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Abstract  
The tremendous growth in digital data has led to an increase in metadata initiatives for different 
types of scientific data, as evident in Ball’s survey (2009). Although individual communities have 
specific needs, there are shared goals that need to be recognized if systems are to effectively 
support data sharing within and across all domains. This paper considers this need, and explores 
systems requirements that are essential for metadata supporting the discovery and management of 
scientific data. The paper begins with an introduction and a review of selected research specific 
to metadata modeling in the sciences. Next, the paper’s goals are stated, followed by the 
presentation of valuable systems requirements. The results include a base-model with three chief 
principles: principle of least effort, infrastructure service, and portability. The principles are 
intended to support “data user” tasks. Results also include a set of defined user tasks and 
functions, and applications scenarios.  

 

1.  Introduction 
We are facing a proliferation of scientific data and increased challenges relating to 

management and curation. There is a consensus among science data communities that metadata is 
the foundation for data discovery, use, and preservation. Collaborative efforts specific to digital 
data started to become more prominent about two decades ago in developing metadata standards 
for scientific data. Examples include the Content Standard for Digital Geospatial Metadata 
(CSDGM) published in 1998 that represents a notable achievement in this area, mandated by an 
executive order (FGDC, 1998). Ball (2009) provides a survey of many efforts that have emerged, 
and Willis, et al. (in press, 2012) account for community efforts from a range of disciplines (e.g., 
thermodynamics, crystallography, etc.), several of which emerged pre-Web.   

Although metadata standards for scientific data have been developed to manage data sets, there 
is evidence that their application has not fully kept pace with the growth in scientific data. One 
reason is the complexity and specificity in these metadata standards that makes them “unwieldy 
to apply” and not “readily available or desirable for searching and browsing” (Riall et al., 2004). 
A case in point is the geospatial community’s support of CSDGM, which has been implemented 
in a reduced and simplified form (“metadata-lite”) in various initiatives (Caplan, 2003, pp. 140–
141).  The resource requirement to fully implement this scheme is quite extensive.  

Scientific data vary greatly from discipline to discipline as well as in formats, types, 
processing, methods, and requirements. These variations are reflected in how data are sought out 
and used by different researchers, and this in turn places different and sometimes contradictory 
requirements on the metadata used to support such activity. For this reason, no single metadata 
standard can be applied universally to describe all types of scientific data sets and collections. 
Indeed, almost all data libraries and repositories developed over the last two decades have 
modified or extended existing metadata standards to suit their local needs. The possibility 
remains, however, that for specific functions, there may be enough requirements in common 
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across the majority of scientific data for discrete blocks of metadata to satisfy them. To explore 
this possibility, two basic questions need to be addressed. First, what functions do metadata 
standards for scientific data serve? Second, how should metadata standards for scientific data be 
modeled to support these functions by meeting the associated requirements?  

This paper attempts to address the two basic questions through analyzing user tasks and 
requirements for scientific data. These requirements in turn are translated into the functions and 
architectural building blocks for metadata. The mapping between user tasks and metadata 
functions and building blocks presents a methodology or an approach to re-examine the metadata 
constructs for the management, quality control, discovery, and use of scientific data. 

2.  Related Research 
Modeling metadata is not a new research topic and has been studied extensively over the last 

decade, with links to library cataloging in related areas of study. General metadata modeling 
approaches are embedded in the descriptive tradition. Describing resources with metadata has a 
long history in the library community and well-established objectives and principles. Metadata 
schemas under such a tradition are expected to be comprehensive, consistent, rational, current, 
compatible with international standards, adaptable, and easy to use (Danskin, 2009). Stemming 
from bibliographic control principles, the metadata created with any schema or standard is 
intended to enable users to find, identify, select, and obtain resources as well as navigate within a 
catalogue and beyond  (IFLA, 2009b). These metadata models have had an impact on modeling 
the structures of new metadata schemas.   

