4' B, with an integral oveiX (t)Bx(t) to
allow for functional predictors. Formally the FAME modelche written as

N Yi6i — b(e)
p(yi; 6,0 = exp( ) (y.,cp)>, (5)
g(k) = BO+ka(Z|k (6)
=1
Zi = /Xi(t)Bk(t)dt, i=1.. N 7)

where (5) is the response distribution, assumed to be a meshtiee exponential family withy = E(Y;|X;)
and thef’'s andy’s are suitably smooth curves. The relationship betweedigi@ and response is speci-
fied through the unobserved latent varialifgs. .., Z, which are linear functions of(t). Note that (5) and
(6) are related through the standard exponential familgtitlep = b/'(8). As with standard PPR the FAME
model can experience confounding of parameters. In péatidix and fy are confounded because identical
values offy(Zy) can be achieved by multiplyinBx by a constant and adjustinfg accordingly. Hence we
restrict

/Bk(t)dtzl K=1,..r ®)



Using (8)Bk(t) can be interpreted as a weighting function on the predidtang given time. In addition,
forr > 1, fy and f; may be confounded. Thus we constrain

COI’(Zik, Zij ) =0 (9)

for all j #k. Equation (9) is analogous to the restriction placed onidpwectors in a principal components
analysis and should have the additional advantage of neguaillinearity between terms.

As specific examples of FAME we consider two of the most comsitrations. First, for a Gaussian
response with identity link the FAME model becomes

Y =Bo+ 3 fi( [XOBOA) +5, & ~N(©.0D),
po 3 (/% 0Bu0aL) +e e~ NO.0f)

a functional analogue of projection pursuit regression.eWthe response is Bernoulli and a logistic link is
used the FAME model reduces to

v~ Berp). log (720 o+ 5 ([ 0pa). (10)

An alternative formulation of FAME can help facilitate inpeetation. Consider the decomposition of
the predictor function into a sum over its principal compureurves,

X (t) = X(t) + izimpma), 1)

wherepp(t) represents thatth principal component curve ardgh, the corresponding weighting for thin
individual. Principal component curves have similar iptetations to their finite dimensional counterparts
with themth component explaining the largest proportion of the \alitgt in the predictors subject to being
orthogonal to the firatn— 1 terms. Combining (7) and (11) we can reformuldfeas

Zik =0+ » CimBym (12)
m=1
whereay = [ X(t)Bk(t)dt is the mean o and Bem = J Bk(t)pm(t)dt. Using this parameterizatioff8y,,
gives the weight placed on tmath principal component curve in constructidg. For example, if =1 and
Bim = 0 for all m> 1 then an individual’s score on the first principal componeatild solely determine
their value forzy and hencey. We explore these two different formulations of FAME funtlire Section 3.

2.2 FAME fitting procedure

In this section we present a fitting algorithm for FAME whistbased on maximizing a penalized likelihood.
In practice we only ever observg(t) at a finite set of time points so the predictors must be estichasing
the observed values. L¥f(t) = B(t)Ty,,

B(t)=B(t)™n, and fi(t) =s(t)" & (13)



whereB(t) ands(t) are both orthogonal finitg-dimensional bases, chosen prior to fitting the model. We
utilize cubic splines. If one assumes that the predictove lheen measured without error, then the estima-
tion can be achieved by interpolating the observations adynas possible, usinB(t). In Section 3.1 we
address the case in which the predictors are measured waih Eor the FAME model given by (5)-(7) the
log likelihood, up to additive constants, is

A [Yiei —b(6)

I (fk7 BO? Bk> (p) = Zl a((p) + C(yi ) (p) (14)

subject tog(k ) = Bo + T i1 fk(Zik)-

To initialize the FAME procedure we employ interpolatingbau splines with minimum integrated
squared second derivative to estimate Xis. This is just one of many bases that could be used. An it-
erative approach is then used to maximize a penalized veddi¢l4). We start by fitting the model with
r = 1. At the first stagef3p and f; are held fixed an@; is estimated. The fit is achieved by maximizing (14)
overn, subject to a penalty terfA([3) to ensure a smooth fit. There are several possible choicd¥ for
A common smoothness penalty involves using

Pu(B) = Mg [ B ()%l (15)

which penalizes large second derivativeg3pf However, in the original basis space tKé& tend to vary
little, if at all, in certain directions meaning that it is jjossible to produce reasonable estimatecdh
those dimensions. Hence it may be beneficial to penglizavay from these directions using

q .
PaB) =g 3 [ (Beltpmt) /sl (16)

wherepy, is themth principal component function of; andsy, is the corresponding standard deviation of
the principal component scord3:(3) imposes a high penalty d’s that have significant variability in the
directions ofX; with little variance. It is interesting to note that (16) tsmilarities to condition 1 in Cardot
et al. (2003b). In this paper we explore both penalty approachés. phrametekg can be selected using
cross-validation and a standard non-linear optimizatiackpge used to maximize the penalized likelihood
overny.

