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Abstract

Background: Lung cancer, especially non-small cell lung cancer, is a leading cause of malignant tumor death

worldwide. Understanding the mechanisms employed by the main regulators, such as microRNAs (miRNAs) and

transcription factors (TFs), still remains elusive. The patterns of their cooperation and biological functions in the

synergistic regulatory network have rarely been studied.

Results: Here, we describe the first miRNA-TF synergistic regulation network in human lung cancer. We identified

important regulators (MYC, NFKB1, miR-590, and miR-570) and significant miRNA-TF synergistic regulatory motifs by

random simulations. The two most significant motifs were the co-regulation of miRNAs and TFs, and TF-mediated

cascade regulation. We also developed an algorithm to uncover the biological functions of the human lung cancer

miRNA-TF synergistic regulatory network (regulation of apoptosis, cellular protein metabolic process, and cell cycle),

and the specific functions of each miRNA-TF synergistic subnetwork. We found that the miR-17 family exerted

important effects in the regulation of non-small cell lung cancer, such as in proliferation and cell cycle regulation

by targeting the retinoblastoma protein (RB1) and forming a feed forward loop with the E2F1 TF. We proposed a

model for the miR-17 family, E2F1, and RB1 to demonstrate their potential roles in the occurrence and development

of non-small cell lung cancer.

Conclusions: This work will provide a framework for constructing miRNA-TF synergistic regulatory networks,

function analysis in diseases, and identification of the main regulators and regulatory motifs, which will be useful

for understanding the putative regulatory motifs involving miRNAs and TFs, and for predicting new targets for

cancer studies.
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Background
Lung cancer, predominantly non-small cell lung cancer

(NSCLC), is a common cause of malignant tumor death

worldwide [1]. Since the end of the 20th century, lung

cancer has become the leading cause of malignant tumor

death, with morbidity and mortality gradually increasing

over the past 50 years. Active and passive tobacco smoking

is the best-known risk factor for lung cancer development.

Recent advances in genomics, epigenomics, transcripto-

mics, and molecular pathology, as well as in the sequencing

techniques, have led to the identification of many potential

factors as biomarkers, which may provide possibilities

for the early detection of lung cancer and personalized

therapy [2]. Several genes were identified as predictive

biomarkers in NSCLC, such as the somatic mutation
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and gene copy gain of the epidermal growth factor

receptor (EGFR) [3]. L-myc is amplified and expressed

in human small cell lung cancer [4]. Although the

oncogenicity of lung cancer-related genes has been

studied extensively, there is limited knowledge of the

process of malignant transformation and the regulatory

mechanisms of multistep pathogenesis, especially the

regulatory network of lung cancer-related genes, which

urgently need to be studied [5].

MicroRNAs (miRNAs) are small non-coding RNAs

(~23 nt long) that regulate gene expression at the post-

transcriptional level. MiRNAs are encoded by genomic

DNA, transcribed by RNA polymerase II and then

incorporated into a RNA-induced silencing complex

that binds to the 3′-UTR regions of its target mRNAs

to repress translation or enhance degradation [6]. In

recent years, important roles for miRNAs were identified

in developmental timing, tumorigenesis, cell proliferation,

and cell death [6,7]. MiRNAs function as oncogenes

and tumor suppressors, and their regulatory effects in

lung cancer development and progression have been

demonstrated [8-10].

Hsa-let-7a acts as a protective miRNA that suppresses

RAS and other transcriptional factors. Hsa-let-7a expres-

sion is generally reduced in NSCLC patients [11,12].

High expression of hsa-miR-155 was reported to be

associated with poor survival in lung cancer patients

[13]. Hsa-miR-128b directly regulates epidermal growth

factor receptor (EGFR), and loss of heterozygosity of

hsa-miR-128b was detected frequently in NSCLC patients

[14]. Higher tumor miR-92a-2* levels are associated

with decreased survival in patients with small cell lung

cancer. MiRNAs can act as biomarkers of human lung

cancer, and this may have important clinical applications

in prognosis prediction and in predicting the molecular

pathogenesis of cancer, as well as in the development of

targeted therapies [15-17].

At the transcriptional level, transcription factors (TFs)

are the main regulators that control the transcription of

their target genes by binding to specific DNA sequences

in the promoter regions of the genes. TFs and miRNAs

are the two largest families of trans-acting, gene regulatory

molecules in multicellular organisms, and they share a

common regulatory logic [18]. Most genes in a genome

are regulated not by a single factor, but instead by a

synergistic network of trans-acting factors. At the network

level, motifs comprising miRNAs, TFs, and common

target genes were found to be widespread in diverse

organisms from bacteria to human, suggesting that these

motifs serve as basic building blocks of transcription

networks. In our work, we have used the term “motif”

to describe a small group that illustrates the regulation

patterns of a miRNA, a TF, and their target genes.

Common motifs, such as feedforward loops (FFLs) and

feedback loops (FBLs), have been found to play crucial

roles in gene regulation, such as the miR-17 cluster, the

E2F1, and the c-Myc that modulates cellular prolifera-

tion in cancer [19]. Several databases of TF-miRNA

FFLs involved in tumors have been developed [20,21].

Moreover, protein-protein interactions data have been

included to construct regulatory networks for identifying

novel regulatory motifs, such as the four or more node

FFLs [22,23].

Previous studies into the co-regulation between miRNAs

and TFs found a variety of significant network motifs

that were over-represented in the co-regulation network

[24,25], suggesting that the gene regulation system

requires close synergistic regulation by transcriptional

and post-transcriptional layers. However, the miRNA-TF

synergistic effect may not be limited only to the FFLs.

Non-loop forms, such as the cascaded form, which have

also helped in understanding the regulatory mechanism,

should be considered. Therefore, in this study, we have

identified multiple types of motifs, including FFLs, miRNA-

or TF-mediated FBLs, and miRNA or TF-mediated

cascaded patterns.