A common approach to model metadata schemas is entity-based modeling. This method 
focuses on identifying entities and relationships in a domain. Typical entities include agent or 
person/corporate body, event, place, and object, while “is-a,” “is-part-of,” and “contains” are 
examples of general relations (Lagoze & Hunter, 2001; IFLA, 2009a; Rust & Bide, 2000). In the 
science metadata domain, the important entities are those related to investigation (study or 
project), investigator, topic, publication, sample, dataset, data file, and parameter (Matthews et 
al., 2009). These models represent abstract views of the entities and their attributes and relations 
surrounding the creation, publication, and management of resources. Entity-based metadata 
models provide semantics and structures that assist in developing metadata schemas.  

Haslhofer and Klas (2010) state that metadata applications need three building blocks: schema 
definition language, metadata schema, and metadata instance. Depending on the function of 
metadata elements, they can be grouped into different types: administrative, descriptive, 
preservation, structural, technical, and use (Gill et al., 2008; NISO, 2004) and other domain-
dependent types such as educational and geotemporal. The grouping of metadata elements does 
not involve modeling the structure of a metadata schema, rather, it is merely based on an attribute 
or element’s role in representing the resource.  

Another modeling method is to conceptually define the levels of representation of resources 
and then translate the levels of representation into appropriate metadata construct levels. In 
developing an application profile for the DRIADE project, Carrier et al. (2007) adopted a three-
level approach for moving forward their application profile model. The level one application 
profile is intended for initial repository implementation, as with most existing application 
profiles. The second level extends level-one functionalities by capturing the complex 
relationships that exist among data objects and supporting expanded usage, interoperability, 
preservation, and administration. The third level supports "next generation" a.k.a. NextGen/Web 
2.0 functionalities in the repository, such as personalization, social tagging, syntactic 
interoperability for data, data and collection visualization, and user feedback. Taking a slightly 
different angle, Takeda (2009) in a report about the Institutional Data Management Blueprint 
(IDMB) project models the metadata into three levels of findability: core metadata that helps 
users find authors, publishers, disciplines, and date; discipline metadata that assists users in 
finding the right sub-domains, projects, funders, and techniques; and project metadata that 
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contains detailed dataset and its context. In both DRIADE and IDMB cases, the first level of 
metadata is considered as the place for general description of data while the second and third 
levels of representation involve more in-depth, specialized representations, which echoes what 
Keith Jeffery mentioned in his “Data surgery” presentation that organizing content is based on a 
three-level model—a top level based on a general purpose metadata element set such as Dublin 
Core, a second level focusing on contextual metadata as reflected in entities, and a third level 
covering more granular, detailed information (Boyd,  2012). As for what the third-level metadata 
exactly is, there has been a lack of discussion in literature. 

Metadata standards containing large numbers of elements and with complicated structures 
have consistently run into the barriers of high costs in implementation and steep learning curves 
for metadata contributors. A complex, deep-layered structure also makes automatic metadata 
generation extremely difficult if not impossible, a hurdle for metadata generation to forever lag 
behind the pace of data growth. While the description tradition developed over the last hundred 
years still reigns, different approaches have been proposed to model metadata schemas. Scientific 
data is a new species in the metadata description land and hence new lenses need to be used to 
examine it thoroughly, starting from its foundation and extending into the new research 
conditions and requirements in cyberinfrastructure.  

3.  Goals 
This paper addresses two questions fundamental to metadata for scientific data: (1) what 

functional requirements should metadata standards for scientific data support? (2) How should 
metadata standards for scientific data be modeled to support the functional requirements?  

Although research in scientific data management recognizes the role and importance of 
metadata, there are gaps between the properties of scientific data required in the e-science 
environment and functional requirements for metadata, as shown in the “Related Research” 
section. In exploring answers to the first question, we start from the requirements for scientific 
data: what properties are expected of scientific data in the cyberinfrastructure-enabled research 
environment and how such expectations affect the metadata modeling. The analysis and results 
are based on authors’ research projects and experience related to scientific data management.  

The second question seeks the methodology and conceptualization in developing metadata 
models for scientific data. As with many other domains, metadata models for scientific data need 
to be not only “scientifically” built but also easy to use and useful, and should allow the data to 
be cited (Smith, 2009). The scientific-ness and usefulness are not always in harmony nor easy to 
balance. Our method for addressing this question is to analyze the data user tasks and map the 
tasks with both functional and architectural metadata, which can then be used to derive minimal 
metadata models for specific data user tasks. 