The second stage involves estimatfiygand f; with all other parameters held constant. Notice however,
that with 3; fixed theZzj;’s are also fixed and hend¢® and f; can be estimated using any standard GAM
package. The FAME procedure iterates through these twa stefil the penalized likelihood converges.
Thenfy, f1 and thezj;’s are fixed and the process is repeated forrthe2 model, producing estimates of
Bo, f> and theZ;,’s subject to zero correlation betwegn andZ,. This continues untit reaches the preset
maximum value. This nested structure has the advantageotihatiuce the number of components in the
link function one simply eliminates the redundant value$aind 3 without needing to refit the model.

2.3 Finite Dimensional Asymptotic Theory

In this section we derive asymptotic results for the FAME eladhder the assumptions of equation (13) i.e.
that thef's and f’s can be represented by finite dimensional bases and hemEAME model is finite. Let



£0 = (Bo,N1,---,Ny,01,-..,0 ) denote the true vector of parameters for the FAME model gine(b)-(7).
For notational simplicity we will assum@to be known. However, the theory can easily be extended to the
case whereis also estimated. We denote f,),y the corresponding estimators obtained from the penalized
maximum likelihood fitting procedure. We show, under miladibions, thaﬁN is a consistent estimator for
EO and thatyN (EN — EO) asymptotically has a Gaussian distribution. These reauttshen used to provide
asymptotic confidence intervals f8g(t) and significance levels fdf.

Letl(§) be the likelihood function for the FAME model and

2
=o€ ~ 5

be the corresponding information matrix. In order to prouer@sults we make the following assumptions.

A-1 There exist function$/; such that

b <Yi9i —b(8))

08 05,08\ ag) +C(y"‘p)>

<|V|i(Yi)

WherePEo(% SiMi(Y;) <my) — 1 for somem < o and allg.

A-2 liMy_ e %Ezo(—l”(io)) = limn_eIn/N = | wherel is a positive definite matrix with finite compo-
nents.

A-3 limy_e g Varo(l”(€°) ) = 0 for all j andk.

A-4 There exists aa > 0 andm, < c such that

EEO |:

(A-1) and (A-3) place bounds on the third derivative andasmce of the second derivative of the like-
lihood functions. For all common members of the exponeritialily, they will hold under very general
conditions onfy andX(t). (A-2) requires that the information provided ¥yandX;(t) approaches infinity.
This assumption is standard in any linear models framewack sis GLM. If, for example, the predictors
converged to a constart /N would approach zero and a consistent estimator would net.eKinally,
(A-4) is required to ensure asymptotic normality of the restiors. Again for all standard members of
the exponential family (A-4) will hold under general comalits on fi and f,. Utilizing these assumptions
Theorems 1 and 2 prove asymptotic consistency and nornwlitiie solutions of the FAME likelihood
equations.

Vi—1)  « 0f(Zi)
g(wVar(y) & 08

2+¢€
] cm

foralliandj.

Theorem 1 Assuming (A-1) through (A-3) and (13) hold, asymptoticallyequencéé,\,} of solutions of
the FAME likelihood equations exists and is consistent sminmtingio.

Theorem 2 LetéN be a consistent solution of the FAME likelihood equatiorngrnmassuming (A-1) through
(A-4) and (13) hold,

~

VN(E — 8% = N(O,17%).



Proofs of these results can be found at www-rcf.usc-edarfeth. The proofs utilize standard meth-
ods from maximum likelihood theory with the added complimlthat the observations are not identically

distributed. In practicé will be approximated byn/N = § [z, 1W + DQ] where
1 f1(Zn)y " f5(Zi2)yi T s'(Zi) s' (Zi2) |
f1(Zoy, M@oY H@Zo)f(ZayyT - f1(Zo)ys'(Za)  H(Z)VsT (Z2)
f5(Z)y; f1(Z0)f(Z2ViyT  fZ2)yYT - f3(Z)yisT (Zn)  15(Zi2)ViST (Z2)
S(Z1)  fi(Zn)s(Zo)yT f5(Zi2)s(Za)yT -+ S(Z1)s'(Za)  S(Zin)S(Zi2)
S(Z2)  f1(Z)s(Z2)yi" f53(Zi)s(Zi2)y;T -+ S(Zi2)s'(Z1)  S(Ziz)ST (Zi2)

17)
andyj; = Vij — Jfg E%dtyq for 1< j<g—1. Dg is a block diagonal matrix corresponding to the penalty
terms onBy(t) and fi(t). For example when using; (B), the penalty om, is Q,, = Ag [ B”(t)B"T (t)dt.

