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Abstract— This paper presents a novel grasping motion
analysis technique based on functional principal component
analysis (fPCA). The functional analysis of grasping motion
provides an effective representation of grasping motion and
emphasizes motion dynamic features that are omitted by classic
PCA-based approaches. The proposed approach represents,
processes, and compares grasping motion trajectories in a low-
dimensional space. An experiment was conducted to record
grasping motion trajectories of 15 different grasp types in
Cutkosky grasp taxonomy. We implemented our method for
the analysis of collected grasping motion in the PCA+fPCA
space, which generated a new data-driven taxonomy of the
grasp types, and naturally clustered grasping motion into 5
consistent groups across 5 different subjects. The robustness
of the grouping was evaluated and confirmed using a ten-fold
cross validation approach.

I. INTRODUCTION

In Learning from Demonstration (LfD), mapping between

humans and robots is one of crucial problems to resolve

for successfully transferring skills learned from humans to

robots. Grasp classification approaches have been developed

to avoid direct kinematic mapping, in which human grasps

are classified into different grasp types and a demonstrated

grasp is recognized as one of the trained grasp types. Many of

the grasp types are defined by the Cutkosky grasp taxonomy,

which classifies common human grasps into 16 types based

on task requirements and dexterities [1].

A human hand has 22 degrees of freedom (DOF) [2], and

classifying a grasp type represented with all the joint vari-

ables in a hand is a high-dimensional problem. Fortunately,

the motions of finger joints are not entirely independent

of each other [3]. Some of the correlations arise from the

musculoskeletal architecture [4], in that some finger muscles

have insertions on more than one finger, while others have

contributions from neural constraints because of linkages in

the activation of individual finger muscles [5], [6].

An early attempt to simplify the formula of grasping can

be tracked back to Napier (1956) [7], who defined two

distinct patterns of movement – precision grip and power

grip. Later, more detailed grasp classification was introduced

by many researchers [8], [9], [10], [11], [1]. With similar

consideration, the Iberall group introduced the concept of

“virtual fingers” [12], in which each virtual finger represents

all of the fingers that are controlled as one unit in a grasping

process.

Santello et al. [13] studied the static hand grasping

postures during grasping using a large number of familiar
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objects and found that the 15 joint angles of the fingers and

the thumbs are mostly correlated and that two components

could account for ą 80% of the variance between different

static hand postures. Thakur et al. [14] used a principal

component analysis (PCA) approach to analyze hand posture

data obtained from a motion capture system and then defined

a set of hand synergies that would describe a generalized

grasping motion.

In robotics, researchers recently have been able to use

PCA to reduce high dimensional grasping data to a lower

dimensional space so that a grasping process is easy to model

for learning and control. Ciocarlie and Allen [15] showed the

computational advantages of using a reduced dimensionality

to control grasping, in which the pre-grasp posture of a

robotic hand was derived in the reduced dimension. Peters

and Jenkins [16] compared a number of dimensionality

reduction approaches that extract two-dimensional manifolds

from human demonstration datasets.

Most hand motion analysis approaches are based on PCA

or linear discriminant analysis (LDA) that treat the postures

in a grasping process as discrete points scattered in a high-

dimensional space. The obtained principal components rep-

resent the dominant variation directions between hand poses

as they are static. However, since the temporal information

related to the poses is not preserved or used, the motion

feature of the grasping process cannot be fully characterized

with PCA. The popular Gaussian mixture model (GMM)

treats motion samples as static points, loses the dynamic

features of the motion, and then invents artificial dynam-

ics when generating desired robot motions with Gaussian

mixture regression (GMR). It loses and distorts the natural

motion dynamic features – relative velocity and acceleration,

in the tool and the dynamics in the hand-tool interaction.

To preserve the dynamics in the motion, we propose to

model the motion sequence based on functional principal

component analysis (fPCA).

