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Functional and Mutational Analysis of 

the Light-harvesting Chlorophyll a/b Protein 

of Thylakoid Membranes 

Bruce  D.  K o h o r n ,  E i t a n  H a r d , *  P a r a g  R. Chi tn i s ,  J .  Ph i l ip  T h o r n b e r ,  and  E la ine  M.  Tob in  

Department of Biology and Molecular Biology Institute, University of California, Los Angeles, California 90024; and *Botany 
Department, The Hebrew University of Jerusalem, Jerusalem, Israel 

Abstract. The precursor for a Lemna light-harvesting 

chlorophyll a/b protein (pLHCP) has been synthe- 

sized in vitro from a single member of  the nuclear 

LHCP multigene family. We report the sequence of  

this gene. When incubated with Lemna chloroplasts, 

the pLHCP is imported and processed into several 

polypeptides, and the mature form is assembled into 

the light-harvesting complex of  photosystem II (LHC 

II). The accumulation of  the processed LHCP is en- 

hanced by the addition to the chloroplasts of a precur- 

sor and a co-factor for chlorophyll biosynthesis. Using 

a model for the arrangement of  the mature polypep- 

tide in the thylakoid membrane as a guide, we have 

created mutations that lie within the mature coding 

region. We have studied the processing, the integra- 

tion into thylakoid membranes, and the assembly into 

light-harvesting complexes of six of  these deletions. 

Four different mutant  LHCPs are found as processed 

proteins in the thylakoid membrane, but only one 

appears to have an orientation in the membrane that 

is similar to that of the wild type. No mutant  LHCP 

appears in LHC II. The other two mutant  LHCPs 

cannot be detected within the chloroplasts. We con- 

clude that stable complex formation is not required 

for the processing and insertion of altered LHCPs into 

the thylakoid membrane. We discuss the results in 

light of  our model. 

I 
N higher plants light-harvesting complexes (LHCs) l lo- 
cated in the chloroplast thylakoid membrane transfer 
absorbed light energy to photochemical reaction centers 

(l 9, 46). The major protein component of the LHC of pho- 
tosystem II (LHC II) of green plants is encoded by a nuclear 
gene family (7, 14, 15, 25, 29, 42, 47). This polypeptide, the 
light-harvesting chlorophyll a/b apoprotein (LHCP), is trans- 
lated in the cytoplasm on membrane-free polyribosomes as a 
precursor polypeptide. It is subsequently imported into the 
chloroplast (3, 13, 20, 42) and then complexed with chloro- 
phyll and carotenoid molecules to yield a processed mature 
thylakoid membrane protein (10, 16). 

Recently, much attention has been given to the transport 
of nuclear coded proteins into chloroplasts (13, 34, 39, 40, 
43, 50). It is now clear that amino-terminal transit peptides 
direct the precursors to the correct organelle (43, 50) and that 
the chloroplast outer envelope plays a role in the recognition 
of the precursors (13, 22). It has been shown for one protein, 
the small subunit of ribulose bisphosphate carboxylase/oxy- 
genase (SSU), that the transit peptide is cleaved from the 

t Abbreviations used in this paper: ALA, 5-aminolevulinic acid; LHC, light- 

harvesting complex; LHC II, LHC of photosystem II; LHCP, light-harvesting 
chlorophyll a/b protein; pLHCP, LHCP precursor; RB, resuspension buffer 
(100 mM Tricine, pH 7.9, 300 mM glycerol, 1 mM MgCl2, l mM dithio- 
threitol); 100 mM Tricine, pH 7.9, 300 mM glycerol, l mM MgCI2, l mM 
dithiothreitol; RBE, RB containing 5 mM Na2EDTA; SAM, S-adenosyl methi- 
onine; TE, 100 mM Tricine, pH 7.9, 5 mM Na2EDTA, 1 mM phenylmethyl- 

sulfonyl fluoride. 

mature protein by a stromal specific protease in a two-step 
process (39, 40). SSU is subsequently assembled with the large 
subunit of the enzyme to yield a functional unit (9). 

Less, however, is known of the events that follow the uptake 
of thylakoid membrane proteins into the chloroplast. For 
example, it remains to be determined how LHCP integrates 
specifically into thylakoid membranes, becomes a member of 
a holocomplex, and binds chlorophyll and carotenoid mole- 
cules. Moreover, depending on the species, mature LHCP is 
found in at least two forms that differ slightly in electropho- 
retic mobility on denaturing gels (7, 15, 42, 44). It has been 
suggested that the source of the multiple forms lies with the 
members of the gene families that encode LHCP (7, 14, 15, 
25, 42, 47), but the situation remains unresolved. 