Here, we used comprehensive data sources and algo-

rithms to predict regulatory relationships of miRNAs

and their targets in an attempt to provide the first

miRNA-TF-mediated regulatory network in lung cancer.

We also identified synergistic motifs of miRNAs and

TFs. Several potential major factors were identified in

subnetworks. We have developed an algorithm to predict

the biological functions involved in the human lung cancer

miRNA-TF regulatory network as well as the specific

functions regulated by each synergistic motif. Our results

showed that miRNAs of the same family exhibited similar

regulatory modes, implying that miRNA family members

tended to work together, particularly in regulating TFs.

The miR-17 family (in an FFL with the E2F1and the RB1)

was found to be an important family in the lung cancer

regulation network.

This study provides a framework for constructing a

lung cancer-related synergistic regulatory network and

for analyzing the biological functions of the network.

This approach could be applied easily to study other

cancers, and may provide useful information for laboratory

experiments and target validation.

Results
MiRNA and TF synergistic regulatory network in lung cancer

We collected and curated 1990 human lung cancer-re-

lated genes from several disease-related gene databases

and 1823 genes that were aberrantly expressed in NSCLC

samples. From them, we selected a total of 1002 genes

that met the requirements of lung cancer-related genes

to use in this study. The 100 bootstrapping repetitions

that we conducted on the microarray data showed that
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the overlap between gene sets calculated based on the

re-sampled data and the original gene set (1002 genes)

was quite significant, suggesting that our selected lung

cancer-related genes were robust. The ratios of overlap

genes to original genes are listed in Additional file 1:

Table S1.

By combining multiple algorithms, we obtained the

targets of all the human miRNAs and TFs, and then used

hypergeometric tests to obtain 252 lung cancer-related

miRNAs and 173 TFs. Based on the relationships between

lung cancer miRNAs/TFs and lung cancer genes, we

constructed a lung cancer miRNA-TF synergistic regu-

latory network. The numbers of nodes and regulatory

relations in the network are listed in Table 1.

The results of the node degree distribution analysis

showed that most nodes had low degrees and only a

few nodes had high degrees (Figure 1), which reflected

a scale-free network. Therefore, hub nodes might play

major roles in the synergistic regulatory network. Because

the edges in the networks had directions, we identified

the hub nodes with the highest incoming and outgoing

degrees. As shown in Tables 2 and 3, eight of the top

10 TFs with higher outgoing degrees [26-35] and more

than half of the hub nodes were either well-known lung

cancer regulators, such as MYC and TP53, or related

to lung cancer development and progression, such as

E2F1 and SP1 [13,36-49]. This finding was a preliminary

reflection of the robustness of the network. Notably,

four of the top 10 hub miRNAs belonged to the miR-17

family, namely has-miR-106a/106b/20a/20b, indicating

that these miR-17 family members are vital regulators

in the regulatory network of human lung cancer. The

top 5% of the hub TFs and miRNAs are shown in

Additional file 1: Table S2. Some of the hubs listed

in Tables 2 and 3 did not meet the enrichment test

of hypergeometric cumulative distribution in 1000 ran-

domization tests, suggesting that the hubs were caused

by biological significance rather than by false-positive

miRNA target data.

Synergistic motif identification and subnetwork construction

In the human lung cancer synergistic regulatory network,

we identified a total of eight types of synergistic motifs

consisting of a miRNA, a TF, and their synergistically

regulated target genes, including full regulation, miRNA-

or TF-leading synergistic regulation, miRNA- or TF-

mediated FFL regulation, co-regulation, and miRNA- or

TF-mediated cascade regulation. We also identified two

other kinds of regulatory motifs, namely, miRNA sim-

ultaneous regulation and TF simultaneous regulation

(Figure 2). To evaluate the significance of the synergistic

motifs, we ran 10000 random simulations (see Methods).

The results of P-values indicated that eight of the observed

motifs differed significantly from the results expected

by chance (see Table 4 for details). To rank the motif

types, we also calculated Z scores for them. The syner-

gistic regulatory motifs with the highest Z scores were

co-regulation and TF-mediated cascade regulation types;

all were in non-loop formation and all comprised regula-

tory relations that were derived from miRNAs. The motifs

with the lowest Z scores were Motifs X and V, and they

were the only two non-significant motifs with P-values

greater than 0.01.

We performed manual literature mining with the

combined keywords “miRNA&TF&cancer” to confirm

the relationship between the motifs and lung cancer or

other types of cancers. Names of the motif components

(gene, TF, or miRNA) and “prognosis&cancer” were com-

bined as keywords to search for motifs that had predictive

power for prognosis (Table 5). Because all the motifs

were identified in this search, we merged motifs of the

same type into a subnetwork, and consequently obtained

10 subnetworks, which are presented in Figure 3 (sub-

network I) and which are available in Cytoscape format

in the Additional file 2. Based on the motif type, we

named the subnetworks I to X to reflect the motif names.

To find the hub regulators under each regulatory motif

type, we analyzed the degree distributions of the 10

subnetworks. All the subnetworks had the features of

a scale-free network as shown in Figure 1. Therefore,

we extracted the hub nodes of each factor type in all

the subnetworks according to the criteria discussed in

the Methods section. The results are listed them in

Additional file 1: Table S3. To determine the distribution

of the regulators among the 10 subnetworks, we counted

the number of motifs that each regulator participated in

Table 1 Summary of relationships in the lung cancer-related synergistic regulatory network

Relationship No. of pairs No. of miRNAs No. of genes No. of TFs

miRNA-genea 29877 252 928 -

miRNA-TFb 1107 243 - 27

TF-genec 1588 - 457 174

TF-miRNAd 207 93 - 56

amiRNA repression of gene expression.
bmiRNA repression of TF expression.
cTF regulation of gene expression.
dTF regulation of miRNA expression.
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(Additional file 1: Table S4). We found that each TF

was involved in an average of 2.377 motifs and 43.7% of

them were in motifs above the average, while each

miRNA was involved in an average of 4.89 motifs and

34.1% of them were in motifs above the average. Notably,

three TFs (STAT1, E2F1, and ESR10) participated in all

motifs and seven miRNAs participated in all motifs,

namely hsa-miR-106a, hsa-miR-20a, hsa-miR-17, hsa-

miR-19b, hsa-miR-381, hsa-miR-21, and hsa-miR-221.