Theorem 2 suggests approaches for calculating pointwisédemce intervals ofik(t) and significance
levels onfix. We summarize these results in Corollaries 1 and 2.

Corollary 1 Let ﬁk(t) = BT (t)A,. Then under the assumptions given in Theorem 2, for any fijxed t

P{B0) @1, 2y /BT 020 BO/N < BO) < B + 0%, 00 BTODBO/N} — 10

whereZ, is equal to the block diagonal component_t)% corresponding ta), and® is the standard normal
cdf.

gorollary 2 Let ng be the block diagonal componentl?)‘_flm corresponding t@y wherel_(_nk> is equal to
I with all elements involving), removed. Then under (A-1), (A-3), (A-4), (13) and the nypidtlyesis of no
relationship betweenY and(¥

AT - -~
X2 = N3, 231151 = X5 (18)

Under the null hypothesis that there are exactly r terms enrtiodel
/\T - A
X1 =812 S = XG (19)

Notice that under the null hypothesis of no relationshipMeen response and predictjr= 0 so that the
information matrix given by (17) is non-singular which is iahation of (A-2). In fact it is easily seen that
there is no consistent estimatorf3{t) in this case. However, a small modification of the proof of Giieen 2
shows thafSl will still converge to a normal distribution with the infoation matrix given by the terms in
(17) that correspond By andd; i.e.

1 ST (Zil)
S(Zil) S(Zil)ST (Zil)

*_
I =

The ability to remove the terms involving; from the information matrix can significantly increase the
power of the test. Corollary 2 suggests an iterative appréacchoosing . First fit FAME withr = 1 and



calculate the significance of the first term using (18). Theatged stepwise adding additional terms and
testing significance using (19) until the- 1st term fails the test.

3 Extensions

3.1 FAME with measurement error

In some circumstances it may be more reasonable to assuintaehgredictorsX;(t), have not been ob-
served exactly. For example, one often has measurememntiemuedical experiments. In this case if we
denote the observed values ¥§°S(t) and the measurement error &yt) then

XOP(t) = Xi(t) +a(t), i=1,... N (20)

with X;(t) = B(t)Ty,. We make the standard choice of modeling the error termscht @aserved time as
uncorrelated Gaussian random variables with variarfceHence if theith individual is observed at times
ti1,...,tin, then from (5)-(7) and (20) the log likelihood, up to addita@nstants, is

N 0. _ _

n; 2
+c(¥i, @) — %lzl logos + Oi)z( (XiObS(tn ) — Xi(ti )) H (21)
subject tog(pi) = Bo + Sk_1 fk(Zi). The assumption of independence of the error terms may, rireso
circumstances, be an oversimplification. Provided theipred are observed at enough time points a cor-
relation term could potentially be estimated but we havefmand this necessary in practice.

The FAME algorithm with measurement error in the predicteffi in a similar manner to that outlined
in Section 2.2 with the addition of one extra step in the tiera Instead of initializing the procedure by
fixing the Xi's one uses the current values of the other parameters asasviie observed measurements,
XiObS(t), and the response¥, to provide an updated estimate of tiés. It is an interesting feature of this
problem that the responses provide additional informatiche estimation of the;’s. We again start with
r =1 but at each step use the current estimatd @ and f; along with the response to update Ké&.
The fit is obtained by maximizing (21) over tiges subject to the penalty term

Ax / X/ (t)2dt (22)

which ensures smooth fits of ti's. To reduce computational burd&gis chosen prior to fitting the model
using cross-validation on the predictors alone. The maation of the penalized likelihood can be achieved
relatively quickly using any standard non-linear optintiza package because it is possible to calculate the
derivatives analytically. An estimate of is also produced using the maximum likelihood value

1 N nj

= s 8, (670 k)

We then estimato, f1 and3; just as in the zero measurement error case and iterate hatpanalized
likelihood converges. At this point we fi, f1,02, the X;’s andZ;;'s and increase by one. This process
continues, with the’s now fixed, until the maximum value faris reached.