To follow the maturation and assembly of LHCP into 
chlorophyll-protein complexes, we have studied the uptake 
and processing of LHCP precursor (pLHCP) by isolated chlo- 
roplasts. We have developed an assay for LHC assembly that 
uses LHCP expressed in vitro from a Lemna gibba genomic 
clone and chloroplasts isolated from Lemna tissue. We have 
previously isolated several LHCP genomic coding sequences 
from Lemna (47), and have reported the sequence of one that 
contains an intron (25). Here we present the sequence of a 
second Lemna genomic clone that does not have an inter- 
rupted coding region. Using this gene as template for in vitro 
RNA and protein synthesis, we show that a single member of 
the LHCP gene family can give rise to multiple mature forms 
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in the LHC II of the thylakoid membranes of isolated chlo- 

roplasts. 
From both the deduced amino acid sequence of the Lemna 

clones and some experimental observations, we have previ- 

ously predicted the conformation of the mature polypeptide 
in the thylakoid membrane (25). Our model is in accord with 
electron microscope studies (26, 31). Three a-helical portions 
in LHCP are predicted to form membrane-spanning seg- 
ments, with the amino terminus exposed to the stroma, and 
the carboxy terminus within the lumen. Using this model as 

a guide, we have created deletions of the LHCP mature coding 
sequence, and have studied the assembly of the corresponding 
mutant proteins into thylakoid membranes of isolated chlo- 
roplasts. 

Materials and Methods 

Molecular Cloning and Sequencing 

An Eco RI/Bam HI 1.6-kb DNA fragment homologous to a sequenced LHCP 

genomic clone pABI9 (25) was isolated from a 9-kb Lemna genomic segment, 

AB30 (47). This 1.6-kb piece was cloned into pUC8 (thereby creating pAB30) 

and sequenced using the chemical method of Maxam and Gilbert (33). The 

Eco RI, Bam Hi, Bgl II (position 803), and Xho I sites (positions 334 and 1112) 

were labeled with either polynucleotide kinase (PL Biochemicals, Piseataway, 

N J) using 3,-32P-ATP (ICN, Irvine, CA), or the Klenow fragment of Escherichia 

coil DNA polymerase (Bethesda Research Laboratories, Gaithersburg, MD) 

using the appropriate a-32P-dNTP, and the fragments isolated by electrophoresis 

through low temperature gelling agarose (LGT, Marine Colloids, Rockland, 

ME). Both strands of the fragment were sequenced, except for the -50 base 

pairs at either end of the clone. 

In Vitro Transcription and Translation 

We determined by S 1 nuclease mapping (25) that the site of in vivo transcription 

initiation is within a few nucleotides of a unique Sstl site at position 351 of 

pAB30. The 3' terminus of the message lies -300 bases upstream of the Bam 

HI site. The Sstl/Bam H 1 fragment was cloned into the Sstl/Bam HI sites of 

pSP65 to create psp65ab30, in which the AB30 transcription unit is downstream 

of the SP6 RNA polymerase promoter (18). psp65ab30 was linearized with 

Hind III, which cleaves downstream of the plasmid insert, to provide a template 

for transcription. The transcription reaction included 100 ~g/ml DNA, 40 mM 

Tris (pH 7.5), 6 mM MgCI2, 2 mM spermidine, 0.5 mM each of ATP, GTP, 

CTP, UTP, 10 mM dithiothreitol, 3 U/ml RNAsin (Promega Biotec, Madison, 

WI), and 150 U/ml SP6 RNA polymerase (New England Nuclear, Boston, 

MA). The reaction was terminated after 1 h at 37"C by the addition of DNASe 

to 0.2 mg/ml and incubation for 10 more min at 37"C. The reaction was then 

phenol extracted twice~ ethanol precipitated, the RNA resuspended at 1 mg/ml 

in water, and stored at -70"C. Typically we recovered 10 ug of RNA per #g of 

linear template. 

Translation of the uncapped AB30 RNA was performed in a wheat germ 

extract (38) treated with micrococcal nuclease (36a) in the presence of [35S]- 

methionine (800 Ci/mmol). 1-2 ~g of RNA was added for each 50-~1 translation 

reaction, and under these conditions we recovered 20,000-50,000 cpm/~l of 

translation mix. Reactions were terminated by freezing and storage in liquid 

nitrogen. 