The first four of these miRNAs belong to the miR-17

family, further indicating the important role of the

miR-17 family in the network.

Biological functions of the synergistic regulatory

networks and subnetworks

First, mutations in the genes of ten subnetworks were

analyzed. We downloaded somatic mutation profiles

of 538 lung adenocarcinomas (LUAD) and 178 lung

squamous cell carcinomas (LUSC) from The Cancer

Genome Atlas level 2 data. Then, we selected genes in

each subtype with mutation rates greater than 5% as a

mutated gene set. Hypergeometric cumulative distribution

was used to test the enrichment significance for genes

in 10 kinds of motifs. The results showed that the 10

kinds of motifs were all significantly enriched in the

mutated gene set.

After obtaining all the synergistic motifs in the human

lung cancer regulatory network, we next examined the

Gene Ontology (GO) biological process (BP) terms and

the Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathways they regulated. We developed an algorithm to

analyze the network functions based on the results of

the BP and pathway enrichment analyses (see Methods).

All enriched terms were scored and sorted in descending

order, and the top 5% were defined as common terms.

A total of 36 common GO terms were identified and

clustered under the following functions: regulation of

apoptosis and programmed cell death, regulation of cel-

lular protein and phosphate metabolic process, receptor

protein signaling pathway, regulation of protein phos-

phorylation and modification process, cell cycle, regula-

tion kinase activity, DNA repair, and metabolic process

(Table 6). The 22 common KEGG pathways that were

identified were similar to the common BP terms (Table 7).

The common pathways were ranked according to their

scores from high to low. The top 10 pathways included

P53 pathway, direct P53 effectors, regulation of telomer-

ase, and cell cycle; and the lowest ranked pathways

included E2F transcription factor network and canonical

Wnt signaling pathway ranked 20 and 22, respectively

(Table 7).

We speculated whether the specific BP terms for each

subnetwork were regulated specifically by each motif type.

Figure 1 Node degree distribution of the whole network and 10 subnetworks. The X axis is the degree of a node, and the Y axis shows the

number of nodes that correspond to the degree. The 10 small figures are for subnetworks I to X in order. The big figure is for the whole

synergistic regulatory network.
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After removing the 36 common BP terms, the remaining

terms were ranked by their enrichment frequency in

the subnetworks and then categorized within each sub-

network. Details of the results are shown in Additional

file 1: Table S5. The functions of the miRNAs in the

lung cancer regulatory network were predicted from

subnetwork VII because it comprised motifs with miRNAs

that simultaneously regulated TFs and genes, while TFs

that regulated genes or miRNAs were not included in

these motifs. The predicted functions were regulation

of fibroblast growth factor signaling pathway, inositol

lipid-mediated signaling, response to insulin stimulus,

MAPK cascade, receptor signaling pathway, cell migration,

DNA replication and metabolism, phosphorylation, enzy-

matic activity, and meiosis. Similarly, the functions of the

TFs were predicted from subnetwork X; they included

regulation of protein metabolic process, apoptosis and

programmed cell death, gene expression, phosphorylation,

and regulation of enzyme activity. Each motif in subnet-

work I comprised a FBL and FFL, and not surprisingly,

their specific function was DNA replication, which requires

precise and complex regulation because of its ubiquity

in cells and the multiple enzymes involvement.

Interplay of miRNA and TF in the human lung cancer

regulatory network

Of the 252 miRNAs in the regulatory network, 93

(36.9%) were regulated by TFs. Most of these miRNAs

had low in-degree, and only 11.8% (11 of the 93) had

in-degrees greater than 5. Of the 173 TFs in the net-

work, 27 (15.6%) were regulated by miRNAs, and 37.0%

(10 of 27) of them had in-degrees greater than 50. A

total of 57 TFs regulated miRNAs and 244 miRNAs

regulated TFs. On average, each TF was regulated by

9.33 miRNAs, while each miRNA was regulated by

Table 3 Top 10 genes, TFs, and miRNAs with highest

in-degree in lung cancer synergistic regulatory network

Top Gene In- degree Supported bya

1 NTRK2 153 PMID: 21466358

2 ACVR2B 146 -

3 PLAG1 142 -

4 RAPH1 131 -

5 IGF1R 127 PMID: 22133293

6 CLCN5 123 -

7 FOXP1 123 PMID: 22904134

8 ACSL4 120 -

9 WHSC1 120 PMID: 22028615

10 ABHD2 120 -

1 E2F3 112 PMID: 16938365

2 ESR1 110 PMID: 18949413

3 PPARA 79 -

4 SMAD7 75 PMID: 21221812

5 ETS1 68 PMID: 17785952

6 MAFG 62 -

7 ETS2 56 PMID: 21922129

8 ARNT 54 PMID: 22645320

9 AHR 53 PMID: 21646808

10 FUBP1 51 PMID: 19258502

1 hsa-miR-129-5p 7 -

2 hsa-miR-19b 7 -

3 hsa-miR-219-5p 7 PMID: 16530703

4 hsa-miR-92a 7 -

5 hsa-miR-301b 6 -

6 hsa-miR-433 6 -

7 hsa-miR-557 6 -

8 hsa-miR-152 5 -

9 hsa-miR-16 5 PMID: 19549910

10 hsa-miR-329 5 -

11 hsa-miR-429 5 PMID: 19759262

aSupported by: published articles in which the gene, TF, or miRNA was

experimentally verified as being related to lung cancer development

and progression.