Neither humans nor robots perform a grasping task in

a discrete manner. Instead, grasping processes are usually

highly continuous and featured with dynamics (velocity and

acceleration). To fully model grasping processes and grasp

synergy, we need to find a functional-based analysis to

preserve temporal and dynamic information. Furthermore,

if we wish to control a robot to reproduce a human-like

grasping model, it is necessary to control the robot’s hand

motion with human-like trajectories.

A number of approaches have been developed to recover

temporal information from a recorded dataset after PCA

and to generate novel trajectories by mapping the recorded

trajectories for control. For example, Aleotti and Caselli [17]

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 3507



developed a NURBS-based approach to replicate different

grasping motion based on the recorded trajectories and pos-

tures obtained with a Cyberglove. PCA has also been widely

used in biomechanics to describe continuous waveforms [21].

Soechting and Flanders [2] studied the degrees of freedom

during typing and found temporal patterns of motion with

two to four principal components (PCs) that were computed

as a linear combination of the 121 original recorded motion

waveforms. In robotics, [18] used Hidden Markov models to

recognize grasp types from the taxonomy based on an entire

grasp sequence, particularly emphasizing the approaching

state. A recent paper [19] analyzed grasping motion by

first reducing the high-dimensionality of motion trajectories

onto three-dimensional space and preserving the locality of

the nonlinear structure in the trajectories by using locality

preserving projections (LPP). Then, a Hausdorff distance

was used to measure the similarity between trajectories and

classify the trajectories into different types in the reduced

low-dimensional space.

A new set of statistical techniques, functional data anal-

ysis, recently was formulated and used to analyze temporal

data [22]. Specifically, functional PCA (fPCA) can be used

in motion analysis to extract orthogonal functional principal

components (fPCs) from observed motion data without any

discretization process and then reduce the dimensionality

of the representation for the motion of interest by a linear

combination of these fPCs.

In this paper, we explore a novel grasp type grouping

and classification approach based on fPCA to recognize and

analyze human grasping motion. Different from previous

grasping motion analysis using traditional PCA to obtain

“eigengrasps” for static hand posture variability, our fPCA-

based grasping motion analysis focuses on the temporal

relationships between hand postures at each time point from

a dynamic perspective. We are interested in the variability

range of grasping motion dynamics across different objects

and subjects. Specifically, we implement fPCA to capture

the principal modes of grasping motion dynamics, which can

further be used to learn grasping motion from a human to

program robotic hands by demonstration.

II. PRINCIPAL MOTION EXTRACTION

A. Motion feature segmentation and alignment

To compare different trajectories taken in different trials

by different subjects, they should be properly aligned to

remove temporal artifacts. We first adopt dynamic time

warping (DTW) [23], which has been used in matching

time series such as speech recognition and economics, to

optimally align grasping motion curves that may vary in time

between two trials of finger joint displacement sequences by

non-linear transformation. The DTW is basically a dynamic

programming algorithm which first computes a local-match

matrix to store the distances between two trajectories for each

time point, and then finds the path that has a minimal overall

value within the matrix while satisfying three conditions:

boundary condition, monotonicity condition, and step-size

condition. The boundary condition makes sure that the path

Fig. 1. Top graph shows the original curves; Bottom one shows curves
after applying the dynamic time warping. The number of diagonal steps
allowed is 20 and the max horizontal or vertical transition in the warping
is 10.

starts at the first point of the aligned sequences and ends

at the last point of the aligned sequences. The monotonicity

condition makes sure that the aligned trial preserves time-

ordering of the original data. In the end, DTW allows us

to align different trials of grasps pair-wisely by changing

the time step between each frame of the motion records

yet reserve motion dynamics in the original records. For

example, Figure 1 shows the original five trials of the

motions of the thumb-index finger abduction joint D1-D2

MP (top figure) during one type of object grasping task and

the same set of curves (bottom figure) after DTW.