Chloroplast Isolation 

L. gibba plants were grown in darkness with intermittent red illumination (2 

min/8 h) for 6 wk on E medium with sucrose (48). The plants were transferred 

to E medium lacking sucrose and placed in continuous white light for 24 h 

before harvesting. We refer to these plants as greening tissue. Chloroplast 

preparations from plants depleted of sucrose and exposed to white light for 

shorter periods of time were less efficient in incorporating LHCP. All isolation 

steps were performed at 4"C. Chloroplasts from -10 g of greening tissue were 
used for each uptake reaction. Plants were harvested after 24 h of illumination 

and ground for 20 s in a Waring blender equipped with razor blades (24) in a 

buffer (23) containing 1.25% Ficoll-400 (Sigma Chemical Co., St. Louis, MO), 

2.5% Dextran-40 (Sigma Chemical Co.), 1% bovine serum albumin (BSA, 

fraction V) (Sigma Chemical Co.), 12.5 mM Tris (pH 7.6), 5 mM MgC12, 440 

mM sucrose, and 10 mM ~-mercaptoethanol. The solution was filtered through 

60-~m nylon mesh (Nitex) and centrifuged at 3,000 rpm in a Sorvall GSA rotor 

for 1 min. The pellet was resuspended in resuspension buffer (RB) (100 mM 

Tricine, pH 7.9, 300 mM glycerol, 1 mM MgCI2, 1 mM dithiothreitol), 

aliquoted into glass 15-ml Corex tubes, and centrifuged at 3,500 rpm in a 

Sorvall SS34 rotor for I min. Each test tube received -50 #g of protein and 

100 #g of chlorophyll as determined by the methods described in references 6 

and 2, respectively. 

pLHCP Import 

The chloroplast pellet was resuspended in 100 ul of RB and 65 ul of a solution 

containing 1 M glycerol, 0.3 M Tricine, pH 7.9, 40 mM methionine, 4 mM 

ATP, 4.5 mM S-adenosyl methionine (SAM), and 4.5 mM 5-aminolevulinic 

acid (ALA). 125 ul of translation products were thawed and added to the 

chloroplast suspension and the mixture was incubated at 25"C for 60 rain with 

constant but gentle agitation. The test tubes were illuminated at ~30 ~Einsteins/ 

m 2 per s (cf. reference 8). The samples were also rotated every 15 rain to keep 

the chloroplasts suspended. The reaction was terminated by the addition of 2 

ml ofRB, centrifugation for 1 min at 5,500 rpm, and resuspension of the pellet 

in 500 ~1 of RB. Thermolysin was added to 200 ~g/ml, CaC12 to 5 raM, and 

the reaction incubated at 4"C for 30 min. The suspension was then underlaid 

with 2 ml of RBE (RB containing 5 mM Na2EDTA) with 25% Percoll (Sigma 

Chemical Co., St. Louis, MO), 0.25% BSA (fraction V, Sigma Chemical Co.), 

Ficoll-400 (Sigma Chemical Co.), and 0.75% polyethylene glycol 8000 (Sigma 

Chemical Co.) and centrifuged for 3 min at 6,000 rpm in a Sorvall SS34 rotor. 

Broken chloroplasts remained above the Percoll layer, while intact organelles 

pelleted (20). This observation was confirmed by the fact that breakage of all 

the chloroplasts, obtained by dilution with water and vigorous vortexing before 

centrifugation through Percoll, resulted in no green pellet and a large green 

interface above the Percoll. The pelleted, intact organelles were then washed 

with 2 ml of RBE containing I mM phenylmethylsulfonyl fluoride (a-toluene- 

sulfonyl fluoride), recentrifuged at 6,000 rpm, and resuspended and vortexed 

in TE (100 mM Tricine, pH 7.9, 5 mM Na2EDTA, 1 mM phenylmethylsulfonyl 

fluoride). The suspension was centrifuged at top speed in a Fisher microfuge 

(15,000 g), and the soluble proteins (stroma fraction) precipitated with 10% 

trichloroacetic acid. The pellet of thylakoid membranes was resuspended in a 

denaturing buffer (4% SDS, 20% glycerol, 0.2 M dithiothreitol, 5 mM 

Na2EDTA, 0.70 mM Tris, pH 6.8, 0.01% bromophenol blue) and incubated at 

55"C for 60 min before electrophoresis. This method of denaturation was 

necessary because boiling causes starch to become viscous, and the sample 

could not otherwise be completely denatured. The stromal fraction was pelleted 

in the microfuge, and washed with 80% acetone, dried under vacuum, and 

dissolved by boiling for 2 min in denaturing buffer. SDS PAGE (28) and 

fluorography (30) were as previously described. 