Table 2 Top 10 miRNAs and TFs with highest out-degree

in lung cancer synergistic regulatory network

Top Regulator Out- degree Supported bya

1 hsa-miR-590-3p 320 -

2 hsa-miR-548c-3p 302 -

3 hsa-miR-570 243 -

4 hsa-miR-340 242 -

5 hsa-miR-495 218 -

6 hsa-miR-106ab 207 PMID: 19209007

7 hsa-miR-106bb 202 -

8 hsa-miR-20ab 201 PMID: 16266980

9 hsa-miR-20bb 200 -

10 hsa-miR-944 200 -

1 MYC 116 PMID: 11720740

2 TP53 95 PMID: 12619108

3 E2F1 73 PMID: 22803943

4 TFAP2A 64 PMID: 22143938

5 SP1 61 PMID: 22158040

6 JUN 59 -

7 E2F4 50 PMID: 19473719

8 HIF1A 48 PMID: 22115707

9 NFKB1 48 -

10 STAT1 44 PMID: 17348819

aSupported by: published articles in which the TF or miRNA was

experimentally verified as being related to lung cancer development

and progression.
bbelongs to the miR-17 family.
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1.86 TFs. By comparing the intensity and density of

the interplay between the miRNAs and TFs in the lung

cancer regulatory network, we found that only a small

number of the TFs were regulated by miRNAs at a

high intensity, while most miRNAs were regulated by

TFs at a significantly lower intensity (Additional file 1:

Figure S11).

In some subnetworks, the miRNAs that belonged to

the same family tended either to function together or to

synergistically regulate targets. To further clarify this

Figure 2 The 10 kinds of motifs identified in this study. The ellipse nodes are the genes; the round rectangle nodes are the miRNAs; and the

triangle nodes are the TFs.

Table 4 Details of motifs in the lung cancer synergistic regulatory network

Motif Z-valuea/P-valueb Meanc Stdc No. of motifs No. of genes No. of TFs No. of miRNA

I 4.9847/ 0 27.0475 11.8268 86 28 3 12

II 6.9558/ 0 1417.3280 81.6113 1985 180 22 219

III 2.4034/ 0.0097 438.9193 30.8235 513 176 35 66

IV 4.2270/ 0.0001 771.7246 260.5343 1873 520 4 13

V 2.3031/ 0.0162 230.3356 87.9953 433 97 4 13

VI 19.9562/ 0 32689.19 290.5763 38488 422 163 250

VII 27.6201/ 0 114787.3 1225.9080 148647 928 26 243

VIII 2.9824/ 0.0004 19895.26 369.7436 20995 882 56 88

IX 8.3071/ 0 12070.81 267.1441 14290 237 27 242

X 1.2440/ 0.108 4284.108 155.8588 4478 414 56 88

aZ-value was calculated using the formula (2.4.1).
bP-value is the proportion of the 10000 random simulations in which a motif had a larger frequency in the random repeats than real in the data.
cMean and Std are the average and the standard deviation of motif frequency of the 10000 random repeats.

Motif I: Full regulation; II: TF-leading synergistic regulation; III: miRNA leading synergistic regulation; IV: miRNA feedback synergistic regulation; V: TF feedback

synergistic regulation; VI: synergistic co-regulation; VII: miRNA simultaneous regulation; VIII: linear regulation from TF; IX: linear regulation from miRNA; and X: TF

simultaneous regulation.
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observation, we performed a two-way clustering analysis

based on the regulatory relations between the 252 miR-

NAs and 173 TFs. We found that 10 miRNA families in-

volving 45 miRNAs were clustered and that the miRNAs

from one family had similar target TFs (Figure 4).

A model of the miR-17 family, RB1, and E2F1 motif in

lung cancer proliferation

In subnetwork I, we discovered the predicted interactions

between the miR-17 family and E2F1 for the first time

(Additional file 1: Table S6). Interestingly, six members

Table 5 Examples of motifs or prognosis components of motifs

Motif Example Supported bya Prognosis Supported by P-valueb

I miR-106a& E2F1 PMID: 18521848 miR-106a &E2F1 &RAD51 PMID:20219352&16166473 &15956972 0.03790692

II miR-27b& ESR1 - miR-181a &TP53 &RUNX3 PMID:20363096&17401424 &15819721 0.001892851

III miR-16& MYC PMID: 22002311 miR-16 &JUN &LPL PMID:21400525&9484827 &21508119 3.311478e-06

IV miR-106a& E2F1 PMID: 22002038 miR-17 &STAT1 &ALDH1A3 PMID:22065543&20581241 &22960273 1.80563e-21

V miR-17& E2F1 PMID: 18171346 miR-21 &ESR1 &CXCL12 PMID:20508945&20109227 0.006603943

VI miR-548& MYC - Let-7d &ATF1 &GSTP1 PMID:21725603&22631637 &22045684 3.35018e-07

VII miR-20b& ESR1 PMID: 22002038 miR-200c &E2F3 &ALDH1A3 PMID:20579395&15122326 &23436614 6.592982e-22

VIII miR-152& POU2F1 PMID: 21712563 miR-141 &SOX2 & CXCL12 PMID:21445232&20532662 &16631235 1.471662e-21

IX miR-19a& ESR1 PMID: 20080637 CTNNB1 & miR-21 & SMAD7 PMID:17949785&20508945 &12584741 0.0002268908

X miR-34c-5p& MYC PMID: 22585994 GADD45A& miR-34 & P53 PMID:12171872&19736307 &22978804 2.885798e-06

aSupported by: published articles in which the gene, TF, or miRNA was experimentally verified as working together or have a prognosis function.
bP-value: the P-value of hypergeometric cumulative distribution to test whether the motifs were enriched with gene mutations.

