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Abstract

We propose an extensive framework for additive regression models for correlated functional 

responses, allowing for multiple partially nested or crossed functional random effects with flexible 

correlation structures for, e.g., spatial, temporal, or longitudinal functional data. Additionally, our 

framework includes linear and nonlinear effects of functional and scalar covariates that may vary 

smoothly over the index of the functional response. It accommodates densely or sparsely observed 

functional responses and predictors which may be observed with additional error and includes 

both spline-based and functional principal component-based terms. Estimation and inference in 

this framework is based on standard additive mixed models, allowing us to take advantage of 

established methods and robust, flexible algorithms. We provide easy-to-use open source software 

in the pffr() function for the R-package refund. Simulations show that the proposed method 

recovers relevant effects reliably, handles small sample sizes well and also scales to larger data 

sets. Applications with spatially and longitudinally observed functional data demonstrate the 

flexibility in modeling and interpretability of results of our approach.
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In recent years, many scientific studies have collected functional data that exhibit correlation 

structures amenable to explicit modeling. Such structures may arise from a longitudinal 

study design (e.g. Goldsmith et al., 2012; Greven et al., 2010; Morris and Carroll, 2006), 

crossed designs (e.g. Aston et al., 2010), or spatial sampling of curves (e.g. Delicado et al., 

2010; Giraldo et al., 2010; Gromenko et al., 2012; Nerini et al., 2010; Staicu et al., 2010). 

Simultaneously, regression for independent functional responses (e.g. Faraway, 1997) has 

made large advances, including both multiple scalar (e.g. Reiss et al., 2010) and multiple 

functional predictors in concurrent or more general relationships (e.g. Ivanescu et al., 2012). 

Our work is motivated by a longitudinal neuroimaging study containing repeated 

measurements of a functional proxy variable for neuronal health along 3 white matter tracts 

derived from diffusion tensor imaging (DTI). The goal of our analysis is to quantify the 

relationship of these function-valued proxy measures while accounting for the longitudinal 

correlation structure as well as the effects of patient characteristics like age and gender. This 

DTI study is an example of a longitudinal functional data set where models must account for 

the correlation structure of the data while including both scalar and functional covariates in 

the predictor.
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To address these challenges, we propose conditional regression models for functional 

responses that accommodate general correlation structures via functional and scalar random 

effects as well as flexible linear or nonlinear effects of scalar and functional covariates. The 

major contributions of this paper thus consist in 1) developing a general inferential 

framework for additive mixed models for correlated functional responses that 

accommodates diverse correlation structures and flexible modeling of the mean structure 

extending Ivanescu et al. (2012), 2) unifying two previously separate strands of prior work, 

by subsuming both functional principal component- (FPC) and spline-based approaches, and 

3) evaluating our implementation available in the the R-package refund (Crainiceanu et al., 

2011) on real and simulated data.

Our goal is to describe and implement a framework that offers analysts of functional data 

similar flexibility in model specification to what is available in current implementations of 

(geo-)additive mixed models for scalar data. Specifically, we consider structured additive 

regression models of the general form

(1)

for functional responses yi(t),i = 1,...,n, observed over a domain . Each term in the additive 

predictor is a function of a) the index t of the response and b) a subset  of the complete 

covariate set  including scalar and functional covariates and (partially) nested or crossed 

grouping factors. To make this more concrete, Table 1 shows the most important 

combinations of  and effect shapes available in our framework. We assume a white noise 

error process independent of , such that the εi(t) are independent and identically 

distributed (i.i.d.) Gaussian variables with mean zero and constant variance  across . 

Additionally, smooth and potentially correlated error curves can be included via curve-

specific random effects to model (co-)variance along t and dependence between functional 

observations. We assume all effects in Table 1 to be smooth but unknown functions in the 

covariates, and this smoothness assumptions on all components of the predictor ensures 

smoothness of yi(t) up to the white noise measurement error εi(t). Scalar random effects bg 

are mean zero Gaussian variables with general covariance structure between the different 

levels of g. Functional random effects bg(t) for a grouping variable g with M levels are 

modeled as realizations of a mean-zero Gaussian random process on  with a 

general covariance function Kb(m,m′,t,t′) = Cov(bm(t),bm′(t′)) that is smooth in t, where m,m′ 

denote different levels of g. Note that our model class and software admits multiple partially 

or completely nested or crossed grouping factors for both scalar and functional random 

effects, but different random effects bg(t),bg′(t) are assumed to be mutually independent. We 

assume integrability for the effects of functional covariates. Our implementation for 

functional effects such as  also accommodates varying integration ranges 

with fixed, potentially observation-specific integration limits li(t),ui(t), similar to the 

historical functional model in Malfait and Ramsay (2003). Densely as well as sparsely 

observed functional responses and suitably preprocessed functional predictors with 

measurement error can be used in this framework. We approximate each term  by a 

linear combination of basis functions defined by the tensor product of marginal bases for 
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and t. Since basis dimensions have to be sufficiently large to ensure enough flexibility, 

maximum likelihood estimation of model (1) is likely to lead to substantial overfitting. The 

penalized likelihood approach described in Section 1.2 stabilizes estimates by suppressing 

variability not strongly supported by the data and finds a data-driven compromise between 

goodness of fit and simplicity of the fitted effects.

Most existing work on functional random effects has considered only special cases such as 

the functional random intercept model (Abramovich and Angelini, 2006; Di et al., 2009; 

Krafty et al., 2011), functional random intercept and slope model (Greven et al., 2010), a 

single level of random effects functions (Antoniadis and Sapatinas, 2007; Guo, 2002; Qin 

and Guo, 2006), or a two or three-level hierarchy (Baladandayuthapani et al., 2008; Bigelow 

and Dunson, 2007; Brumback and Rice, 1998; Li et al., 2007; Morris et al., 2003; Scarpa 

and Dunson, 2009; Staicu et al., 2010; Zhou et al., 2010). Aston et al. (2010) consider a 

general functional random effects structure under the assumption of a joint functional 

principal component (FPC) basis for all functional random effects in the model, which are 

estimated under a working independence assumption between curves. It is unclear, however, 

how well this approach works if the latent processes do not share the same eigenfunctions 

and how the correlation between functional observations affects FPC estimation. FPC 

estimation for correlated observations is a topic of ongoing research (c.f. Hörmann and 

Kokoszka, 2010, 2011; Panaretos and Tavakoli, 2013a,b). Morris and Carroll (2006); Morris 

et al. (2003); Zhu et al. (2011) propose a general Bayesian functional linear mixed model 

based on a wavelet transformation of (usually very spiky) data observed on an equidistant 

grid. The model proposed by Morris and Carroll (2006) includes correlation between 

different random effects and heterogeneous residual errors, which we do not. Our approach, 

on the other hand, is well suited to smooth underlying curves and allows a more general 

mean structure than previous functional linear mixed models; in particular we are able to 

estimate smooth nonlinear or linear effects of scalar and/or functional covariates within the 

same framework. In addition, we are able to handle data on non-equidistant or sparse grids.