Chlorophyll-Protein Complex Analysis 

Isolated thylakoid membranes (see above) were resolved into complexes ac- 

cording to the method of Peter, G. and J. P. Thornber (manuscript in prepa- 

ration). Thylakoids were gently resuspended in 25 #1 of a solution containing 

6 mM Tris-base, 50 mM glycine, 10% glycerol, and incubated for 15 min at 

4*(?. 2.5 #1 of a solution containing 3% SDS, 7% octylglucoside was then added, 

and the suspension was incubated for an additional 10 rain at 4"C. Samples 

were then applied to a 6% polyacrylamide gel containing 25 mM Tris-base, 

200 mM glycine, and 0.4% Deriphat-160 (McKerson's Chemical Laboratories, 

Minneapolis, MN). The reservoir buffer contained 12 mM Tris-base, 100 mM 

glycine, 0.2% Deriphat-160, and 0.02% SDS. For electrophoresis in a second, 

denaturing dimension, gel strips were placed horizontally above a 12.5% Laemli 

SDS acrylamide gel (28), and run at 40 mA at 42"C. 

Trypsin Treatment of Thylakoid Membranes 

After gentle resuspension of the thylakoid pellet in 100 ~1 of TE (without 

phenylmethylsulfonyl fluoride), trypsin (TPCK-treated) (Sigma Chemical Co.) 

was added to 0.25 mg/ml. The reaction was incubated for 15 min at 25"C. The 

digestion was then diluted with 1 ml ofTE, phenylmethylsulfonyl fluoride was 

added to 1 raM, and the mixture was centrifuged for 10 min at 15,000 g. The 

pellet was resuspended in denaturing buffer, incubated for I h at 55"C, and 

subjected to electrophoresis on denaturing gels. 

Western Blotting 

Electrophoresis (28), electrophoretic transfer to nitrocellulose (5), and immu- 

nodetection (49) were performed as described. The LHCP monoclonal antibody 

was raised against nondenatured protein of tobacco LHC II and will be 
described in detail elsewhere (46a). 

Deletion Construction 

The Barn HI site of psp65ab30 was eliminated by digestion of the cloned DNA 
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with Barn HI, creating flush ends with the Klenow fragment of E. coil DNA 

polymerase and four dNTPs, followed by religation. The resulting clone, 

psp65ab30B-, was digested with either Eco RI (5' terminus of insert), or in a 

separate reaction, with Hind Ill (3' terminus). The linearized DNA was treated 

with exonuclease Bal 31 (Bethesda Research Laboratories) for varying amounts 

of time, and Bam HI linkers were ligated to the deletion termini. The Eco RI 

sample was digested with Hind Ill, and the Hind IlI sample with Eco RI; then 

the plasmid inserts of various lengths were isolated by electrophoresis in LGT 

agarose. The Eco Rl/Bam HI or Hind IlI/Bam H1 fragments were then cloned 

into pSP65, and analyzed by gel etectrophoresis. Inserts of varying size were 

sequenced (33) from the Barn HI site to determine the extent of the deletion. 

lnframe LHCP coding sequences for mutants D, E, F, K, and I were recreated 

by combining the Eco RI/Bam HI and Barn HI/Hind Ill fragments at the Bam 

HI sites and then cloning into the Eco RI and Hind Ill sites of pSP65. Mutant 

J was created in a similar fashion except that the Barn HI ends were made flush 

with Klenow polymerase and four dNTPs to allow for an in-frame coding 

sequence. All recreated LHCP coding regions therefore have a Bam H1 poly- 

linker within the coding sequence which contributes additional amino acids. 

The sequence end points (minus Bam HI linker) for each deletion are as follows, 

with the amino-proximal break point first, the carboxy-proximal last. The 

amino acids that are contributed by the Barn H l linker are listed in the single- 

letter code after the numbers (D:741-82 l, GS; E:803 (Bglll ofpab30)-932, IR; 

F:687-82 l, GS; 1:895-1008, RIR; J: 1053-1098, GSIR; K: 1109- 1168, DP). The 

positions of the deletions in relation to the rest of the mature protein are also 

illustrated in Fig. 5. 