4.  Properties of Scientific Data and Requirements for Metadata  
Metadata for scientific data can be considered as mission-critical in scientific data discovery, 

use, and citation. Research conducted in the cyberinfrastructure environment needs scientific data 
to have the following “e-science properties”: 

1. Verifiable: datasets should bear provenance metadata that allow researchers to trace 
them back to the raw data for quality control and data reuse purposes. The verifiability 
ensures the validity of research and allows researchers other than the data owner to 
repeat the study using the same data. 

2. Interworkable (NSF, 2011): datasets should contain sufficient metadata to facilitate data 
discovery, selection, aggregation or filtering, and reuse. The interworkability of data 
types and related metadata should be built to accommodate researchers generating data 
from the very beginning and throughout the research lifecycle. 

3. Analyzable: datasets should be in a state that requires minimal data manipulation in 
order to proceed with science research. This property implies that the data management 
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system prepares the data to be ready for analysis based on science requirements for one 
or more research communities. Such analysis-ready datasets would be of appropriate 
type and include necessary documentation and/or metadata delivered as part of 
infrastructure services.    

4. Interoperable: datasets should conform to standards so that they can be communicated 
and processed by different systems and software tools. Such interoperability ensures that 
the verifiability, interworkability, and analyzability of data will not only transcend space 
and time, but also reach across the practices of the research communities that need to use 
or reuse them (Qin et al., 2011). 

These properties of scientific data can be translated into functional requirements for metadata 
used to describe and represent scientific datasets, which Greenberg (2009) summarizes as: 

● Resource discovery and use, 
● Data interoperability, 
● Automatic and semi-automatic metadata generation, 
● Linking of publications and underlying datasets, 
● Data/metadata quality control, and  
● Data security.  

Incorporating the “e-science properties” of scientific data and functional requirements for 
scientific metadata, we developed four areas of requirements for scientific data description and 
representation (FIG. 1). The requirement model in FIG. 1 is a combination of metadata operation 
(data management), user tasks, and research requirements for data. From a functional view, data 
management functions build the foundation for other areas of functions through a wide range of 
activities from data storage, transformation, and organization to metadata generation to 
preservation of data for long-term access. These activities produce metadata artifacts – metadata 
schemas, metadata description sets, terminology, and best practice guidelines – necessary for data 
quality control, data discovery, and data use. Each of these three areas has its own specific 
requirements and can be mapped into the types of metadata mentioned earlier in the related 
literature. This functional view of metadata is the most familiar to the library/metadata 
community.  

 

 
FIG. 1. Metadata requirements for scientific data in support of data management, data quality control, data discovery, 

and data use 
 

The architectural view, however, is much less frequently mentioned. The so-called 
“architectural view” of metadata sees metadata attributes as building blocks that form a 
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comprehensive representation of data or information objects. The architectural view of scientific 
data is illustrated in FIG. 2.  

 

 
 

FIG. 2. An architectural view of metadata requirements 
 

Identity metadata includes the entities that have been discussed in metadata models (see 
section 2 for reference). Each of these entities has its own set of metadata elements for 
description purpose, for example, a person entity has name, role, affiliation, contact information, 
and may be identified by a standard identifier system such as ORCID1 and ResearcherID2. An 
event entity would have a name, time and place of occurrence, description, type, keywords, and 
other attributes. It would also have an identifier conforming to some standard system. When 
using Dublin Core to describe publications and web resources, one or more identifiers can be 
used to uniquely identify the resource, in addition to other descriptive elements. The unique 
identifiers may come from standard identifier systems such as Digital Object Identifier (DOI)3, 
Uniform Resource Identifier (URI),4 Handle System,5 and/or Universal Numeric Fingerprint 
(UNF)6. Another example is data citation in which only identity metadata is needed in the actual 
citation with the identifier or identifiers pointing to where the dataset or data collection is located. 
The DataCite Metadata Schema,7 a Dublin Core compliant metadata schema, is designed for just 
this purpose. Identity metadata builds the basis for making data identifiable and readily findable 
when such identities are known. No matter which type of entities we deal with, a common theme 
is the use of standard identifiers that can uniquely identify the entity globally. This is a necessary 
condition as well as the foundation for the Semantic Web envisioned by Berners-Lee (Berners-
Lee, Hendler, & Lassila, 2001).  