To the best of our knowledge, our proposal is the first publicly available implementation that 

allows such a high level of flexibility for a functional regression model – prior work either 

limits the predictor to the effect of a single functional covariate and a functional intercept, 

such as the linmod function in package fda (Ramsay et al., 2011) for the R language (R 
Development Core Team, 2011) or to linear effects of scalar covariates, such as the fosr 

function for function-on-scalar regression (Reiss et al., 2010) in the R-package refund. Like 

the linear function-on-function regression approach in Ivanescu et al. (2012) we build on, 

both approaches are limited to independent functional responses. Morris and Carroll (2006) 

provide a closed source implementation for wavelet-based functional linear mixed models in 

WFMM (Herrick, 2013) that allows very general random effect and residual structures, but 

implement neither effects of functional covariates nor nonlinear effects of scalar covariates. 

The PACE package (Fang et al., 2013) for MATLAB implements FPC based regression 

models where the predictor is limited to the effect of a single functional or scalar covariate. 

Our proposal has some similarities with the regression models for independent or 

longitudinal scalar responses in Goldsmith et al. (2011, 2012), implemented in the pfr and 

lpfr functions in refund, since we also base inference on additive mixed models for scalar-
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on-scalar regression. However, the extension to functional responses and functional random 

effects with flexible correlation structure as well as the inclusion of FPC-based effects is 

non-trivial.

The paper is organized as follows: Section 1 develops our general approach and estimation 

framework for functional additive mixed models. Our method is evaluated in a simulation 

study and in an application to the motivating longitudinal DTI study in Section 2. Section 3 

closes with a discussion and outlook.

1 Penalized regression for correlated functional data

Functional responses yi(t) are observed on a grid of Ti points . To 

simplify notation, we assume identical grids  for i = 1,...,n in the 

following, but note that functional responses observed on irregular and/or sparse grids are 

naturally accommodated in the rephrased model formulation given in (2). Then, model (1) 

can be expressed as

(2)

for i = 1,...,n and l = 1,...,T. The assumption of white noise errors translates to 

. The smoothness assumption on E(yi(t)) is preserved implicitly by 

enforcing smoothness across  for all . To fit the model, we form 

, an nT-vector that holds the concatenated function evaluation vectors 

. In the following, let  denote the vector or matrix containing rows of 

observations . Let f(t) denote the vector of function evaluations of f for each entry in the 

vector t and let f(x,t) denote the vector of evaluations of f for each combination of rows in 

the vectors or matrices x,t. Let  denote a d-vector of ones. The row tensor 

product of an m × a matrix A and an m × b matrix B is defined as the m × ab matrix 

, where · denotes element-wise multiplication.

1.1 Tensor product representation of effects

Each of the R terms in model (2) can be represented as a weighted sum of basis functions 

defined on the product space of the covariates in  and t, where each marginal basis is 

associated with a corresponding marginal penalty. A very versatile method to construct basis 

functions on such a joint space is given by the row tensor product of marginal bases 

evaluated on  and t (e.g. De Boor, 1978; Wood, 2006, ch. 4.1.8). Specifically, for each of 

the terms,

(3)
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Φxr contains the evaluations of a suitable marginal basis for the covariate(s) in  and Φtr 

contains the evaluations of a marginal basis in t. The shape of the function is determined by 

the vector of coefficients θr. A corresponding penalty term can be defined by the Kronecker 

sum of the marginal penalty matrices Pxr and Ptr associated with each basis (Wood, 2006, 

ch. 4.1), i.e.

(4)

Pxr and Ptr are known and fixed positive (semi-)definite penalty matrices and λtr and λxr are 

positive smoothing parameters controlling the trade-off between goodness of fit and the 

smoothness of  in  and t, respectively. This flexible construction is valid for any 

combination of bases associated with quadratic penalties. Alternative constructions of the 

joint penalty such as a direct Kronecker product  associated with a single 

smoothing parameter λr are possible, see Wood (2006, ch. 4.1.8) for a discussion. Typically, 

Kx and Kt vary with r as well, but we drop the additional index for simplicity. In the 

following paragraphs, we will motivate and define Φxr, Φtr,Ptr and Pxr for the different types 

of terms available in our implementation. Effects that are constant over t are associated with 

Φtr = 1nT and Ptr = 0, while users are free to choose any suitable marginal basis matrix Φtr 

and penalty Ptr for terms that vary over t.

Spline basis representation of effects of scalar covariates—For scalar covariates, 

index-varying effects are very similar to varying coefficient terms in models for scalar 

responses, c.f. Ivanescu et al. (2012). For the functional intercept α(t), Φxr = 1nT and Pxr = 0. 

For effects like zδ and zδ(t) that are linear in a scalar covariate z, the marginal basis for the 

covariate direction reduces to  where , with penalty Pxr = 0. For 

nonlinear effects of scalar covariates like γ(z) or γ(z,t), Φxr is a suitable marginal spline basis 

matrix over z and Pxr is the associated penalty.

Spline basis representation of functional effects—For linear effects of functional 

covariates x(s), we model β(s,t) using tensor product splines with basis functions Φks(s),ks = 

1,...,Kx, over  and a spline basis defined over . We approximate the integral by 

numerical integration on the grid defined by the observation points s1,...,sH in . The effect 

in (2) then is

In the notation of (3), 

, where 

 contains the quadrature weights for a numerical integration scheme, 
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 and . Pxr in the tensor product 

penalty (4) is the penalty associated with the Φks(s). We can extend this construction, which 

is equivalent to the one introduced in Ivanescu et al. (2012), to cover terms like 

 (e.g. Malfait and Ramsay, 2003) with fixed, potentially observation-

specific integration limits . This is achieved by defining suitable weight 

matrices wi,l with zero entries for sh < li(tl) and sh > ui(tl). Such effects will often be 

required for covariates and responses that are observed on the same time domain, where 

responses cannot be influenced by future covariate values. In the limit, this also includes the 

concurrent model with terms X(t)β(t).