Figure 2 illustrates the FAME with measurement error apgioan a simulated data set where the
predictors were sampled with uncertainty. The model waswith r = 1, so we drop the subscrifitin
our discussion. To produce the simulated data we first geetefaf and 100X;’s. These curves were
all produced using third order polynomials with random Gsaus coefficients. The observed values of the
predictors were obtained by sampling ea¢lat 50 random time points and adding Gaussian noise. Finally,
the responses were generated from a Gaussian distributibormeanf (Z) whereZ was given by (7). We
used 15-dimensional cubic b-splines as the basif &ord theX;'s andP,(p) as the penalty term o Both
Ag andAy were chosen by cross-validation. The functiowas fit using the GAM package in R. Figure 2(a)
gives the trud curve, its estimate and 95% pointwise confidence intervaldyced from Corollary 1. For
this simulation we found that the best results fforvere obtained using the penalty teR(3) although a
fairly similar fit was produced using; (). Figure 2(b) gives the observed responses and the meamsespo
function together with its FAME fit. Notice that even thoudgjie tresponses have considerable noise and the
Z;'s that generate the mean function are never observed is&lge to accurately recover all the components
of the data. Th@d curve shows that individuals with low predictors at early $&ate times will have higiz
scores and vice versa. The mean curve indicates that ssilpjébtlow Z scores will have high responses
and vice versa. Thus individuals with high valuesXpfat the early and late time periods will have high
responses. Values of in the middle time periods have comparatively less influemrtg; and hence on the
response. The fact that the response surface is clearimean-indicates that a standard functional GLM
(James, 2002), which assumes linearity and a fixed dinlould not be adequate for this data. Another
possible approach here would be to use a more advanceddoalceLM approach which also estimates
the link. Such a method could be expected to give similartesu FAME withr restricted to one.

In this example the first four principal component curvesl@xpalmost 100% of the variability in the
Xi's. Hence from (12) we see that

4
Zi~a+ Y LimPp (23)
m=1

where(i, is the loading for themth principal component on thigh predictor,X;. Equation 23 provides an
alternative method of presenting the FAME results, whicbfisn more illuminating about the relationship
betweenX; andZz; than the raw$ curve. For this dat&*T = (—20.296 —0.386,—0.006,0.015) so in calcu-
lating Z; almost all the weight is placed on the first component loadiigures 2(c) and (d) provide plots of
the first two principal component curves. Theand— curves correspond respectively to the mean function
plus or minus three times the principal component. Hencendividual whose predictor curve looks like
the + curve for PC 1 would havé' = (3,0,0,0) and theirZ would be 20296 3 below the average. The
effect of this value oZ on the response can in turn be seen in Figure 2(b). Similagreasons can be
made for the other principal component curves. Howevecgsine other components have much smdier
coefficients they have a comparatively low effect onZtecore and hence the response. A formulation such
as (23) allows one to easily asses the types of variationeiptedictors that have the greatest impact on the
response. Notice that in this examplead a similar shape to the first principal component curvés Rdélps
explain the superior performance Rf(3) which shrinks towards the dominant directions of varidpili

3.2 Multivariate Data

The FAME model presented in Section 2 was for a single predicHowever, extending the model to
multiple functional and finite dimensional covariates isgthtforward. Suppose that for each individual

10



a) b)
o o
— o —o
o o
g 3 g
g s & :
o o
N S
T ! T T T T
-10 -5 0 5
time A
c) PC 1 Variance explained 75.4 % d) PC 2 Variance explained 17.1 %
— -
g | ++ + o | - +
7] * ——_— +F © =ty —_— %
] . -— 4+ o+ t - 4
x 9 J—Te" 00000 ToF x 4 —= +— F
e - T g - - -
4 - Tttt - 0 T et -
© - - o - 7
o - | + -
! T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Time Time

Figure 2:(a) and (b) Results from the FAME fit to a simulated data selid ®tack curves indicate the truth, dashed
lines give estimates and grey lines repres@®fio confidence intervals. (c) and (d) The first two principal comgnt
curves of the predictors on the simulated data set.