Semantic metadata for scientific data plays two roles: one is as the subject identifier for data 
and the other as the subject grouping criteria and linking mechanism for data with similar subject 
content. Large semantic tools such as the Unified Medical Language System (UMLS) and 
Library of Congress Subject Headings (LCSH) have been converted into several encoding 
formats, including the format of Resource Description Framework (RDF), which makes it 
possible for metadata tools to utilize the semantic tools for much more flexible and extensive 
representation and linking. For instance, we may use a subject term’s URI to represent the subject 

                                                        
1 http://www.orcid.org 
2 http://www.researcherid.com 
3 http://www.doi.org/index.html 
4 http://www.w3.org/Addressing/ 
5 http://www.handle.net/ 
6 http://thedata.org/book/unf 
7 http://schema.datacite.org/ 
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content of a dataset, rather than the term in natural language form. If both scientific datasets and 
semantic sources support standard identification schema such as URI, the implicit relations 
between datasets and the link target (subject term or other entities) can be made explicit as RDF 
links. A large number of scientific semantic data in the form of linked data are being developed 
(Bizer, Heath, & Berners-Lee, 2009). Its potential for promoting interdisciplinary scientific 
discovery and data is still to be explored and deployed (Bechhofer et al., 2011).   

Scientific context, geospatial, and temporal metadata fulfill the requirements for data 
verifiability, replicability, and reproducibility. It is important to point out that these types of 
metadata are not necessarily exclusive from semantic metadata, and, in fact, can convey subject-
related aspects of data. These areas of metadata describe the science aspects of the data and can 
be separate description units while maintaining proper associations with identity metadata. 
Examples of these types include the method and protocol elements in the Ecological Metadata 
Language (EML)8 and the lineage element in CSDGM. Provenance metadata is another term used 
to describe the metadata about scientific context. In research fields that are highly computational 
from data capture to analysis—for example, gravitational wave research that uses computer 
scripts for data processing, calibration, and analysis—provenance metadata needs to be captured 
by workflow management systems and becomes part of the documentation for the analysis job 
run. The miscellany metadata includes elements that do not fit into any of the other blocks: file 
size, storage medium and dissemination medium (for offline data) are typical examples.   

There is no doubt that metadata is invaluable in supporting data discovery, data quality control, 
and data use. The metadata application examples in the Dryad project 9  and DataCite 10 
demonstrate that not all user tasks require full-fledged metadata representation and that we should 
reconsider the approach of one huge metadata schema with hundreds of elements to represent the 
full diversity of scientific data attributes. The Dublin Core Metadata Initiative (DCMI) is built 
upon the same fundamental idea, combined with the notion of allowing for interdisciplinary 
discovery. Making metadata standards portable and mutually integrable can be a solution to the 
barriers for metadata standard adoption. This line of thought leads to a key question that needs to 
be addressed: How can a model for metadata specific to scientific data meet the requirements for 
data management, discovery, quality control, and use while remaining easy to use and economic 
to maintain? To move forward with this idea, we present a series of principles. They have 
emerged from discussion in the DC-Science and Metadata community and the discussions that 
have taken place at a host of data curation and digital data conferences and workshops (e.g., 
RDAP, IDCC, ASIST).   

5.  Modeling Metadata for Data User Tasks 
Based on the requirement model in FIG. 1 & 2, we propose three principles in modeling 

metadata for scientific data:   
1. The least effort principle: the metadata is carefully designed to minimize redundancies 

in data entry, e.g., entities such as researchers, institutions, or funding agencies should 
utilize existing databases to populate if possible. Efforts in building entities as 
identifiable objects or linked data are underway. ORCID and DOI are two examples 
mentioned earlier in this paper. In principle, entities should be created once and reused 
whenever and wherever they are needed. With rich legacy entity data collections in 
indexing and catalog database systems, using semantic technologies to convert them 
into linked datasets will greatly benefit metadata creation for scientific data and reduce 
the time and duplicate efforts in having to reenter the information for each metadata 
record.     