Our framework also extends to non-linear function-on-function effects , 

which generalize the functional generalized additive model (McLean et al., 2012) from 

scalar to functional responses. They offer similar flexibility to purely nonparametric 

approaches like Febrero-Bande and Oviedo de la Fuente (2012); Ferraty et al. (2011); 

Ferraty and Vieu (2006), e.g. In our framework, such terms can be represented as

with  and , 

and Pxr the penalty associated with Φs. Basis functions Φks(x(s),s) can be tensor product 

basis functions derived from marginal bases for x(s) and s or true bivariate basis functions.

FPC basis representation of functional effects—Consider a functional covariate 

expanded in the Karhunen-Loève expansion  with 

; ; . Under the assumption that 

 for some Kx, i.e., that all smaller modes of variation of 

x(s) only have a negligible effect on y(t), we can write

with . Thus, a linear function-on-function effect can be 

represented as a sum of varying coefficient terms for the FPC loadings ξik. This 

representation extends FPC regression approaches (e.g. Reiss and Ogden, 2007) from scalar 

to functional responses. In the notation of the general framework, 

 and Pxr = 0. For the t-direction, Φtr and the associated Ptr 
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can be chosen freely. An implicit assumption here is that all βk(t),k= 1,...,Kx have similar 

smoothness, as they are all associated with the same smoothing parameter.

This FPC-based approach may be advantageous for functional covariates observed on 

irregular or sparse grids – for such data, the spline-based method requires a preprocessing 

step (c.f. Goldsmith et al., 2011, 2012; James, 2002) to impute the incomplete trajectories on 

a dense and regular grid, whereas FPCs can be estimated directly from sparse data (Yao et 

al., 2005). Additionally, if the shapes of the  are meaningful to practitioners and Kx is 

small, the coefficient functions  may be easier to interpret than a coefficient surface 

β(s,t). On the other hand, since inference is performed conditional on the estimated FPCs 

 and associated loadings  coverage issues associated with these neglected sources of 

estimation variability (c.f. Goldsmith et al., 2013) and bias introduced by estimation error in 

the FPC analysis step may occur. Additionally,  might be 

a strong assumption that is hard to check in applications, as is the choice of the discrete 

tuning parameter Kx.

As in the spline-based case, we can extend this to FPC-based nonlinear function-on-function 

effects. The proposal corresponds to an extension of the functional additive model by Müller 

and Yao (2008) from scalar to functional responses, with the effect of the functional 

covariate given by . In the notation of our general 

framework,  where  for suitable 

spline basis functions Φa(·), such that . The marginal penalty is given by 

, where Pξ is the penalty associated with the . In t-direction, we are 

again free to choose any suitable basis Φtr and penalty Ptr. Further extensions to interaction 

effects of estimated FPC scores  are also 

obvious in this framework.

Spline basis representation of functional random effects—Functional random 

effects bg(t) are represented as smooth functions in t for each level 1,...,M of the grouping 

variable g. In the notation of equation (3), functional random intercepts are associated with a 

marginal basis , where g(i) denotes the level of g for 

observation i. This yields an incidence matrix mapping the observations to the different 

levels of the grouping variable. For a functional random slope effect in a scalar covariate z, 

. In the notation of equation (4), the marginal penalty 

Pxr for functional random effects is a M × M precision matrix that defines the dependence 

Scheipl et al. Page 7

J Comput Graph Stat. Author manuscript; available in PMC 2016 April 01.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



structure between the levels of g. The quadratic penalty (4) is mathematically equivalent to 

the distributional assumption  (Brum-back et al., 1999). 

Through the representation in (3), this induces a mean zero Gaussian process assumption 

bg(t) ~ GP(0,Kb(g(i),g(i′),t,t′)), with covariance evaluated for all nT observations 

. The smoothing parameter λxr controls the relative 

contribution of the inter-unit variability relative to the common roughness of the functional 

random effects controlled by λtr.

If observations on different levels of the grouping factor are assumed independent, Pxr = IM 

is simply the identity matrix. More generally, Pxr can represent any fixed dependence 

structure between levels of g: It can be a (partially improper) precision matrix of a random 

field with known correlation structure, implied, for example, by the spatial or temporal 

arrangement of the different levels of g, such as a Gaussian Markov random field (GMRF) 

on geographical regions for conditionally auto-regressive (CAR) model terms. Alternatively, 

(Pxr)
−1 can be defined using any valid correlation function based on – for example – spatial, 

temporal, or genetic distances between levels of g. If the grouping variable is simply the 

index of observations (i.e., g(i) = i), this construction yields smooth residual curves with 

potential for spatial or temporal autocorrelation. This innovative definition of functional 

random effects admits very flexible model specifications, since any combination of spline 

basis, smoothness penalty and between-subject correlation can be used for functional 

random effects. This allows, for example, for spatially correlated functional residuals with 

periodicity constraints for the Canadian Weather data (see Appendix C of the online 

supplement). Multiple (partially) nested or crossed random effects can be constructed in this 

way and are implemented in pffr().

FPC basis representation of functional random intercepts—For functional 

random intercepts without between-unit correlation, i.e., for , it 

can be advantageous to use the eigenfunctions of the covariance operator Kb(t,t′) as basis 

functions in t. Specifically, we use the Karhunen-Loève expansion of random processes to 

represent  with κk,ηk(t) the ordered eigenvalues and -functions of 

Kb(t,t′), νgk the associated FPC loadings, and Kt a suitable truncation lag. The marginal basis 

for the t-direction is then . Since E(νgk) = 0 and Var(νgk) = 

κk, a reasonable marginal penalty is . This encourages relative 

contributions of the FPCs to the random effect curves that are roughly proportional to their 

estimated magnitudes . As for the spline-based functional random effects, 

 is an incidence matrix for the group levels, while Pxr = 

IM.

In practice, ηk(t) and κk have to be estimated. An iterative procedure can be outlined as 

follows: (1) Use a fit without functional random effects under independence assumption to 
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obtain working residuals . (2) Compute the group-level means of 

residual curves  with , where nm is the number of 

observations for the m-th level of g. (3) Perform a (truncated) spectral decomposition of 

 to obtain ,  for k = 1, ..., Kt. A suitable estimate for 

can be derived from smoothing the entries in the matrix  (without the diagonal) 

as in Yao et al. (2005). This approach for estimating  can only be used for random 

intercepts for a single grouping variable. Compared to spline-based functional random 

effects, FPC-based modeling holds the promise of using the optimal, most parsimonious 

basis to represent bg(t). Computationally, it is expected to scale much better for large M, as 

the number of coefficients associated with a functional random effect is MKt and Kt for 

FPCs will typically be much smaller than in a sufficiently flexible spline basis. On the other 

hand, the FPC approach requires a pilot estimate for . The subsequent performance will 

be sensitive to the quality of the estimation of the FPCs and to the choice of Kt.