B. Principal Motion Extraction for 1-DOF Motion

First, we apply the fPCA approach to a set of 1-DOF

joint trajectory data to describe how to compute fPCs and

fPCA scores and how to analyze grasping motion in the

fPCA space. After alignment, a set of collected 1-DOF joint

trajectory data xiptq, i “ 1, . . . , N have a common set of

sample time points t1, . . . , tm, where N is the total number

of collected motion trajectories or trials corresponding to

different motion types such as grasping of different objects.

Since the datasets of grasping trajectories are currently

represented in a discrete form, we first create functional

objects to replace the sampled motion data vectors for

analysis. In our experiments, we have used B-spline functions

as function bases to create the functional objects from the

sampled motion data. As the observed grasping motion is

not periodical, we consider that these data are all open-

ended data and choose spline functions to approximate the

underlying grasping functions. The underlying function xiptq
is often declared to be smooth. We use a relatively large

number of bases to compensate for the penalty introduced

by smoothing these functions. In our experiments, we have

obtained satisfactory results with dozens of B-spline base

functions.

The penalty is quantified by the second derivative

rD2
xptqs2 at t, which represents the function’s curvature.
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The natural measure of these functions’ roughness is the inte-

grated squared second derivative. As a result, the underlying

function is the smoothest twice-differentiable curve that fits

the motion data. We take uniform time intervals since we

treat each measurement equally, which means that we do

not segment the motion of the whole grasping procedure. All

motion curves are fitted with B-spline function bases, which

has L subintervals separated by τl, l “ 1, . . . , L ´ 1 called

knots. The notation Bkpt, τq indicates the value sampled at

t of the corresponding B-spline basis defined by the knot

sequence τ . According to this, we can represent any grasping

curve as

Sptq “
L´1
ÿ

k“1

ckBkpt, τq, (1)

Assuming that we work with normalized data with zero

mean without loss of generality (the mean function can be

subtracted from the projected data), we define the covariance

function of the projected data as

vps, tq “ pN ´ 1q´1
ÿ

yipsqyiptq, (2)

where yipsq represents the functional objects for the 1-D

motion data for the ith trial. With that, the fPCs for fPCA

are simply the eigenfunctions of the covariance function:
ż

vps, tqξℓptqdt “ ρℓξℓpsq, (3)

in which ρℓ is the eigenvalue, while ξℓptq is an corresponding

eigenfunction. With the function basis expansion, the system

can be solved similarly as in traditional PCA to look for

orthonormal eigenfunctions ξℓptq, ℓ “ 1, . . . , L whose linear

combinations maximize the variation in the data defined by

the principal scores using the inner product:

ρℓpyiq “

ż

ξℓptqyiptqdt. (4)

The fPCs of grasping motion simply represent the princi-

pal curves that summarize the angle variation of each DOF

through the whole grasping procedure. Figure 2 shows the

original curve of the D1 - D2 MP joint (between thumb

and index finger) and its first two principal curves (fPCs),

which dominate the variation during the grasping motion.

Figure 2(c) and (d) show the original trajectory and the

reconstructed trajectory using the two fPCs. We can see that

the motion is reconstructed without losing much information.

C. Principal Motion Extraction for high-DOF Motions

Ideally, we would like to directly apply fPCA to capture

complete functional correlation between these motion func-

tions and identify essential motion patterns from the data to

control robots for grasping different objects. However, due

to increasing complexity of variance-covariance structure,

fPCA is typically limited to the study of the samples of a sin-

gle function with extension to joint analysis of two functions,

meaning that the analysis is done within the sampled curves

from the function of one or two variables. In the current

study, we take an alternative route to find principal modes of

Fig. 2. (a) The most significant fPC that represent the angle variation
through grasping procedure. The percentage of variance covered over the
mean function is shown in the subtitle. (b) The second significant fPC. (c)
The original curve in red solid line. (d) The reconstructed curve using first
two fPCs in blue solid line. These data are from the first trial of the large
diameter grasping task.