Figure 3 Lung cancer-related miRNA-TF synergistic regulatory subnetwork I. The ellipse nodes are the genes; the round rectangle nodes

are the miRNAs; and the triangle nodes are the TFs. Green nodes: down-regulated nodes; red nodes: up-regulated nodes; arrow shape edge:

transcriptional activation/repression; T-shape edge: miRNA repression; and dash line: a feedback loop.
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of the miR-17 family (miR-17/20a/20b/106a/106b/93)

clustered in one group. The miR-17 family and E2F1

formed a FBL, which was a clique. A similar phenomenon

was reported for the miR-17-92 cluster (miR-17/20a/18a/

19a/19b-1/92-1), which forms a FBL with E2F1, and plays

roles in regulating cellular proliferation and apoptosis.

The interactions between the miR-17-92 cluster and

E2F1 have been verified experimentally [50-54]. The

miR-17 family and the miR-17-92 cluster have two

shared members, miR-17 and miR-20a, both of which

were confirmed to interact with E2F1. For the other

four members of the miR-17 family, we performed a

sequence alignment to examine how likely they were to

interact with E2F1. The conserved sequence of E2F1

Table 6 Biology process terms regulated by the miRNA-TF synergistic regulatory network

GO term Annotation Ranka In motifsb

GO:0042981 Regulation of apoptosis 1 10

GO:0032268 Regulation of cellular protein metabolic process 2 10

GO:0007167 Enzyme linked receptor protein signaling pathway 3 9/I

GO:0031399 Regulation of protein modification process 4 10

GO:0042325 Regulation of phosphorylation 5 10

GO:0019220 Regulation of phosphate metabolic process 6 10

GO:0051329 Interface of mitotic cell cycle 7 10

GO:0000082 G1/S transition of mitotic cell cycle 8 9/IV

GO:0001932 Regulation of protein phosphorylation 9 10

GO:0007169 Transmembrane receptor protein tyrosine kinase signaling pathway 10 9/I

GO:0071156 Regulation of cell cycle arrest 11 9/IV

GO:0045859 Regulation of protein kinase activity 12 10

GO:0000075 Cell cycle checkpoint 13 9/IV

GO:0006259 DNA metabolic process 14 10

GO:0006281 DNA repair 15 9/IV

GO:0043549 Regulation of kinase activity 16 10

GO:2000045 Regulation of G1/S transition of mitotic cell cycle 17 9/IV

GO:0000084 S phase of mitotic cell cycle 18 9/IV

GO:0051320 S phase 19 9/IV

GO:0007093 Mitotic cell cycle checkpoint 20 9/IV

GO:0031575 Mitotic cell cycle G1/S transition checkpoint 21 8/III, IV

GO:0071779 G1/S transition checkpoint 22 8/III, IV

GO:0006468 Protein phosphorylation 23 9/I

GO:0043066 Negative regulation of apoptosis 24 9/I

GO:0043069 Negative regulation of programmed cell death 25 9/I

GO:0031328 Positive regulation of cellular biosynthetic process 26 9/I

GO:0071900 Regulation of protein serine/threonine kinase activity 27 9/I

GO:0009968 Negative regulation of signal transduction 28 9/I

GO:0048011 Nerve growth factor receptor signaling pathway 29 9/I

GO:0046777 Protein autophosphorylation 30 7/I, II, V

GO:0006355 Regulation of transcription, DNA-dependent 31 9/I

GO:2001141 Regulation of RNA biosynthetic process 32 9/I

GO:0009967 Positive regulation of signal transduction 33 8/I, V

GO:0006357 Regulation of transcription from RNA polymerase II promoter 34 9/I

GO:0043065 Positive regulation of apoptosis 35 9/I

GO:0045893 Positive regulation of transcription, DNA-dependent 36 8/I,III

aRank: is the rank number calculated using the formula (2.7.1) based on the number of occurrences of the GO terms among all the assigned terms.
bIn motifs: is how many motif types (subnetworks) were assigned the corresponding GO term. The roman number(s) following the slash indicate the subnetwork

(s) in which the corresponding GO term was not found.
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among five species (Homo sapiens, Mus musculus, Pan

troglodytes, Rattus norvegicus and Bos taurus) was aligned

to the mature sequences of the six members of the

miR-17 family. All miR-17 family members shared 8–15

bases with the E2F1 conserved sequence (Additional

file 1), and their interaction was predicted by at least

five algorithms (Additional file 1: Table S6), supporting

the high possibility of an interaction between the miR-17

family and E2F1.

The RB1 tumor suppressor negatively regulates the cell

cycle and is inactivated in a wide range of human tumors

[55]. In subnetwork I, RB1 was targeted by members of

the miR-17 family (Additional file 1: Table S6) and E2F1,

while the miR-17 family members and E2F1 targeted each

other, thereby forming an FFL. By analyzing the miRNA

expression profiles of NSCLC patients, we found that five

miR-17 family members were significantly overexpressed,

the expression of RB1 was significantly down-regulated,

and E2F1 expression was not significantly different

(Additional file 1: Table S7). MiR-20b was the exception to

this because no probe was detected. Next, we examined

the mechanism by which the miR-17 family regulates

cell cycle and tumor progression in lung cancer using a

hypothetical model. The interaction between the pRb

proteins and the E2F TF family plays a central role in

regulating cell cycle progression by controlling the

expression of E2F-dependent cell cycle genes [56]. The

overexpressed miR-17 family may directly decrease the

translation of RB1, thereby lowering the expression of

the RB1 protein. In G0 or early G1 cells, Rb protein,

which has been functionally inactivated by transcriptional

suppression, releases the transactivation domains of E2F

and activates the expression of genes that encode products

necessary for S-phase progression [50]. Moreover, E2F1

promotes the transcription of the miR-17 family, which

causes overexpression of the miR-17 family members,

thereby governing cell cycle and proliferation of lung

tumors by targeting RB1 protein.