1.2 Mixed model representation

Using the tensor product representation introduced in the previous subsection for all terms, 

model (1) can be re-written as

(5)

where Φ = [Φ1|...|ΦR] contains the concatenated Φr associated with the different model terms 

and  the respective stacked coefficient vectors θr. To clear up notation, 

we assign a sequential index v = 1,...,V to the smoothing parameters λxr,λtr in (4), where V is 

the total number of smoothing parameters in the model. We pad  and 

with rows and columns of zeros, denoting these matrices P̃
v1 and P̃v2 such that the penalty 

 refers to the full coefficient 

vector θ. The penalized likelihood criterion to be minimized then becomes

(6)

The total number of smoothing parameters is V ≤ 2R, as some terms are constant over t or 

 and the corresponding P ̃
v are zero. Let  and use similar arguments as in Ruppert et 

al. (2003, ch. 4.9) to obtain the solution  of (6) as the best linear unbiased predictor in the 

linear mixed effects model (MEM)
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(7)

where S− denotes the generalized inverse of S, and N(0,S−) is a partially improper Gaussian 

distribution with positive semi-definite covariance matrix S. The impropriety results from 

rank deficiencies in some of the P ̃
v, since roughness penalties typically define a nullspace of 

maximally smooth functions. Numerical difficulties posed by the positive semi-definiteness 

are solved by another re-parameterization that separates the various model terms into their 

unpenalized and penalized components, i.e. into “fixed” effects and “random” effects with a 

proper distribution, respectively. These are well known issues in the literature on penalized 

regression splines described in detail e.g. in Ruppert et al. (2003, ch. 4.9),Wood (2006, ch. 

6.6.1); recent developments for tensor product splines are in Wood et al. (2013).

One of the main advantages of formulating the penalized likelihood optimization as 

estimation in an MEM is that the smoothing parameters  can be treated as variance 

component parameters and thus can be estimated using restricted maximum likelihood 

(REML). In particular, Reiss and Ogden (2009) and Wood (2011) have shown that 

smoothing parameter selection with REML is more stable and results in somewhat lower 

MSE than generalized cross-validation (GCV) and Krivobokova and Kauermann (2007) 

have shown that REML estimation of penalized splines is more robust to error correlation 

mis-specification than AIC-based criteria. A second advantage this approach offers is that 

the representation of our model class (1) results in a fit criterion (7) equivalent to that of 

conventional additive mixed models for scalar data. This means much of the powerful and 

versatile inference machinery developed for scalar linear and additive mixed models 

(AMMs) over the last years can be applied directly to the proposed model class of functional 

AMMs, due to their close structural similarity. Specifically, 1) pointwise, bias-corrected 

confidence bands (Marra and Wood, 2012; Nychka, 1988; Ruppert et al., 2003) are available 

for the functional effects, 2) tests for random effects as well as tests for constant or linear 

effects versus more general alternatives developed for scalar responses (Crainiceanu and 

Ruppert, 2004; Crainiceanu et al., 2005; Greven et al., 2008; Scheipl et al., 2008; Wood, 

2013), and 3) model selection approaches that have recently been proposed for scalar-

response AMMs (Greven and Kneib, 2010; Marra and Wood, 2011) are directly applicable 

to the proposed model class. Finally, the proposed approach accommodates a large variety 

of effects, at no increase in the level of complexity of the algorithm itself. The tensor 

product representation given in Section 1.1 combined with the MEM representation (7) 

allows for a unified framework for smoothness parameter selection and estimation of all 

model components in model (1), including functional random effects and FPC-based effects.

Implementation

The full framework for functional additive models we describe here is implemented in the 

pffr-function in the refund package for R. The underlying inference engine is the mgcv 

package (Wood, 2011) for generalized additive models which also supplies most of the 

functionality for constructing basis and penalty matrices. pffr offers a formula-based 

interface similar to the established formula syntax of mgcv and returns a rich model object 

Scheipl et al. Page 10

J Comput Graph Stat. Author manuscript; available in PMC 2016 April 01.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



whose fit can be summarized, plotted and compared with other model formulations without 

any programming effort by the user through convenient utility functions.

2 Empirical evaluation

The following section describes an extensive simulation study and results for the motivating 

application to a longitudinal DTI study. A fully reproducible example analysis of the well 

known Canadian Weather data showcasing the flexibility of pffr can be found in Section C 

of the online appendix.

2.1 Simulation study

Simulation setup—We simulate data with repeated measures structure for a model 

 for the following four scenarios to investigate the 

sensitivity of the estimates to varying model complexity, noise levels and number of 

observations:

1. Functional random intercept, functional random slope: 

2. Functional random intercept, functional covariate: 

3. Functional random intercept, two functional covariates: 

4. Functional random intercept, functional covariate, smooth scalar covariate effect, 

varying coefficient term: 

Definitions of the various effect functions and descriptions of the data generating processes 

used for the covariates can be found in section B of the online supplement, along with 

unabridged simulation results and graphical displays of data and estimated effects for the 

replications with minimal, maximal and median error for each scenario.

For each of the four scenarios, we run 10 replications for each combination of the following 

settings, yielding 1920 model fits in total:

– number of subjects: M ∈ {10,100}

– mean number of observations per subject: ni ∈ {3,20}. Subject labels i ∈ {1,...,M} are 

drawn from a multinomial distribution with probabilities  to generate 

unbalanced designs.

– number of grid points for t: T ∈ {30,60}

– relative importance of random effects: SNRB ∈ {0.2,1,5}, where SNRB is the ratio of 

the standard deviation of the additive predictor without random effects divided by the 

standard deviation of the random effect functions; e.g. for SNRB = 5, the contribution of 
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each functional random effect to the variability in y(t) is about 5 times smaller than that 

of the non-random effects.

– signal-to-noise ratio: SNRε ∈ {1,5}, where SNRε is the ratio of the standard deviation 

of the additive predictor divided by the standard deviation of the residuals σε.

Our results show that 10 replications for each combination are sufficient to derive precise 

estimates of effects of the setting parameters on estimation errors and computation times, 

c.f. Figures 1 and 2. Fits are obtained with the defaults in pffr(), i.e., cubic B-spline bases 

with 20 basis functions and first order difference penalty for the functional intercept, tensor 

products of cubic B-spline bases with five marginal basis functions for the tensor product 

terms, with first order difference penalties for the t- and s-directions and second order 

difference penalties for the covariate direction (if applicable). The smoothing parameters are 

REML estimates as returned by mgcv. The models for settings 1 to 4 include K = 120 to 

1020 coefficients and 5 to 8 smoothing parameters.