                                                        
8 http://knb.ecoinformatics.org/software/eml/ 
9 http://datadryad.org/ 
10 http://datacite.org 
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2. The infrastructure service principle: architectural building blocks may well be 
considered as metadata infrastructure. The identity, semantic, scientific context, and 
geospatial-temporal metadata should be established as infrastructure services for 
scientific data. Creating metadata for scientific data often needs to associate complex 
entities with datasets and collections. Many of the metadata values have existed in 
databases and other sources, such as geographic data for countries, states, counties, 
and landscape features; time data in various scales and formats; investigations and 
studies as well as the researchers. An important task in building such infrastructure 
services for metadata generation/creation for scientific data lies in converting what we 
already built in the last 40 years into the formats and structures suitable for the new e-
science environment. 

3. The portable principle: Architectural blocks of metadata attributes should remain 
independent while being flexible enough to allow multiple portable schemas to be 
merged together to meet specialized representation needs. This principle means that 
metadata properties are modeled by ontological methods, which will then be encoded 
in the formats that support linking and reuse. As metadata infrastructure services 
become established, the main task of developing metadata schemas will shift to 
modeling the domain of interest and assembling description sets by drawing on 
existing metadata and creating new if none exits.    

Currently, at least three factors motivate the thinking about modeling metadata for scientific 
data out of the descriptive tradition. First, scientific data is a diverse and dynamic domain. 
Nevertheless, an approximate consensus has arisen on the entities associated with scientific data 
and their respective attributes among scientists and data/information scientists. This consensus 
creates a common ground for building a metadata infrastructure to support portable, dynamic 
metadata schemes. Second, the large, comprehensive metadata standards for scientific data have 
proven to be difficult to use and, with a whole suite of artifacts to consider (e.g., metadata 
specifications, schemas, instances), expensive to implement and maintain. It will make more 
sense to develop specific goal-oriented metadata schemes for specific user tasks. Smaller, more 
specific metadata schemes will likely increase the full adoption of a scheme and hence reduce 
duplication in creating the same metadata elements and values in different local contexts. They 
can also increase the portability of metadata within the infrastructure, whether used alone or 
merged with others. Finally, the metadata infrastructure does not have to be built from scratch; 
many such infrastructure services already exist, for example, the name authority database and 
geographic controlled vocabulary at the Library of Congress and the naming systems for 
geographic, planetary nomenclature, and geologic terms at U.S. Geological Survey 
(http://www.usgs.gov/pubprod/reference.html).   

Based on a typical research life cycle, we define 10 data user tasks (TABLE 1). The first four 
user tasks are the same as the ones defined by the library cataloging standards. The remaining six 
tasks are unique to scientific research. We view the metadata required to perform the user tasks 
from two perspectives: the function embedded in a type of metadata and the architectural 
building block of metadata attributes needed to support the metadata function. What needs to be 
pointed out is that a metadata scheme may target only one task but at the same time can perform 
other tasks either as a requisite for the primary task or as a side job. For example, the DataCite 
metadata schema is designed for one task—citing datasets—but incorporates additional, optional 
elements to allow it to perform the tasks of discovering, identifying, and locating datasets as well. 
In this sense, we divide data user tasks into:  

• Generic tasks: discovery, identify, select, obtain 
• Scientific tasks: verify, analyze 
• Data tasks: manage, archive 
• Dissemination tasks: publish, cite  
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It is clear that identity metadata is ubiquitous in all user tasks, which makes it a requisite for 
other tasks in order to be performed. This can be considered as evidence that a metadata 
infrastructure for scientific data, if designed properly, can benefit the metadata creation and other 
scientific data user tasks tremendously.  

 

6.  Application Scenarios 
As part of our analysis we present two scenarios to demonstrate the possible application of any 

of the blocks of metadata supporting scientific data. 
 