Discussion
Here we constructed the first lung cancer-related miRNA-

TF synergistic regulatory network of lung cancer. We

identified 10 types of motifs and constructed 10 sub-

networks. More than half of the putative hub nodes

were verified by examining other published works, which

indicated the robustness of the network. We developed

an algorithm to understand the common and specific

functions of these networks. Finally, we proposed a

hypothetical model to explain the role of the miR-17

family in regulating cell cycle and tumor progression by

targeting the RB1 protein in NSCLC.

In the human miRNA-TF synergistic regulatory network

and subnetworks, hub genes and hub miRNAs were

identified. Most either were known lung cancer-related

factors or were reported to play important roles in lung

cancer. The hubs with highest out-degrees in the regulatory

network, Myc, TP53, and E2F1, are TFs that play roles in

apoptosis, cell proliferation, and lung tumor development.

The amplification and overexpression of Myc has been

detected in lung cancer of different histologic subtypes

[26]. TP53 encodes tumor protein p53, abnormalities of

which are frequently found in lung cancers [27]. E2F1

overexpression was reported produce more aggressive

tumors with a high proliferation rate during the pro-

gression of NSCLC [57]. MiR-17/106a/20a/93/34a were

the hubs of many subnetworks, and four of them

belong to the miR-17 family. MiR-17 and miR-20a were

reported to induce apoptosis in lung cancer cells [35]

and miR-34 s was found to be dramatically down-

regulated in NSCLC [58].

In this work, we proposed a model to predict the regula-

tory role of the miR-17 family in the cell cycle via RB1 and

E2F1. In the model, five out of six miR-17 family members

were significantly overexpressed in NSCLC cells where they

Table 7 Pathways regulated by miRNA-TF synergistic

regulatory network

Pathway name Ranka In motifsb

p53 pathway 1 8

Direct p53 effectors 2 8

Regulation of Telomerase 3 7

Hypoxia and oxygen homeostasis
regulation of HIF-1-alpha

4 8

Arf6 signaling events 5 8

Cell Cycle, Mitotic 6 7

S Phase 7 6

Synthesis of DNA 8 7

DNA Replication 9 6

Regulation of DNA replication 13 5

G1/S Transition 10 6

IGF1 pathway 11 6

Orc1 removal from chromatin 12 5

Switching of origins to a post-reflective state 14 5

Removal of licensing factors from origins 15 5

Signaling events regulated by Ret tyrosine kinase 16 4

EphrinA-EPHA pathway 17 3

E-cadherin signaling events 18 7

FOXA transcription factor networks 19 6

E2F transcription factor network 20 7

Neurotrophic factor-mediated Trk receptor signaling 21 9

Canonical Wnt signaling pathway 22 7

aRank: is the rank number calculated using the formula (2.7.1) based on the

number of occurrences of the pathways among all the assigned pathways.
bIn motifs: is how many motif subnetworks were assigned the

corresponding pathways.
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enhanced the repression of the RB1 gene, which is respon-

sible for the G1 checkpoint and blockage of S-phase entry

and cell growth. Hesan et al. [59] confirmed the up-

regulation of four members of the miR-17 family in colo-

rectal carcinoma tissues and showed that they promote

cell proliferation and tumor growth by targeting the

RND3 tumor suppressor gene. A similar group, the miR-

17-92 cluster with two members that were common

with the miR-17 family, had diverse functions in the

regulation of cellular differentiation, proliferation, and

apoptosis. The two common members, miR-17 and miR-

20a, were shown to temper an E2F1-induced G1 check-

point to regulate cell cycle progression [50]. Furthermore,

the E2F and the miR-17-92 cluster could form FBLs

[51], and in the cancer regulation network, FBLs in-

volving miR-17-92, E2F and MYC have been reported

[52]. We checked the interactive relations of the miR-

17 family with E2F1 and RB1 by sequence alignment

and found a strong possibility of their interactions. More-

over, many regulatory relationships support our predictive

model of the miR-17 family, E2F1, and RB1 motif, which

demonstrates the effectiveness of our regulatory network.

After identifying the miRNA-TF synergistic motifs, we

calculated their significance and Z-values, and ranked the

motifs according to their Z scores. The first-ranked

Motif VII was more significant than the second-ranked

Motif VI, possibly because of the availability of abundant

miRNA regulation data but insufficient TF regulation

data. One reason that Motif VI was found to be the most

significant regulatory motif in the network may be that

genes are first regulated by TFs at the transcription level

and then by miRNAs at the post-transcription level; thus,

genes are significantly regulated by TFs and miRNAs

separately at different times and in different locations

in the cell. By comparing two Motifs, II and III, and by

examining the regulatory directions between the miRNAs

and TFs, we found that miRNAs tended to be significantly

regulated by TFs rather than regulate TFs. This obser-

vation is despite the fact that data on the - targets of

TFs are limited, while much more data on the targets

of miRNAs are available. Therefore, we inferred that TFs

play a dominant role in FFL regulation. This assumption

is supported by the results of another study, which found

that TFs held dominant positions in the global regulatory

system (i.e. at the transcriptional level) compared with

the miRNAs at the downstream positions (i.e. at the

post-transcriptional level) [23]. Between the linear motifs

Figure 4 Heatmap of miRNA-TF hierarchical clustering. Green:

miRNAs regulated by TFs; blue: non-regulatory relations; dark pink:

regulations to TFs of miRNAs that were clustered closely in the

hierarchical tree and belonged to a same family. Square brackets:

zoom in view of the miRNAs on the left of the figure. MiRNAs in

square brackets belonged to different families.
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(VIII, IX), Motif IX was more significant than Motif VIII,

which indicated that genes tended to be regulated directly

by TFs, while miRNAs tended to regulate TFs while they

were being formed rather than act as a mediated regulator

between TFs and their target genes.