Estimation error—We use the relative integrated mean squared error defined as 

 to evaluate the accuracy 

of the estimates. Relative errors allow comparisons across different scenarios and noise 

levels regardless of the ranges of the true . Note that we evaluate the estimation 

accuracy of the effects on the scale of the response, not on the scale of the coefficient 

function itself to make errors directly comparable across effects. Detailed analysis of results 

(see Appendix B in the supplement) shows that there are no relevant interaction effects 

between the setting parameters M, ni, T, SNRB and SNRε on the observed errors within 

scenarios, so we fit log-linear models with main effects for the setting parameters in each 

scenario to observed rIMSE values and proceed to analyze the estimated effects. Figure 1 

shows baseline levels and the estimated multiplicative effects of the simulation parameters 

on the rIMSEs. The effect of increasing the number of grid points T for y(t) from 30 to 60 is 

not shown, as it decreased relative errors for all quantities by a factor of about 0.7 to 0.5. 

Baseline rIMSE values (top left panel) are given for data with SNRε = 1, M = 10, ni = 3, T = 

30, SNRB = 0.2. In this very noisy setting with small sample size and dominant random 

effects, covariate effect estimates are not very accurate, with relative errors mostly in the 

vicinity of one. Since the random effects are estimated with little error, however, the error 

for the responses in this difficult setting is small as well. Increasing SNRε from 1 to 5 (top 

right panel) decreases relative errors about 16-fold, with smaller 8-fold reductions for the 

random effects in scenario 1. Increasing the number of groups from M = 10 to M = 100 

(second row, left panel) has no substantial effect on the overall estimation accuracy of the 

yi(t). Estimation accuracy of the functional random effects is not improved either due to the 

commensurate increase in the number of parameters, while errors for the covariate effects 

decrease about 8-fold. An increase in the average number of observations per group from ni 

= 3 to ni = 20 (second row, right panel) results in a similar reduction of relative errors for the 

covariate effects, and also a marked four- to sixfold decrease in the errors for the response 

trajectories. A reduction of the relative contribution of the random effects to the linear 

predictor, i.e. increasing SNRB from 0.2 to 1 [5] (bottom row, left [right] panel), improves 
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the overall estimation accuracy of y(t) only slightly if at all [factor 0.7 to 0.8]. This overall 

improvement is due to the large reduction of errors for the covariate effects, which 

compensates for the observed deterioration of random effect estimates. While the errors for 

the former decrease about 8-fold [16-fold], the errors for the latter increase about 1.5- to 

twofold [five- to 16-fold].

Comparison to other approaches—Appendix C summarizes additional results for 

comparisons between spline-based and FPC-based terms implemented for function-on-

function effects and functional random effects in pffr as well as the wavelet-based approach 

for functional linear mixed models of Morris and Carroll (2006) implemented in WFMM 

(Herrick, 2013).

Coverage—We also evaluate coverage of approximate point-wise empirical Bayes 

confidence intervals (CIs) (c.f. Wood, 2006, eq. (4.35)) with constraint correction (Marra 

and Wood, 2012) for a nominal level of 95%. For each fitted model, we record the 

proportion of point-wise intervals covering the true value of each quantity evaluated on a 

fine grid. Note that the coverages of neighboring grid points are not independent, but for the 

computationally intensive models we fit this is a feasible alternative to coverage estimates 

based on hundreds of replicates of each setting. CI coverage was consistently very close to 

the nominal level for ŷ(t) (Median10% quantile−90% quantile : 0.95(0.92−0.97)) and b ̂
0(t) 

(0.95(0.9−0.98)), while  showed some overcoverage as well as a few 

replicates with coverage below 0.7 for small and noisy data. Coverage for functional random 

slopes b̂
1(t) was below nominal for small groups, but close to nominal for larger datasets (ni 

= 3: 0.9(0.81−0.96); ni = 20: 0.95(0.9−0.99)). Similarly for  and , overall 

coverage was close to the nominal level (0.95(0.85−0.99)), with systematic undercoverage in 

small and noisy data sets with dominating random effects. Both 

and  had overcoverage, the latter with many outliers with observed 

coverages below 0.8.

Computation times—Figure 2 shows computation times on an 2.2 GHz AMD Opteron 

6174 processor for the different scenarios and sample sizes. Especially for models with 

multiple random effects (scenario 1) computation times increase dramatically in M. Smaller 

models are fit rapidly, and even for the largest data sets with nT = 1.2 · 105, computation 

times are not prohibitively long. Speed gains for REML inference on large data sets can be 

achieved by using the pffr()-option to use mgcv's bam() routine for estimating additive 

models on data sets that do not fit into memory, as in Section 2.2. Using GCV optimization 

(Wood, 2004) instead of REML-based inference in pffr() can yield up to 10-fold speedups 

especially for large data sets, but tends to be less stable.

Summary—Important effects that contribute relevantly to the predictor are estimated with 

good to excellent accuracy. Only a single replicate resulted in an rIMSE for y(t) greater than 

0.1 – even in the most challenging data situations with few noisy observations and small 

group sizes, our approach is able to reproduce the true structure of the data well. Our results 
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indicate that estimation accuracy of covariate effects is affected most strongly by changes in 

the noise levels SNRε and especially SNRB, and less strongly by changes in the available 

number of observations M,ni and T. The patterns of relative change in accuracy are identical 

for simple functional regression coefficients, index-varying smooth effects or effect surfaces 

for functional covariates. The estimation accuracy of the functional random effects is 

affected strongly by the relative importance of the random effects SNRB and the group size 

ni, and little by the number of groups M. FPC-based random effects seem to require a 

sufficiently large number of groups and low noise level to obtain usable FPC estimates. 

Spline-based approaches yielded superior results to FPC-based and wavelet-based 

approaches, but it should be noted that the data-generating process for the simulation study 

was spline-based itself. Overall, the observed coverage of the approximate pointwise CI was 

very close to the nominal level except for very small or noisy data.