functional dynamics of grasping motion. Instead of directly

implementing fPCA to the sampled motion functional data,

we first implement a traditional multivariate PCA to extract

the principal postures, similar as “eigengrasps” in [15], which

capture the major range of hand posture changes across

subjects and objects. To do that, we aggregate the sampled

motion data xiptq at t1, . . . , tm along time tl into a data

matrix X “ pxjlq, where l “ 1, . . . , N ˆm is the combined

index based on trials and sample time points and j is still the

index for functional variables. With X, traditional PCA [25]

can be implemented to compute principal components as

principal postures whose standardized linear combinations

span the space with the maximum variance of the data and

cover the main variability of hand posture changes. These

principal components are the eigenvectors of the covariance

matrix XX
T

Nm´1
with column centered X without loss of

generality. We denote them as pk, k “ 1, . . . ,K with K

as the number of principal postures.

With the principal components, we implement fPCA to

analyze their temporal functional dynamics by projecting

the original sampled motion data to each selected principal

component pk. For each motion along the principal axis, the

fPCA in the previous section can be applied. For example,

for a 14-DOF time series motion data set, if we select

the first three principal components as principal postures

by PCA, and then select the first two functional principal

components with fPCA, we can represent a 14-DOF motion

trajectory with six variables. Basically, we can represent and

compare the 14-DOF trajectories in the motion dataset in a

six-dimensional space after PCA-fPCA analysis.

III. EXPERIMENT DESIGN AND DATA COLLECTION

We captured the hand motion in joint angles with a right-

handed 5DT DataGlove 14 Ultra that records 14 joints of

a hand using a series of optical fibers. Figure 3 shows a

photograph of the dataglove side by side with a schematic
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drawing of the joints’ motion being captured [24]. The

sampling rate of 5DT DataGlove 14 Ultra is 62.5Hz. Five

subjects have participated during the data collection, whose

heights are between 5 feet 8 inches and 6 feet. We have

collected a set of grasping motion data for 9 typical objects

for 15 different grasp types by the 5 subjects using a right-

handed 5DT DataGlove 14 Ultra. With K-means clustering

approach, we are able to generate a data-driven hierarchical

grasping taxonomy and recognize grasp types robustly in the

fPCA space.

(a) (b)

Fig. 3. (a) The 5DT DataGlove used in our experiment; (b) the measured
joints on the right hand and their indices in the DataGlove.

The 15 sets of 14-DOF finger motions were recorded for

5 trials of grasping processes of a total of 9 objects, with

the dataglove at the side to indicate the sizes of the objects:

spray can, metal tube, screwdriver, tomato, duct tape roll,

golf ball, flat tool box, marker, and flat thin plastic (Figure 4).

These are daily living objects and were selected to reflect the

representative grasps in Cutkosky grasp taxonomy.

Fig. 4. Grasping objects.

IV. GRASPING MOTION ANALYSIS

The recorded 14-DOF motion data from 5 trials of all

15 grasp types gave a total of 75 14-DOF sampled motion

functional trajectories for each subject. With classical PCA,

we reduced the DOF of the hand from 14 to 3 by finding 3

principal components as principal hand postures and repre-

senting the static grasp postures using PC scores along these

principal components. At this point, the motion data were

reduced to 75 3-DOF motion trajectories – we computed

the three PC scores for every time point of each grasping

motion during the grasping procedure. For each dimension

in the 3D PCA space, the fPCA was applied to process the

75 motion trajectories to find a set of fPCs that can represent

the basic functional dynamics of the trajectories. After the

fPCA, each of the original 75 14-DOF motion functions can

be represented using 6 independent variables.

The PCA is a good method for extracting information

from related empirical variables. Each orthogonal principal

component linearly combines the empirical variables with the

highest level of variance contribution on that dimension. The

variables that have a significant contribution on each com-

ponent are said to be correlated by their level of variability.