The expression level analysis of genes and miRNAs

may help in understanding the regulatory mechanisms;

therefore, the differentially expressed genes in our networks

further investigated. In general, we found that up-regulated

miRNAs down-regulated their target genes by degrading

them at the transcript level or by repressing protein

production at the translational level. We also observed

the reverse, in which down-regulated miRNAs led to

up-regulated target genes. However, down-regulated

miRNAs that down-regulated their target genes and

up-regulated miRNAs that up-regulated their target

genes were also observed in our network. This may be

because the expression levels of genes or miRNAs are

determined by multiple factors, including environment,

heredity, copy number variations, and epigenetics. Thus,

miRNAs and TFs may influence expression to a great

degree rather than being the decisive factors.

In this study, we analyzed the regulation of genes by

miRNAs and TFs, but did not consider gene-to-gene rela-

tionships. Cui et al. [60,61] studied the relationship among

oncogenes in the context of activity/inhibitory motifs and

compared the number of mutant genes and miRNA target

genes in each type of motif. In the future, we will examine

the activation, inhibition, and physical interactions among

the genes in regulatory networks, and discuss the regularity

role of miRNAs, TFs, and motifs. Our future studies will

contribute to uncovering the principles of miRNA regula-

tion in signal transduction networks.

Conclusions
In summary, our established miRNA and TF synergistic

regulatory network in NSCLC has provided clues about

the regulatory mechanisms of lung cancer and infor-

mation that will help identify the core regulators. Nearly

half of the hub regulators, as well as the proposed

regulatory motifs, were confirmed by literature searches,

which indicated the effectiveness and rationality of the

network construction. The most significant motifs were

of the co-regulation and TF-mediated cascade regulation

types. While cooperating with miRNAs, TFs tended to

play a dominant role in FFL regulations. We also devel-

oped an algorithm to analyze the functions of the human

lung cancer miRNA-TF regulatory network and subnet-

works. According to the full regulation subnetwork and

expression analysis, we proposed a predictive model of

the miR-17 family, E2F1 and RB1 in the regulation of cell

cycle and cellular proliferation. Our study will provide

valuable information for lung cancer investigators to

identify critical elements and regulatory motifs for a

better understanding of the regulatory mechanisms or

for designing future experimental studies of lung cancer.

Methods
Lung cancer-related genes

Lung cancer-related genes were collected using an inte-

grated strategy as follows: 1) We retrieved published

genes with somatic mutation or vital for lung cancer from

five well-established cancer- and disease-related gene

databases, namely Phenopedia [62], Cosmic [63], GAD

[64], TGDB, and OMIM [65]. 2) Aberrantly expressed

genes were obtained from two gene expression profiles

of NSCLC samples published in the NCBI GEO database

[66], namely, [GEO:GSE2088] and [GEO:GSE11969]. In

the profile GSE2088, 48 squamous cell carcinoma sam-

ples, nine adenocarcinoma samples and 30 normal

samples were investigated. We used only 125 NSCLC

samples from the profile GSE11969, including 35 squamous

cell carcinoma samples, 90 adenocarcinoma samples,

and five normal samples, and ignored samples with

other subtype. We carried out a profile preprocessing

step on the samples, which included filtering out data

with more than 5% missing values, combining probes

of the same gene, and then filling missing values using

the K-neighbors algorithm. We screened differentially

expressed genes using the criteria of fold change value >

1.5 and false discovery rate (FDR) < 0.01. Differentially

expressed genes that were common to the two profiles

were included. 3) We selected the intersection of the two

gene sets obtained from the two previous steps to use in

the present study (Figure 5A). Because gene lists can

change when re-sampling is applied to microarray data

[67], we conducted a bootstrapping procedure with 100

replications on the microarray data to confirm the

robustness of the selected lung cancer-related genes.

Target prediction of miRNAs and TFs

For miRNA target prediction, we combined 10 popular

databases or algorithms, namely, miRanda, TargetScan,

PicTar5, PITA, DIANA-microT, mirSVR, RNA22, RNA-

hybrid, MirTarget2, and TargetMiner (Additional file 1:

Table S8). To decrease the number of false-positive results,

only miRNA–mRNA interactions predicted by at least

three of the algorithms were accepted as positive. TFs were

treated as genes when predicting miRNA–TF regulations.

TFs and their experimentally proven targets were re-

trieved from four databases: ORegAnno [68], Pazar [69],

Transfac [70], and Tred [71]. To ensure that the results

were complete, we used a union set of all the retrieved data.

MiRNA precursor sequences were obtained from the

miRBase database. We selected the 2-kb upstream regions

of the pre-miRNAs as their putative promoter regions,

and then searched the sequences for TF binding sites

using the UCSC genome browser (Z score =2.33) [72].
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The selected sites were required to be conserved among

human, rat, and mouse. We also incorporated experimen-

tally supported TF–miRNA regulatory relations that were

curated manually from large numbers of published papers

[25] and from TransmiR [21] (Figure 5C).

Significant lung cancer-related miRNAs and TFs

After obtaining the miRNA/TF and targets relations, we

calculated the regulators whose targets were significantly

enriched with lung cancer genes using the hypergeometric

cumulative distribution function followed by the Benjamini

& Hochberg adjustment procedure. The cutoff value was

set to 0.01.

P ¼ 1−
X

x

i¼0

k

i

� �

M‐k

N‐i

� �

M

N

� � ð1Þ

where, M is the total number of all human genes in the hu-

man genome, k is the number of lung cancer-related genes,

N is the number of target genes for a certain miRNA (or

TF), and x is the number of target genes of a certain

miRNA (or TF) that overlapped with lung cancer-related

genes. To avoid the effect from false-positives in the

miRNA target data, we conducted randomization tests to

ensure the biological significance of the identified lung

cancer-related miRNAs and TFs. Instead of using 1002 lung

cancer-related genes to enrich each of the miRNAs and

TFs, we randomly selected 1002 genes from all the coding

genes in the human genome for enrichment, and this pro-

cedure was repeated 1000 times.