2.2 Modeling spatial association of demyelination in a longitudinal MS study

Our motivating tractography study comprises 162 MS patients and 42 healthy controls who 

are observed at one to eight visits, spread over up to four years, with 476 visits in total. MS 

damages white matter tracts (WMT) in the brain due to lesions, axonal damage and 

demyelination. Diffusion tensor imaging (DTI) is a magnetic resonance imaging technique 

that is able to resolve individual WMTs in the central nervous system (Basser et al., 2000), 

and is thus a very useful tool in monitoring disease progression in MS patients. At each visit, 

fractional anisotropy (FA) was determined via DTI along the corpus callosum (CCA, 

connecting the left and right hemispheres of the brain), the left corticospinal tract (CST, 

connecting the brain and the spinal cord), and the left optic radiation tract (OPR, connecting 

visual cortex and thalamus). FA is derived from the estimated diffusion tensor and is equal 

to zero if water diffuses perfectly isotropically (Brownian motion) and to one if it diffuses 

with perfectly organized movement of all molecules in one direction for a given voxel. It 

may be decreased in MS patients and thus serves as a marker of disease progression here. 

Tracts are registered within and between subjects using standard biological landmarks 

identified by an experienced neuroradiologist. Figure 3 displays registered tract profiles as 

functions of tract location; profiles corresponding to four different subjects at first visit are 

highlighted.

Various aspects of this complex tractography dataset have been explored in a sequence of 

papers including Goldsmith et al. (2011), Goldsmith et al. (2012), Staicu et al. (2011), 

Ivanescu et al. (2012). This study was first introduced by Greven et al. (2010), who modeled 

longitudinal variability in trajectories FPC-based, but could not take into account any 

covariate effects. Our goal here is to better understand the spatial course of the 

demyelination process via its FA proxy and investigate possible differences therein between 

MS and healthy subjects. Ivanescu et al. (2012) considered a similar question, but used only 

the first measurement of each subject since their approach is unable to handle the 

longitudinal structure of the data. We assume a functional linear dependence between the 

FA along the CCA and the two functional covariates – FA along the OPR and FA along the 

CTS – while adjusting for the effects of other relevant covariates such as gender, age at visit, 

and disease status. Specifically, if yij(t) is the FA profile at location t on the CCA tract 

observed at visit j for subject i, we assume that the conditional mean of yij(t), µij(t), is
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(8)

where x1,ij(s) and x2,ij(r) are the FA profiles at locations s and r along the OPR and CTS 

tracts, respectively, observed at the jth visit of the ith subject. Here di is the disease status of 

the subject, with di = 1 for MS patients, and di = 0 for healthy subjects; gi indicates the 

gender: gi = 1 for males and 0 for females; and uij is the age (in years) at the jth visit of the 

ith subject. Note that the effects of FA-OPR and FA-CST at the current visit are disease 

group-specific, with β1,0(s,t),β2,0(r,t) for controls and β1,1(s,t),β2,1(r,t) for MS patients. 

Neither age nor gender effects were found to differ between disease groups in the model-

building process.

Effect estimates for a naïve model (8) along the lines of Ivanescu et al. (2012) under 

assumed independence with measures of uncertainty are provided in Appendix B, Figure 7 

for completeness. Due to the inappropriate conditional independence assumption, this 

approach underestimates the variability of the estimates. We use our proposed functional 

additive mixed model to account for the within-subject correlation, which is the key 

advantage of our approach over available function-on-function regression methods. 

Specifically, a more appropriate model is

(9)

where bi0(t) are subject-specific functional random intercepts. Model (9) can be fit using the 

pffr() function in the refund package. Estimating (9) took about 17 hours on an 2 GHz AMD 

Opteron processor.

Since there are subjects with a few missing locations along the tracts and since the FA 

measurements are observed with noise, we preprocess the functional covariates. (Note that 

missing values in the functional response are not an issue for our approach.) The FA profiles 

are first detrended by subtracting the disease group-specific mean function to make the 

estimated effects easily interpretable (see Appendix A.1). They are then smoothed, which 

also imputes missing values. For smoothing, we use functional principal component analysis 

(Di et al., 2009; Yao et al., 2005) for all tract-specific FA curves under a working 

independence assumption between profiles on the same subject. Since the observed FA-

CCA profiles exhibit a lot of small scale structure at locations 5 − 20 and > 85, spline based 

functional random intercepts would require a very large basis to provide sufficient 

flexibility. Instead, we use the residual curves from model (8) fitted under an independence 

assumption to obtain an unsmoothed FPC-basis for the random intercepts, as described on 

page 10.

Figure 4 shows the estimated mean of the FA profiles along the CCA tract (anterior to 

posterior, i.e. front of the head to the back) for female subjects with and without MS (left 

panel) and for male and female MS patients (second from left). The estimated mean FA 

profiles have similar shapes, with a sharp increase in the rostrum/genu (front), a plateau in 

the middle section, followed by a decrease near the isthmus and a rapid increase towards the 

splenium (back). As expected, MS patients tend to have lower FA-CCA, especially in the 

posterior section from the rostral body to the splenium. The effect of gender seems to be 
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negligible. The estimated age effect, , indicates that FA-CCA decreases almost 

linearly with age over the entire tract, particularly in the anterior part, but this effect is fairly 

small. Not accounting for the longitudinal data structure (c.f. Figure 7), differences between 

MS and healthy subjects would be found to be much larger and statistically significant along 

the entire tract. The corresponding estimate for the age effect seems implausible. Due to the 

misplaced independence assumption, the variability of the estimates shown in Figure 7 is 

underestimated, but should be approximately correct in Figures 4 and 5. The rightmost 

panels in Figure 8 give covariances and correlations for εij(t) and show that the white-noise-

error assumption is reasonable for model (9), but severely violated for (8). They also show 

that spline-based random intercepts are less successful in removing all structure from the 

residuals in this case, especially in the rostrum/genu.

In healthy controls, FA values at the ends of the OPR tract (towards lateral geniculate 

nucleus and visual cortex, respectively) and in its middle section show a positive association 

with FA values along the entire CCA tract (see Figure 5). For the CTS tract, there is some 

indication of a positive association between FA values in the beginning of the CTS tract 

(medulla) and the end of the CCA (splenium) and between the end of the CTS tract 

(subcortical white matter) and the beginning of the CCA (rostrum/genu), the latter 

corresponding with spatial proximity. These patterns should be indicative of the normal 

ageing process, while the observed associations mostly vanish for MS patients or become 

much weaker. It should be noted, however, that simulation results indicate potentially low 

estimation accuracy of fixed effects in settings such as this one in which the random effects 

dominate the predictor. Figure 6 displays the predicted intercept curves b ̂
i0(t) (left panel) and 

observed residuals  (right panel). The large variation in the 

predicted functional intercepts reveals large inter-subject variability. By accounting for the 

between-subject variability the observed integrated root mean square error of the responses 

with the proposed method (0.027) reduces to half of its magnitude compared to Ivanescu et 

al. (2012) under an independence assumption (0.05). Model (9) explains about 90% of the 

observed variability, while (8) explains only about 63%.