we observe measurements from the predictor functigns. ., X, and a vector of standard covariates =
(Wi(pt1),---»Wi(p+s))- The FAME model can be augmented in one of two ways. The figstageh, most
directly analogous to PPR, uses the same link function aslatd FAME, (6), but replaces (7) by

p

Zi= Y [ %iOBGOdt+ o B @4
=1

Equation 24 modelZ; as a linear combination of all the predictors. In all othespescts the FAME model

remains identical. The second approach, more closely akBAiM, fits a separate smooth function for each
predictor. In this case (6) becomes

p p+s
9(k) =Bo+ ) fi(Zj)+ S fi(wy) (25)
=1 j=p+1

wherez;j = [ X;(t)B;(t)dt. The first approach includes the second as a special casearbehadvantage
of providing a more flexible fit. However, it becomes very difit to separate out the individual effects of
each predictor using (24) while this is still possible wigb). Hence, as a general rule one should utilize
the first approach when the ultimate goal is prediction ofrésonse and the second if inference about the
individual predictors is desired. We illustrate this teicjue on the femur bone data set.
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B* f1
PC1 PC 2 PC3 EDF x? p-value
Term 1 0.181 Q005 —0.032 1 75 00062
(0.0240.338) (—0.1450.155) (—0.1520.088)

Table 1: A table for the femur bone data. The first three columns carttzé weights of8 on the corresponding
principal components of the predictors. Confidence intlsnaaie provided in parentheses. The remaining columns
give the estimated degrees of freedom and significances/édud; .

The femur bone data consists of two-dimensional functie@scdbing cross-sectional images of bones
from 96 individuals. The data were preprocessed to produsatex of 50 two-dimensional points, equally
spaced by arc length, giving the outline of a specific seabibaach individual’s femur bone. An image
for a typical subject is provided in Figure 3(a). Full detailf the preprocessing are given in Ramsay and
Silverman (2002). By indexing the observations from 1 to 5f¥img in a clockwise direction we can plot
the data using two curves for each individual, one each fox imdy directions. Figures 3(b) and (c) show
the x andy curves that correspond to Figure 3(a). For each person tiaecatkn include an indicator for
osteoarthritis. We wish to use tlxeandy curves as predictors of arthritis. Since the curves hereealty
just two dimensions of a single function we are not primainkgrested in the individual effect afandy so
it is natural to apply the multivariate version of FAME usi&#).

Unlike the simulated data in the previous section which @meid noisy observations of each curve,
for this data we essentially have measurements of the dntietion with no noise. Thus we fit the no
measurement error version of FAME using a variety of valweg f 15-dimensional cubic b-spline bases
and bothP;(B) andP,(B). The fit usingP,(B) andr = 1 is given in Figure 3. Th curves, along with
95% confidence intervals, for theandy directions are provided in Figures 3(d) and (e) respegtivEhe
confidence intervals suggest no clear trend inxtdérection and positive, but decreasing, weight on the
second half of observations in tigairection. Unfortunately, the two-dimensional naturelaf tlata makes
the 3 curves more difficult to interpret. However, as in the onm@hsional case, one can analyze the data
by decomposing the predictor functions into their first fesmgipal component curves and examining the
corresponding values @ . The first three principal component curves are given in iigig(f) through
(h) andB* is provided in Table 1. The first component accounts for a lpigportion of all variability
and primarily corresponds to variation in thelirection. The next two components relate more strongly to
variability in thex direction. By examining3” it is clear that most of the weight in calculatiyis placed
on the first component indicating that this type of variatiothey direction is the most important predictor
of arthritis. In fact, judging from the confidence intervéds B* provided in parentheses the first component
is the only significant term. The variability in the other gooments explains the wide confidence intervals
in the first half of Figure 3(d). The last three columns of Eablprovide the estimated degrees of freedom
as well as significance values for the smooth tefp(iZ;). The edf indicates that a linear fit is optimal and
the p-value suggests that the bone images are highly sgmifigredictors of arthritis. The slope of the
smooth term was negative which, when combined with the igesitalue off;, indicates that individuals
with shrunken bones in the direction are at greater risk for developing arthritis. WWtnrepeated the
procedure withr = 2. The second term placed most of its weight on the secondipahcomponent but
was not statistically significant.
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Figure 3: Plots for the femur bone data showing a typical curve (a)cgurves (solid) with confidence intervals
(dashed) for the FAME fit (d) and (e) and the first three priatimmponent curves (f)-(h).