Computed with our training data, the first three components

cover 83% of the overall variance of the entire data set.

Therefore, we chose the first three principal components

(PCs) to represent the grasp poses.

Once the principal postures of the grasping data are

extracted, analysis continues by evaluating the dynamics of

these components. As explained before, the advantages of

fPCA reside in the description of the dataset on a temporal

graph as a function of time. It relates the correlation of

empirical variables throughout the whole motion instead

of individual snapshots. We implemented fPCA to analyze

the temporal functional dynamics of grasping motion by

projecting the original sampled motion data to the vectors

corresponding to individual principal postures. In fPCA, we

used B-spline functions as our function bases to create the

functional objects from the sampled motion data, as the

observed grasping motion is not periodical.

Figures 5 and 6 show the eigenfunctions and how they

vary over the mean function. In the top graphs, the black line

refers to the mean function of the first principal component

obtained from the PCA procedure; similarly, the bottom

graphs show the second component’s mean function. The

dashed and point-dashed blue lines describe the first and

second component variability over the mean based on derived

eigenfunctions.

Similarly, since the first two fPCs for each PC contribute

around 95% of the dynamic change in the motion trajectories,

we selected them to represent the motion functions. There-

fore, each 14-DOF motion trajectory can be first projected

on the three PCs to produce a 3-DOF trajectory and then

projected in the two fPCs for each of the three PCs. In

the end, every grasping motion can be represented with six

variables that capture both the static and dynamic features

of the motion.

In the six-dimensional space, we applied the K-means

clustering algorithm on the grasping trajectories with incre-

mental k “ 2, 3, . . . , 13 to find natural grouping of grasp

types for different levels. With increasing k, coarse grasp

type groups were split to subgroups consistently across the

five subjects (Table I), which revealed potential hierarchical

taxonomy in the grasping types. The K-means clustering

was performed on all 5 subjects individually for 5 trials of

9 different objects with 15 different grasp types according

to Cutkosky grasp taxonomy. Figure 8 shows the hierarchy

structure of the grasping types obtained for one subject.

By comparing the hierarchy taxonomy from different

subjects, we found that the hierarchical taxonomies were the
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Fig. 5. The first fPC along the first and the second PC over the mean
function

Fig. 6. The second fPC of the first and the second PC over the mean
function.

same for all the subjects when k ă“ 4, and then varied from

subject to subject after more refined clustering. This indicates

that the 15 grasping types can be naturally and stably

grouped into 4 types (excluding platform) from the grasping

motion point of view. More refined classification did not

yield consistent results across subjects since subjects’ hands

are different and their grasping habits are also different. For

comparison, Cutkosky grasp taxonomy is shown in Figure

7. To be consistent, we also included the non-prehensile in

the taxonomy, but we did not perform K-means with non-

prehensile data since it is not a grasping.

In additional to the non-prehensile that is considered as

one group, Group 1 = {platform}. The four grouped grasp

types from the grasping trajectories are:

‚ Group 2 = {Lateal Pinch, Power Disk, Light Tool}
‚ Group 3 = {Power Sphere, Precision Disk, Thumb-4,

Thumb-3, Large Diameter}
‚ Group 4 = {Small Diameter Adducted Thumb Medium

Wrap}
‚ Group 5 = {Tripod Thumb-2 Thumb-Index}

We further evaluated the robustness of the four grasping

groups and the non-prehensile and used the groups to rec-

ognize new unseen grasps. First, we randomly split all the

collected trials for all the objects to training data set and

testing data set and carried out a 10-fold cross validation.

Our method achieved a 97.24% recognition rate (confusion

matrix is shown in Figure 9a). Then, we used the same set of

objects for training and testing. Three of the five trials of each

object were used as training data; the remaining two were

used as test data. The recognition rate was 99.05% and the

confusion matrix is shown in Figure 9b. Last, we randomly

selected one of the 15 objects as an unseen object for

evaluation, and used the rest for training and cross-validated

the objects for 10 times. The recognition rate dropped to

89.16% and the confusion matrix is shown in Figure 9c.