In conclusion, using our flexible modeling framework for the FA profiles along the CCA 

tract shows that a large fraction of the variability in the data is captured by subject-specific 

random effects. Modeling the dependence on FA profiles at other well identified tracts, OPR 

and CTS, can provide new insights into the spatial association in normal ageing and disease 

processes. Interestingly, our results indicate that the associations between demyelination 

along the left CTS and left OPR tracts and the CCA tract are weaker for MS patients than 

for healthy controls. A possible interpretation of this finding could be that demyelination 

processes in MS patients are more strongly localized, consistent with the development of 

localized lesions during MS. By properly accounting for the longitudinal structure of the 

data the estimation uncertainty of all effects increases compared to model (8) under an 

independence assumption.

3 Discussion and Outlook

We propose a general framework for flexible additive regression models for correlated 

functional responses, allowing for multiple functional random effects with, for example, 
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spatial, temporal, spatio-temporal or longitudinal (Section 2.2) correlation structures. 

Dependence structures can be modeled either implicitly by specifying smooth temporal, 

spatial or tempo-spatial effects or explicitly by including functional random effects with 

marginal between-unit correlation structures given by the precision matrices of Gaussian 

(Markov) random fields. Estimation and inference is performed by standard additive mixed 

model software, allowing us to take advantage of established robust and flexible algorithms. 

The approach is implemented as fully documented open-source software in the pffr()-

function in the refund package (Crainiceanu et al., 2011) for R. Effects of functional 

covariates and functional random effects are available in both FPC- and spline-based 

variants and both scalar and functional covariates can have linear or more general smooth 

effects on the outcome trajectories, allowing analysts to choose the most suitable tools for 

the task at hand.

Simulation experiments show that the proposed method recovers relevant effects reliably 

and handles small group sizes and/or low numbers of replications well. Data sets of 

considerable size can be fit in acceptable time. Two applications demonstrate that our 

approach makes it possible to fit flexible models that do justice to complex data situations 

and yet still yield interpretable results that can help to understand the underlying processes.

This work opens up a number of interesting avenues for further research. A first direction 

concerns the covariance structure of the residuals. Since our present inference algorithms do 

not exploit the extreme sparsity of the design matrices for smooth observation-specific 

residual terms, estimating such terms dramatically increases computation time and memory 

requirements for large data sets. On the other hand, simply assuming i.i.d. errors εit will 

often be unrealistic since some degree of auto-correlation and heteroscedasticity over the 

index of the functional response is usually encountered in practice. We are currently 

investigating an iterative procedure similar to the approach in Reiss et al. (2010), where 

observed residuals from an initial model estimated under a working independence 

assumption are used to estimate a working covariance structure and the model is then re-

estimated based on de-correlated data. If successful, such a marginal model specification 

could offer an efficient alternative to the conditional modeling approach outlined in the 

present paper. In a second direction, we are currently developing diagnostic measures to 

identify potential problems with low-rank functional covariates (c.f. Appendix A) as well as 

practical model-building strategies regarding the estimation of corresponding regression 

surfaces. A closely related avenue of inquiry are more in-depth comparisons of spline- and 

FPC-based approaches for modeling function-on-function terms as well as functional 

random effects in order to evaluate their relative strengths and weaknesses. The unifying 

framework implemented in pffr() will greatly facilitate such comparisons. In addition, we 

have begun implementing a dedicated toolbox for REML-based inference tailored to 

function-on-function regression. This effort is based on the computationally efficient array 

regression approach of Currie et al. (2006), which is expected to speed up inference for large 

scale problems and help to generalize the proposed methods for multidimensional functional 

responses and image regression.
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A Identifiability

A.1 Imposing suitable identifiability constraints

Additive models for scalar responses ensure identifiability by imposing suitable constraints 

on the functions that make up the additive predictor , such as a sum-to-zero 

constraint  for each function fs(xs) (Wood, 2006). Otherwise, any constant 

could be added to one function and subtracted from the others without changing the fit 

criterion.

A similar issue arises in the context of our proposed model. For arbitrary functions 

obtains the same fit with two different parameterizations. To avoid this, we impose sum-to-

zero constraints for each t so that .

We also center covariate trajectories xi(s) by subtracting the mean function 

. If both the sum-to-zero constraints for each t are imposed and 

functional covariates are centered, all effects that vary over the index of the response are 

directly interpretable as deviations from the overall mean trajectory α(t). Standard sum-to-

zero constraints implemented in mgcv, which would correspond to Σi,t γ(zi,t) = 0, yield 

neither identifiable models nor effects that are interpretable like this. Implementationwise, 

we use the method described in Wood (2006, ch. 1.8.1) to absorb the sum-to-zero-for-each-t 

constraints into the design matrices of all effects varying over t, see section A in the online 

supplement for details and examples.

A.2 Limits on the identifiability of complex regression surfaces for low-rank 

functional covariates

For function-on-function-regression terms , identifiability of β(s,t) is 

guaranteed under conditions derived in He et al. (2003), Chiou et al. (2004) and Prchal and 
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Sarda (2007), which are hard to verify empirically. In practice, an important quantity in this 

regard for the stability of spline-based estimates is the effective rank of the covariance 

operator of x(s), which can be defined as the number of eigenvalues that together account for 

at least 99.5% of the covariate's variability. If this effective rank is low, the kernel of the 

functional covariate's covariance operator is large. Scheipl and Greven (2012) have shown 

that spline-based regression surface estimates can be unstable if the kernel of the functional 

covariate's covariance operator overlaps the function space spanned by parameter vectors in 

the nullspace of the tensor product spline's roughness penalty. Based on theoretical 

considerations and simulation results (c.f. Scheipl and Greven, 2012), we recommend that 

practitioners check the effective rank of the observed covariance matrix of functional 

covariates and the amount of overlap between the kernel of the functional covariate's 

covariance operator and the nullspace of the associated roughness penalty. Utility functions 

to perform these checks and constructors for modified roughness penalties without 

nullspaces are included in refund.