4 Simulation study

4.1 FAME predictive performance

This section provides the results from a simulation studsigieed to test the performance of FAME in
comparison with other approaches. We compared six diffggmtedures on four test distributions. The
first two methods were FAME with penaltié% () and P;(B) and 15-dimensional cubic b-spline bases.
The third procedure, Functional Generalized Linear ModESLM” (James, 2002) provides a GLM fit
to functional predictors. It is essentially identical to ME with r = 1, f; restricted to be linear and the
link g taken to be fixed. With the fourth approach, “S. Spline”, weafitubic smoothing spline to each
individual predictor curve, produced estimates of the euatreach of ten equally spaced time points and
used these ten observations as predictors in a standaad tegression. For the fifth method, “All points”,
the original measurements for each curve were sorted bydfrobservation and then used as predictors in
a linear regression. This approach is only feasible if @lghbjects have the same number of observations
and may perform poorly if individual curves are observedeay\different time points. The final procedure,
“Average”, just involved taking the mean of the existing ehstions for each curve and using this value as
the predictor in a simple linear regression.

For each of the four simulations a test data set of 1000 oasens was drawn from a given distribution.
Each observation consisted of measurements along a pmedigtve and a corresponding scalar response.
In addition 100 training data sets were produced from theesdistribution and fit with each of the six
procedures. The goal was to use the training data and thefmedfrom the test data to provide as accurate
predictions as possible for the 1000 test responses. Tukséar all four simulations are shown in Table 2
with standard errors over the 100 training data sets in pla@eas. All results are shown as a percentage
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Method Simulation

1 2 3 4
FAME P1(B) 3(0.1) 29(0.8) 38(1.5 33(1.3
FAME P,(B) 3(0.1) 26(0.5) 33(0.4) 2900.6)
FGLM 3(0.1) 60(0.3) 620.6) 63(0.6)
S. Spline 4(0.2) 66(0.5) 73(1.4) 67(1.0)
All points 60(1.6) 110(1.8) 137(4.3) 1132.6)
Average 106(0.7) 101(0.3) 1030.6) 1020.4)

Table 2: Results from the four simulation studies with standard mrin parentheses. Results are shown as a per-
centage of the mean squared error produced by simply usmgvkrage of the training responses to predict the test
responses.

of the mean squared error produced by simply using the ageshithe training responses to predict the
test responses. For example, on the first simulation thagbi@ts from FAME produced mean squared
deviations from the actual test responses that were only B#ose obtained using the average of the
training data. Taking the complement of this number givesgrcentage of test sample error explained by
using the predictor curves and is analogou&to For instance FAME explained 97% of all the variability
in the test responses in simulation 1.

The first simulation, intended to illustrate a situation vehenany simple approaches may work, in-
volved producing responses that were a linear functionth@predictor curves. For each observation two
predictor curves¥i; andX,, were produced and each curve was sampled at ten random dints pith-
out measurement error. The curves were generated using ftutmtions with randomly chosen Gaussian
coefficients. Each response was then produced by takingearlcombination of the coefficients for each
of the two predictor curves and adding a small amount of randoise. A total of 50 observations were
produced for each training data set. Since the data hagritlasurement error and did not involve any non-
linear transformation of the predictors one would expecMIEAto lose much of its advantage over other
methods. Table 2 shows that FAME, using either type of periaitction, produced considerably improved
results over those from using the training response meannAsvould expect given the linearity of the data
FGLM produced almost identical results. In problems inimivlinear data with more measurement error
one may even expect FGLM to slightly outperform FAME becatisbould produce less variable results.
The smoothing spline fit, S. Spline, gave similar, thougbhdly inferior results. The other two methods,
All points and Average, both resulted in far inferior fits vthe latter actually producing worse results than
simply using the mean of the training response.

The second simulation used the distribution of the data f8eution 3.1 withoy, = 0.1 andoy = 50.
These data had a non-linear relationship between the poesliand response, a situation where FAME
might be expected to provide significant improvements otleeroapproaches. In fact both FAME methods
produced considerably superior results over the othezatinmethods. FGLM was the best of the linear
approaches but still produced error rates approximateigetthose of FAME. More complicated versions
of FGLM exist in which the link function is also estimated.idtlikely such an approach would produce
results more similar to FAME with = 1. S. Spline gave similar fits to FGLM but the other two methods
failed completely. In this example the penalty telaif3) gave slightly better results but it is possible that
further fine tuning of the smoothing parameigrwould reduce the difference in performance.

The final two simulations were designed to test the robusto€SAME to violations of the Gaussian
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error assumptions for both the predictors and response.intinl&ion 3 we replicated the data from the
previous simulation but used noise fromdistribution with three degrees of freedom, appropriaseialed

to maintain the original standard deviations. This chang@e error distribution produced only a minor de-
terioration in the performance of FAME. Whilg alistribution is heavier tailed than the Gaussian it stiléh
a symmetrical bell shape. For the final simulation we utilizerors from the exponential distribution, stan-
dardized to have mean zero and the correct standard dexdatagain there were only minor deteriorations
noted in the FAME fit suggesting that the procedure is faiolyust to violations of the model assumptions.