Motif identification and statistics test

Based on the regulatory relationships that we predicted,

network motifs of miRNA-TF synergistically regulatory

patterns were identified, including the FFLs and non-loop

form (Figure 5E). We performed statistical analysis to

estimate the significance of each motif type. Specifically,

in random networks, each node maintained the number

of incoming and outgoing edges that they had in the

corresponding node in the real network. Then, the

number of each type of motifs was counted, and this was

repeated 10000 times. The significance value (P-value)

of one motif type indicates the proportion of the 10000

repeats when the motif was observed in the random

networks was no less than its appearance in the real

lung cancer synergistic regulatory network.

P ¼
Nhigh

N random

ð2Þ

where, Nhigh is the number of random times that an ac-

quired motif was more than or equal to the real network,

and Nrandom is 10000.

We also calculated Z scores for all the motif types to

estimate by how many standard deviations an observation

was above or below the mean.

Z ¼
N real−Nmean

SD
ð3Þ

where, Nreal and Nmean are the number of motifs observed

in the real synergistic regulatory network and their mean

occurrence in the random networks, respectively. SD is

the standard deviation of the number of motifs in the

random networks.

Figure 5 Workflow of data collection, miRNA-TF synergistic

regulatory network construction, and motif identification. A:

Lung cancer-related gene collection. Lung cancer genes were

obtained from five databases, differential expressed genes in two

microarray datasets were calculated, and the overlapped set were

used in the present study. B, C, and D showed the data source or

algorithms of regulator-target relations. E: Workflow of synergistic

regulatory network construction and motif identification. Elements

with a star mark ‘*’ are ‘lung cancer related-’. First, by Gene* from

step A and miRNA target relations from step B, we obtained miRNA*

using a hypergeometric test. After a similar procedure for getting

TF*, we combined any two of Gene*, miRNA*, and TF*with their

regulatory relations to obtain four types of regulatory relation*. Then,

we merged them to construct the miRNA-TF synergistic regulatory

network*. Last, 10 motif types were identified.
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Motif-specific subnetwork and hub definition

All network motifs of the same type were merged to

construct a motif-specific subnetwork (for example, all

FFLs were merged to form the FFL subnetwork) and

then the subnetworks were visualized by the Cytoscape

software [73]. When network sizes were greatly different

from one another, we defined hub nodes as the top 5%

highest-degree nodes of the miRNAs, TFs, and genes in

both the subnetwork and whole network.

Expression level analysis of miRNAs, TFs, and genes

MiRNA and gene expression profiles were downloaded

from the NCBI Gene Expression Omnibus (GEO), and

differentially expressed genes were calculated using the

significance analysis of microarrays (SAM) software

[74] with the FDR set to less than 1%. The union set of

differentially expressed genes in the GSE2088 and

GSE11969 datasets was used to determine the lung

cancer-related genes, while the intersection was shown

in different colors in the motif-specific subnetwork.

The miRNA expression profiles from the GSE27705

dataset, which included 20 NSCLC samples and 10

normal samples, were used to identify up- or down-

regulated expressed miRNAs.

BP and pathway analysis of the genes in the human

lung cancer synergistic regulatory network and

synergistic subnetworks

For the function analysis of each subnetwork, we developed

an algorithm to obtain the most representative functions

among the numerous GO BP terms and KEGG pathways

after BP and pathway enrichment analysis. For example,

for the BP function analysis of subnetworki (Motifi) the

algorithm: 1) found the target gene set shared by each

miRNA-TF pair, which contained no less than three

genes; 2) all target gene sets were enriched with BP

terms by the hypergeometric test with P-value adjustment

by FDR (the cutoff of P-value was 0.005); and 3) the

frequency that each BP term was enriched was counted

and represented as Frequenti (i∈[1,10]), and all enriched

terms were ranked in descending order according to

their frequency value, so that the rank number of each

BP term, represented as Motifi-rank, could be obtained.

Terms with high commonality existed in most subnet-

works and ranked high in each subnetwork and, there-

fore, could be assumed to represent the main functions

of the network. The commonality score of each BP term

was calculated as

X

10

i¼1

Frequenti

motif i−rank � motif i−stagenumber
ð4Þ

where, stagenumber is the number of stages in motifi. The

terms with the highest top 5% score were regarded as

common terms, and were used to represent the functions

of the whole regulatory network. We then removed the

common terms from each subnetwork and ranked the

remaining terms to identify the specific functions of each

subnetwork. Pathway function analysis was conducted

using the same procedure.

Hierarchical clustering and sequence alignment

In our analysis of the interplay between miRNAs and

TFs, two-way clustering of the regulators was performed

using Cluster 3.0 software [75] and the resultant heatmap

was viewed using TreeView. MiRNA family information

was obtained from miRBase [76]. Multiple sequences

were aligned using ClustalW2 software in the analysis

tools framework at EMBL-EBI [77].

Additional files

Additional file 1: Table S1. Is provided as the ratio of overlap genes

and original genes after bootstrappings; Table S2 is the hub TFs and

miRNAs of lung cancer synergistic regulatory network; Table S3 is the

hub miRNAs and TFs of subnetwork Ito X; Table S4 is the count of motif

types (subnetworks) miRNAs or TFs belong to; Table S5 shows specific

functions of miRNA-TF regulatory subnetwork Ito X; Table S6 indicates

target genes (E2F1 and RB1) predictive results of the miR-17 family; Table

S7 is provided as differential expression analysis of the miR-17 family and

RB1 by SAM; Table S8 is a list of miRNA-target relation predictive algo-

rithms and databases used in our work.

Additional file 2: miRNA-TF synergetic regulatory subnetwork I to X

in order.
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