B Supplementary Details for the DTI Data Analysis

C Supplementary Simulation Study Results

Comparison with FPC-based approaches—We fit models with an FPC-based 

function-on-function term (c.f. page 8) and models with FPC-based functional random 

intercepts (c.f. page 10) to each dataset generated for the second scenario. rIMSEs for the 

FPC-based function-on-function term were larger than those of the spline-based estimates by 

a mean factor of 1.5(1.2−2.1), while computation time was about the same for M = 10 

(1(0.8−1.4)) and somewhat longer for M = 100 (1.3(1.1−1.6)). Results for the FPC-based 

functional random intercept were more different from the spline-based option. Specifically, 

the FPC-based functional random intercept showed fairly little improvement for SNRε = 5 

compared to SNRε = 1. For the latter, the FPC performance was fairly similar (M = 10: 

factor of 2.4(1.3−9.4), M = 100: factor of 1.1(1.0−1.5)), while it was much less precise for the 

former: 3.4(1.1−17) for M = 100 and 17(2.5−106) for M = 10. As expected, however, FPC-

based functional random intercepts scaled much better than spline-based ones for larger 

datasets in terms of computation time due to their more compact optimal basis 

representation – for M = 100, the iterative FPC procedure was faster than spline-based 

random effect models by a factor of 0.3(0.2−0.5). Also, our spline-based data generating 

process corresponding to five non-zero FPCs (c.f. Appendix B of the supplement) may be 

more difficult for FPC based approaches: previous simulation studies of FPC-based 

functional regression have typically used data generating processes with lower effective rank 

(e.g. Chen and Müller, 2012; Müller and Yao, 2008; Wu et al., 2010, with 2, 3, and 4 

eigenfunctions, respectively) and simpler coefficient shapes.

Comparison with WFMM—We compare our approach to the available implementation of 

the wavelet-based functional linear mixed models of Morris and Carroll (2006) in WFMM 

(Herrick, 2013). We can only provide this comparison for scenario 1 as the other scenarios 

feature terms that are not available in WFMM, which can only fit random effect curves and 

functional linear effects zijβ(t) of scalar covariates z. Note that, differing from the results for 

pffr in the remainder of the article, these results are for balanced data, as the WFMM 
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algorithm seems to fail whenever there are any subjects with 1 or 2 observations only, and 

10 replicates per setting. We used the default hyper- and tuning parameters for WFMM, 

with 2000 iterations of burn-in followed by 10000 iterations of sampling. In general, the 

IMSEs for WFMM are about double to three times those of pffr. Specifically, the IMSE for 

y(t) is increased by a median factor of 2.5(2.1−3.1) (IMSE(b0(t): 2.3(1.6−3.8), IMSE(b1(t): 

2.4(1.5−4)). Note, however, that this comparison is not entirely fair to WFMM, as it is 

designed for spiky data e.g. from spectrometry (i.e., it assumes sparsity in a suitable wavelet 

domain), not the smooth functional data that we assume and correspondingly simulated here. 

Although WFMM is much slower (4- to 16-fold) than pffr for small and intermediate data 

sizes, its computation time increases much slower than pffr for larger data sets due to its 

efficient data representation in the wavelet domain and its very fast C++ implementation. 

Detailed results for this comparison are provided in Section B.6 of the online appendix.
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Figure 1. 
Baseline levels and estimated multiplicative change in rIMSE for the 4 scenarios. The 

scenarios are depicted with different symbols, and the segments accompanying the symbols 

correspond to the estimated effect ± 2 standard errors. Effects other than b0(t) only occur in 

a subset of scenarios. Horizontal axis on log2.
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Figure 2. 
Computation times for scenarios 1 to 4 (from left to right). Vertical axis on log10-scale. 

Horizontal axis for the various combinations of numbers of subjects M and average number 

of replications per subject ni. Results for T = 30 in dark grey and in light grey for T = 60. 

Timings are wall-clock time taken on an 2.2 GHz AMD Opteron 6174.
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Figure 3. 
From left to right: FA profiles along CCA, OPR and CST for MS patients (red) and controls 

(blue). Solid line: females; dashed: males. FA-OPR and FA-CST are de-trended and 

smoothed.
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Figure 4. 
Estimated components of model (9) with ±2 pointwise standard errors. Coefficient surfaces 

are color-coded for sign and approximate pointwise significance (95%): blue if sig. < 0, light 

blue if < 0, light red if > 0, red if sig. > 0. Left to right: mean FA-CCA for healthy (blue, 

dotted) versus MS (red, solid) females; mean FA-CCA for female (purple, solid) and male 

(green, dotted) MS patients; estimated smooth index-varying age effect .
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Figure 5. 

Left to right: Estimated coefficient surfaces , , , .
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Figure 6. 
Predicted functional intercepts b ̂

i0(t) and observed residuals êij(t) for model (9).
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Figure 7. 
Estimated components of model (8) with ±2 pointwise standard errors, using Ivanescu et al. 

(2012). Coefficient surfaces are color-coded for sign and pointwise significance (95%): blue 

if sig. < 0, light blue if < 0, light red if > 0, red if sig. > 0. Top row, left to right: mean FA-

CCA for healthy (blue, dotted) versus MS (red, solid) females; mean FA-CCA for female 

(purple, solid) and male (green, dotted) MS patients; estimated effect of age-at-visit . 

Bottom row, left to right: Estimated coefficient surfaces , , , 

.
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Figure 8. 

Top row, left to right: Observed residuals  for model (8); empirical covariance for 

 for model (8); empirical covariance for  for model (9) with FPC-based random 

intercepts; empirical covariance for  for model (9) with spline-based random 

intercepts; legend for covariance values. Bottom row: Empirical correlations.
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Table 1

Forms of  depending on the covariates in  and linearity or smoothness in these covariates (rows), 

and on whether the effect is constant or varying over t (columns). For scalar categorical covariates, synthetic 

scalar covariates in effect or reference category coding are created. Note that effects can become interaction 

effects if  additionally contains such scalar categorical covariates. For example, we estimate group-specific 

effects of the functional covariates for MS patients and healthy controls in our DTI application.

Xr f r(Xr , t) constant over t f r(Xr , t) varying over t

∅ (no covariates) scalar intercept α functional intercept α(t)

functional covariate x(s) linear functional effect ∫
Y

x(s)β(s)ds linear functional effect ∫
Y

x(s)β(s, t)ds

smooth functional effect ∫
Y

F (x(s), s)ds smooth functional effect ∫
Y

F (x(s), s, t)ds

scalar covariate z linear effect zδ functional linear effect zδ(t)

smooth effect γ(z) smooth effect γ(z, t)

vector of scalar covariates z interaction effect z1z2δ functional interaction effect z1z2δ (t)

varying coefficient z1δ(z2) functional varying coefficient z1δ(z2, t)

smooth effect γ(z) smooth effect γ(z,t)

grouping variable g random intercept bg functional random intercept bg(t)

grouping variable g and scalar covariate z random slope zbg functional random slope zbg(t)
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