4.2 Coverage, significance and power

We also performed simulations to test the true pointwiseaye of the confidence intervals Bft) and the
type one error probability and power of hypothesis testafrglationship betweevi andX(t). The results

of these simulations are summarized in Figure 4. Figure dgit@s the true coverage levels of 9085%
and 99% confidence intervals from FAME fits to 100 simulateid gats for various values of the smoothing
parameteig. The data was simulated from essentially the same diswibats the second simulation of the
previous section witloy = 0, as is assumed for the asymptotic results, and the samklg xs fixed across
data sets to maintain comparability. For all reasonablgegbf the smoothing parameter the coverage levels
are generally very close to, and in some cases even abowge, finedicted. When the parameter is set too
high the coverage is reduced but one would expect the efféahesmoothing term to diminish with larger
sample sizes. We also performed simulations with measureereor in the predictors and non Gaussian
error terms. We found little change in the coverage for smabunts of measurement error and only an
average reduction of 1% in the coverage fortthad exponential error distributions explored in the praesio
section.

To test significance levels and power we produced 200 datavsitt predictors generated in an identical
fashion to the previous simulation but with categori@ll) responses. The log odds for thb response
was modeled usin@o + 1Z;. For 1 = 0 we estimated the probability of a type one error for a paldic
nominal significance levelky, by calculating the fraction of p-values less than We used an identical
approach to calculate power for various valuegpf- 0. The results are summarized in Figure 4(b). With
31 = 0 the observed and nominal significance levels are all varyecl For comparison we also calculated
the type one error probabilities when using p-values fromfthal GAM fit which treats the later;’s
as fixed. These errors where much higher. For example avith0.1 the type one error probability was
actually 024. This illustrates the importance of incorporating thealzlity of the latent variables in the
analysis. A$3; increases from zero the power increases in an approximiagbtic fashion. These results
were withAg = 200. We found the observed significance levels reduced ewémef if less flexibility was
allowed inB(t) and were higher for more flexible fits. Finally, we tested tbes@r for a fit withr = 2 using
log odds equal t@g + B1Z; + [3225 whereZ; andZ, represented two different linear combinations of the
predictors. The powers for detecting significant effectstiie first term,f;, and the second ternfp, are
shown respectively in Figures 4(c) and (d). Both figures éodqd as a function of;. The power levels
for f, are all high. The power fof, with a = 0.01 is relatively low while fora = 0.05 and 01 the power
is moderate and increasing wiBh. In general, power will decrease mBicreases because more flexible fits
are produced. As one might expect, it is only possible todletriltiple fi's provided the sample size is
relatively large or the signal is clear.
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Figure 4.(a) Coverage levels with pluses, triangles and circles eesipely indicating0% 95%and99%confidence
intervals with dotted lines corresponding to theoreticaverage. (b) Significance levels and power for various \&lue
of 31 with pluses, triangles and circles respectively corregpng toa = 10% 5% and 1% and dotted lines indicating
the correct significance levels. Note thésZanged fairly uniformly between10and 10 so, for example, gb1 = .1
the range of the log odds w&s (c) Power for §. (d) Power for $.

5 Discussion

In this paper we have suggested a general methodology fogfétflexible class of models to data consisting
of functional predictors and scalar responses. Figure hwirovides a summary of methods for modeling
predictor-response data, indicates the relationship detWwAME and other standard approaches. The six
procedures in the upper boxes can all be used on data setstariidardp-dimensional predictors. Models
range from least to most flexible moving from left to right.€liop row corresponds to methods assuming a
Gaussian response. Linear regression provides the singplpsoach. Additive models give extra flexibility
by permitting non-linear fits for each predictor. Finallyjojection pursuit regression allows an almost
unlimited range of possible relationships. Neural netssfldat al,, 2001, Chapter 11) and boosting (Freund
and Schapire, 1997) methods provide similar highly flexfliteand can be placed in the same category as
PPR. The second row of Figure 5 gives extensions of these the¢hods to non-Gaussian responses through
the use of a link between the mean of the response and thefonedi

All of the first six approaches require adaptation before ttean be used for data with functional pre-
dictors. The bottom two rows of Figure 5 correspond to thaictional extensions. Some of these methods
have been previously explored but most have not. Functioredr regression is discussed in Ramsay and
Silverman (1997) and functional GLM techniques are devadoim Marx and Eilers (1999), James (2002)
and Muller and Stadtmuller (2004). However, we are not avedirany previous work on the other four
functional modeling types. FAME, which corresponds to tltdm right box, provides an extension of
generalized projection pursuit to functional data of whioh other methods can all be seen as special cases.
Since neural networks with one hidden layer are a special @igsrojection pursuit regression, we note that
FAME also provides a natural method for fitting neural netgdo functional data.

