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1. The aim of this paper is to study the nonlinear differential equation 

(1) Ex = Nx 

where AT is a nonlinear operator in a real Hubert space S, and £ is a linear 
differential operator in S with preassigned linear homogeneous boundary 
conditions. The idea is to reduce the problem to a finite dimensional 
setting and this technique has been used by several authors. We use here 
a method due to Cesari [4]. This method has been extensively developed 
in the existence analysis of differential equations by Cesari, Hale, Locker, 
Mawhin and others. For a detailed bibliography one is referred to 
Cesari [5]. 

In this paper, by applying results from the theory of monotone 
operators, we show that, under suitable monotonicity hypotheses on N, 
the equation Ex = Nx can be solved. In the present short presentation 
we restrict ourselves to the simplest hypotheses on E9 N and S, even 
though the results obtained here hold under more general conditions. 

2. Let S be the direct sum of the subspaces S0 and St and let P:S -> S0 

be a projection operator with null space Sl9 and H:Sl -* Sx a linear 
operator such that ( h j H(I - P)Ex = (I - P)x, x belonging to the 
domain oî E.If y is a solution of (1), then Ey = Ny implies H(I — P)Ey = 
H(I - P)Ny. Hence, (/ - P)y = H(I - P)Ny; and finally 

(2) y = Py + H(I - P)Ny. 

Thus, any solution of (1) is a solution of (2). If we also have that 
(h2) EPx = PEx and (h3) EH{I - P)Nx = {I - P)Nx, then from (2) we 
derive 

Ey = EPy + EH(I - P)Ny = PEy + (I - P)Ny. 

Hence, Ey — Ny = P(Ey — Ny). Thus, any solution y of (2) is a solution 
of (1) if and only if y satisfies 

(3) P(Ey - Ny) = 0. 
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Thus, under hypotheses (r^), (h2), and (h3), we have 

THEOREM. An element y in S is a solution of (1) if and only if y is a 
solution of equations (2) and (3). 

Equations (2) and (3) are called the auxiliary and bifurcation equations 
respectively. Note that, if S is a separable Hilbert space with norm 
||x||2 = <x • x} and (</>1? </>2, . . . ) as an orthonormal basis, and we 
consider S0 as spanned by {(j)l, <f>29 . . . , 0m}, then (3) reduces to the finite 
system of equations (Ey — Ny) • 4>t = 0, i = 1, 2, . . . , m. 

3. Let us assume that the associated linear problem Ex + Xx = 0 
(with preassigned linear homogeneous boundary conditions) has a 
countable system of eigenvalues k{ and eigenfunctions </>f such that 
Xt S <̂i + i > h -> +°o as i -• oo and {0J is a complete orthonormal 
system in the Hilbert space S = L2(A) of all square integrable functions 
x(a), a e A. 

Any element xe S can be written as £ c^-. 
Let Px = X7 <#* and Ex = - ^ c^fa. Thus, 

00 

(I -P)x= X c^„ ( I - ^ e S , , 
m + 1 

and for m such that Àm+1 > 0,\QÎH:S1 -> 5x be defined by #(ƒ - P)x = 

It can be easily seen that H(I - P)Ex = (I - P)x, EPx = PEx, 
EH(I - P)x = (I - P)x. 

For x = ]T ci4>i> w e have 
00 00 

<-H{I - P)x, x> = £ cfK1 ^ Am+1 £ cfK2 

m + 1 m + 1 

= Xm + l\\-H(I -P)x\\2. 

Hence, the operator — H(I — P) is a linear, monotone operator. Since it 
is bounded, it is maximal monotone. 

We now use the Theorem above to solve (1). To this end, we have to 
solve (2) and (3) respectively. Let us first consider the auxiliary equation 
(2), i.e., y = Py + H(I — P)Ny. Let x* be any element of S0 and consider 
the equation 

(4) y - H(I - P)Ny = x*. 

This equation is of the type u + LNu = x*9 where L is a (linear) maximal 
monotone operator; it has been studied by Browder [2], Brezis [1], 
Kolodner [7] and several others, where TV is assumed to satisfy suitable 
monotonicity hypotheses. 
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In view of the fact that < - # ( / - F)x, x> ^ Xm+1 \\-H(I - P)x\\2 

and applying the result of Hess [6], we conclude that (4) has always a 
unique solution y* for each x* e S0, provided N is also hemicontinuous. 

We now proceed to consider the bifurcation equation (3). Thus we have 
to solve the equation PNy* — PEy*, where y* is the solution of (4) 
corresponding to x* G <S0. But PEy* = EPy* = Ex* and thus equation 
(3) reduces to 

PN[I - H(I - P)N']~1x* - Ex* = 0. 

Let M = N[I - H(I - P)NYl. And let u = Ma, v = Mb, where 
a, b G S0. Then, u = Np, v = Afy, where p = (I — H(I — P)N)~1a and 
0 = (ƒ - H{I - P)N)~1b. Thus 

(u — v,a — by = (Np — Nq, a — by 

= (Np - Nq,p - H(I - P)Np - q + H(I - P)Nq} 

= (Np - Nq,p - q) 

+ (Np - Nq, -H(I - P)Np + H{I - P)Nq). 

The first term on the right hand is ^ 0 because N is monotone and the 
second is so because —H(I — P) is monotone. Hence, 

PM = PN[I - H(I - P)NYl 

treated as an operator from S0 to S0 is monotone, for if a, b e S0, then 
(PMa - PMb, a - b} = (Ma - Mb, a - 6>. Further, if a G S0, then 
the equation 

(5) a = {I + PN[I - H(I - P)NY1}x 

reduces to a = x + PNp, where p = [J - H{I - /^ iV]" 1*, or 
(6) p - H{I - P)Np + PA^ = a. 

By arguing as before it can be shown that this equation is solvable for 
p, and thus it follows from (6) that we can find x e S0 such that (5) is 
solvable. Hence, PN[I — H(I — P)NYi is maximal monotone over S0, 
a finite dimensional space. 

Thus we are reduced to an equation in the finite dimensional space 5 0 

of the form Mx* — Ex* = 0 where M is maximal monotone. If 
(Ex*, x*y ^ 0, as is the case when all the Af's are ^ 0 , then the above 
equation is solvable. If, however, E has a finite number of negative 
eigenvalues, then one can proceed in several ways. Thus if Xx ^ X2 ^ 
• • • :g Xm S 0, then one can apply Browder [3, p. 21] and conclude: 
If [ƒ - H(I - P)NY* is continuous and 

(Nxx — Nx2,x1 — x2y ^ c\\xi — x2\\
2, c > —Xt, 

then the bifurcation equation is solvable. 
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