By examining the confusion matrices in Figure 9, we

can see that several grasp types were misclassified in the

testing process. For instance, the grasp type “Thumb-3,”

which should be in class 3, was misclassified as class 5

because the variance covered by the interphalangeal joint

of the ring finger was very low. This can be seen in Figure

9a. The ”Large Diameter,” which should be in class 3, was

misclassified with ”Platform” in class 1. This can be seen in

Figure 9b and Figure 9c.

Fig. 9. (a) Confusion matrix for 10-fold cross validation (b) confusion
matrix for individual user and seen objects (c) confusion matrix for
individual user and unseen objects.

V. CONCLUSIONS AND FUTURE WORKS

We have introduced a new PCA + fPCA-based grasping

motion analysis approach that captures correlations among

hand joints and represents dynamic features of grasping

motion with a low number of variables. The combination

of classical components from PCA considered as functional

objects for fPCA allows us to process 15 different grasp

types in Cutkosky grasp taxonomy in terms of grasping

trajectories, to generate a new data-driven taxonomy of the

grasp types, and to naturally group them into 5 consistent

groups. The results agree with common empirical observa-

tions that classify objects based on size and functionality. In

the future, we plan to expand the study with other objects,

include more participants, and apply our data-driven grasp

type taxonomy in controlling robot grasping in our learning

from demonstration framework [20], [19].

Comparing with Cutkosky grasp taxonomy, the data-driven

grasp taxonomy groups the grasping motions from a differ-

ent perspective. Instead of focusing on functionalities and

behaviors, the data-driven grasp taxonomy provides a new

insight on the grasping motion itself. Some grasp motions are
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TABLE I

OBJECT MOTION GROUPING WITH DIFFERENT K’S BY k-MEANS

k Grasp Grasp Grasp Grasp Grasp

1 Platform Platform Platform Platform Platform

2 Lateal Pinch Lateal Pinch Lateal Pinch Lateal Pinch Lateal Pinch
Power Disk Power Disk Power Disk Power Disk Power Disk
Light Tool Light Tool Light Tool Light Tool Light Tool
Thumb-4
Thumb-3
Thumb-2
Thumb-Index
Large Diamete
Tripod
Precision Disk
Power Sphere

3 Small Diameter Power Sphere Power Sphere Power Sphere Power Sphere
Adducted Thumb Precision Disk Precision Disk Precision Disk Thumb-3
Medium Wrap Thumb-4 Thumb-4 Thumb-4 Thumb-4

Thumb-3 Thumb-3 Thumb-3
Large Diameter Large Diameter Large Diameter
Tripod
Thumb-2
Thumb-Index

4 Small Diameter Small Diameter Small Diameter Small Diameter
- Adducted Thumb Adducted Thumb Adducted Thumb Adducted Thumb

Medium Wrap Medium Wrap Medium Wrap

5 Tripod Tripod Tripod
- - Thumb-2 Thumb-2 Thumb-2

Thumb-Index Thumb-Index Thumb-Index

6 - - - Medium Wrap Precision Disk

7 - - - - Large Diameter

Fig. 7. Grasp taxonomy according to MARK R. CUTKOSKY [10] .
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Fig. 8. Data driven grasp taxonomy according to the classification results. The four groups are indicated in blocks.

different in functionalities for its grasping objects, however,

similar from the pure motion point of view and can be

grouped together for motion learning, trajectory generating,

and motion controller designing. Even for different grasp

functionalities, but in the same data-driven grasp taxonomy

group, human and perhaps a robot can apply the same motion

to achieve ideal grasps and can be controlled similarly. The

results also indicate that some of the grasping behaviors

may have trivial differences that can be overwhelmed by the

differences in the hands and styles, but the 5 grasp groups

obtained by our approach are more robustly distinguishable.
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