The FAME methodology suggests a number of interesting doedature work. First, the asymptotic
hypothesis tests of Section 2.3 are only one of severallpesspproaches that might be taken. For example,
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Figure 5: A chart indicating the relationships among the various stanl regression methodologies and their func-
tional extensions. Arrows point from more to less generalefm

Cardotet al. (2003a) develop hypothesis tests for functional linear @®dThe asymptotic theory could
also be extended to arbitrary smooth functional data. We lgaxen results for a finite dimensional FAME
model but in principle it should be possible to derive simitasults without this restriction. In particular
the approach of Muller and Stadtmuller (2004), who develdly functional asymptotics for a generalized
functional linear model, may be adapted to the FAME modeto8d, in implementing FAME we utilize
high dimensional bases for tlffig's andX;'s. The exact choice of a basis and its dimension are notatiti
because of the use of penalty terms to regularize the fits. ederythe simulations of Section 4 suggest
that there is some sensitivity to a reasonable choice fopéimalty coefficiendg. In this paper we utilized
standard cross-validation but one might also use less ctatiqual approaches such as generalized cross-
validation or possibly BIC or AIC type criterion. Third, feery sparse data, fitting eaé(t) individually
could provide inaccurate estimates. It may be possibleddyme better answers by building strength across
the predictors by assuming common covariances. This appiedaken for functional data in James (2002)
and James and Sugar (2003). Finally, while in practice we fiamund that the constraints placed on the
Bk's and thez's seem to produce identifiable parameter estimates a ddanactional proof does not exist.
However, Chiou and Muller (2004) do give a proof of identifidyp for a non-functional “multiple index”
model which is similar to FAME. It seems likely that this apach could be adapted to the functional
domain so we briefly outline their conditions and proof in dppendix.

Another interesting problem for future research is the bgraent of a functional generalized additive
models procedure. Linear regression, generalized lin@aleta and projection pursuit all naturally extend
to functional data because they involve first taking a linfeaction of the predictors. In these cases the
summation oveK;B; can be replaced by an integral ovéft)B(t). However, no such linear function of the
predictors is employed in additive models, making it uncleaw best to proceed. One possibility would
be to assume that the predictor functions lie approximately finite dimensional space by, for example,
taking the firs&K principal component curves. An additive model could thefitde the K weights for each
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curve and the results interpreted by examining the form@ftfincipal component curves.

A Appendix

Chiou and Muller (2004) prove identifiability for a non-furmmal model similar in nature to FAME. Here
we give their key conditions and provide a brief outline @ giroof. Chiou and Muller require a number of
technical conditions which, in particular, ensure thatghace of predictors is asymptotically dense. They
also assume that thi’s are strictly monotone. They then impose a restriction lenrhagnitude of the
coefficient vecto3, which is similar, though not identical, to the one we use n (8 addition they state
the following condition.

(M6) For any linearly independent set of vectors ..., o, € RP, such thabo = B, does not hold for all
k=1,...,r, forr > 2, there exists & € R such that the level st = {x € RP| S}_; fu(x"B,) = c}
has the following property: There exist, X, € Lc andkp € {1,...,r} such thai] ok = xJ o, k # ko
for 1L <k <r, andx{ ay, # X} O,

Under these conditions Chiou and Muller prove identifi&gpilising the following argument. Suppose there
exists f, fi, By, B such that

> (X" Be) = > f(x"Bo) (26)

for all x i.e. the model is not identifiable. But by (M6) and monotowlcnf the fi’s there exisixy, X2 € L¢
such thatf(xI B,) = fi(xZB,) for k ko andfko(xTBkO) # fko(xTBkO) Hence

r

y f (X1 Be) # Z (x5 By)- (27)

k=1

But sincexy, X, € L we knowy . fi(X] By) = Yh_1 f(X2By) and hence by (26)
r r ~
S (B = Z fi(x Z kOGB) = Y f(x3By)-
k=1

k=1

This is a contradiction of (27) so, since the space of predicis assumed to be asymptotically dense the
B,’s are identifiable. In addition, since there is a constraimthe magnitude of th,’s the fy's are also
identifiable.
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