Scenario 1: Emphasis: Cross-domain discovery and verifiability 
 
A researcher is interested in a particular type of measurement made within a defined geographical 
area. The researcher chooses a data repository aggregator or cross-search service and searches for 
relevant data; search entry points include geographical area (e.g. latitude/longitude ‘square’), 
time period, the field of research and the variable or keyword measured. The search returns a list 
of possible datasets, each accompanied by  a brief abstract or summary, alongside suggestions for 
filtering the  result list (e.g., by date, publisher or creator). The researcher may narrow down the 
result set by choosing one or more filtering criteria.   
Each item in the result set links through to a fuller catalog record for the dataset: information on 
entities related to the dataset, spatiotemporal resolution, data quality, provenance and data 
collection methodology that the researcher can use to assess if the data are suitable. Where 
available, the researcher makes use of preview images or data to make comparisons and gain a 
preliminary understanding of the data. The researcher uses details of how to access the data, also 
part of the detailed records, to obtain a copies of the most relevant and useful datasets in a 
suitable format. 
 
Scenario 2: Emphasis: Creating metadata description sets 
 

A researcher has just received a grant from a funding agency for her research project. Staff at 
her institution’s data repository are notified by the project module, which has been created as one 
of the infrastructure services that keeps track of funded projects within the institution. The staff 
retrieve the data management plan prepared for the proposal and, by consulting the researcher, 
they identify the metadata model needed for organizing and managing the anticipated datasets 
and products and then configure the metadata submission interface. The data repository staff help 
the researcher locate necessary entity data (team members, previous related projects and 

TABLE 1. Mapping data user tasks with metadata functions and architectural building blocks 
 

Data user tasks Metadata function Architectural building block 
Discover Descriptive metadata Identity and semantic metadata 
Identify Descriptive metadata Identity metadata 
Select Descriptive, technical metadata Identity, semantic, scientific context, geospatial, temporal, 

miscellany metadata 
Obtain Descriptive metadata Identify metadata 

Verify  Descriptive metadata Scientific context metadata 
Analyze  Scientific context, geospatial, and temporal metadata 
Manage Descriptive, administrative, structural, 

and technical metadata 
Identify, semantic, scientific context, geospatial, temporal, 
miscellany metadata 

Archive Descriptive, administrative, structural, 
and technical metadata 

Identify, semantic, scientific context, geospatial, temporal, 
miscellany metadata 

Publish Descriptive metadata Identity, semantic, scientific context, geospatial, and 
temporal metadata 

Cite Descriptive metadata Identify metadata 
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publications, etc.) and embed frequently-used entities and their URIs or DOIs in the metadata 
entry interface so that the researcher’s team can save time and minimize errors in data entry. New 
entities such as team members who do not have an identity metadata record will be created if 
needed.    

The scenario activity is useful for conceptualizing where metadata supports particular 
functions. It can be a time-consuming task to consider the full range of scenarios, , but doing so 
helps to characterize how the functions should be supported. More work in this area will help to 
confirm the work in this paper, and identify areas requiring more attention as well.  

7.  Conclusion 
This paper reports on exploratory work examining metadata functions and modeling for 

scientific data. This work is presented in the context of systems requirements that are essential for 
metadata supporting the discovery and management of scientific data.  The results include a base-
model with three chief principles: principle of least effort, infrastructure service, and portability. 
Results also include a set of defined user tasks and functions.  Finally, two application scenarios 
are presented. 

This paper is limited in that the work presented is based on factors gleaned from scholarly and 
scientific research, and discussions at research conferences and workshops. The authors 
recognize this limitation, but the sources informing the principles and models presented here are 
valid, and important venues for the exploring a range of topics relating to data curation, including 
the role and functionality of metadata for supporting the discovery and management of scientific 
data.  By laying down a metadata modeling base here, supported by principles and examples of 
functions and metadata types, this paper has made a contribution and provides base-level 
modeling that can serve as a source in future research.  The work presented may also help guide 
further qualitative research in this area, and ultimately form the design of instruments that could 
assist in gathering more empirical data to support or modify the proposed models.   Next steps by 
these authors will consider these ideas, and seeks to gather more data to aid in the development of 
a sustainable and informative model supporting the discovery and management of scientific data. 
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