Results 

LHCP Sequence 

We have isolated several LHCP coding sequences from L. 

gibba (47) and have studied the expression of  two, AB 19 and 

AB30 in detail. Previously, we reported the nucleotide se- 

quence of ABI9 which contains a short intron having the 

characteristics of  a transposable element (25). Here we present 

the sequence of  AB30, which does not have an interrupted 

coding region. A probe homologous to the 3' untranslated 

region of  the predicted mRNA for AB30 hybridizes to an 

RNA species of  1,200 bases that is present at a high concen- 

tration in light-grown plants and at much reduced levels in 

plants which have been placed in darkness for a week (data 

not shown). Fig. 1 shows the nucleotide and predicted amino 

acid sequence of  AB30, and compares this genomic fragment 

with ABI9. We have found a short region of  nucleotide 

sequence upstream from the TATA box which is identical in 

ABI9 and AB30 (asterisks in Fig. l) and another that is 

homologous in both Lemna and petunia Cab genes (boxed 

region Fig. l; cf. reference 15). We do not know the signifi- 

cance, if any, of  these observations. 

Within the mature LHCP coding sequence, 85% of the 

amino acids are conserved between AB19 and AB30. How- 

ever, little homology is found in the first 20 residues of  the 

amino-terminal portion of  the mature polypeptides. Both 

ABI9 and AB30 contain a proposed site of phosphorylation, 

a threonine (position 504), that is thought to be involved in 

thylakoid membrane stacking (1, 4, 45). The two transit 

peptides differ in their predicted hydrophobicities (27) yet do 

exhibit the three blocks of  homology common to all known 

chloroplast transit sequences (25a). We do not yet know 

whether the presence of  the two distinct transit sequences and 

amino termini of  the mature polypeptides is of  any functional 

significance. 

CTAGTACGGGCCGAATTCAATTATTTGTTTAATGTTCGTTCTATAACCAATGTGATAGATATAAGAAAATTGAGTGTGAGTTAATATCATATAGTATTTCTTTTATTGAGTTAAACTCGA 
1 
CCATTTGGGTCATTATTTTGTGTTTTCGAGAATCTCCATTTGCGGCTGAGGATGACTCTTAGTCTGCCACGTGTAGCGAA~ATGTTCCAACACCGATTTGAA~AATGGCGTGCGGCCA 
121 • 
GTAGATATCGGTGGATAATGATGATCCCATCCTCGTCTCCTTCCTCTTCGGTATTAAAGCGAAGTCCTGCCTTGGGTCTGTATCCCTACACCACTCGAGCTCGTTACAGGAAGGAGAAGG 

241 *** ** ** ** ********** 
I A F A  Q L Q R D E L V R K V  S 

M A A S M A L S S P S L V G K A V K L A P A A S E V F G E  

CCTCCTCTTCGCAGCTCTCTCTTTCGCCGTCGCAATGGCCGCGAGCATGGCTCTCTCCTCCCCCTCCCTCGTCGGGAAGGCGGTCAAGCTCGCCCCCGCCGCTTCCGAGGTTTTCGGCGA 

361 

F V R V - A PQ I A P F - QT 

G R V S M R K T A G K P K P V S S G S P W Y G P D R V K Y L G P F S G E A P S Y  

GGGCAGAGTCTCCATGAGGAAGACCGCGGGGAAGCC~AAGC~GTCTCCT~CGGCAGCCCCTGGTACGGGCCCGACCGCGTCAAGTACCTAGGCCCGTTCTCCGGCGAGGCGCCGTCCTA 

481 

P 

L T G E F A G D Y G W D T A G L S A D P E T F A K N R E L E V I H A R W A M L G  

CCTGACCGGCGAGTTCGCCGGCGACTACGGCTGGGACACCGCCGGGCTCTCGGCCGACCCCGAGACCTTCGCCA•GAACCGGGAGCTGGAGGTGATCCACGCGCGGTGGGCCATGCTCGG 

601 

I SK Q A 

A L G C V F P E L L A R N G V K F G E A V W F K A G S Q I F S E G G L D Y L G N  

CGCGCTGGGCTGCGTGTTCCCGGAGCTGCTGGCGCGCAACGGCGTGAAGTTTGG•GAGGCCGTGTGGTTCAAGGCGGGTTCGCAGATCTTCAGCGAGGGGGGGCTGGACTACCTGGGCAA 

721 
N LI G GL 

P S L V H A Q S I L A I W A T Q V V L M G A V E G Y R V A G G P L G E V V D P L  

CCCCAGCCTGGTGCACGCGCAGAGCATCCTGGCCATCTGGGCCACGCAGGTGGTCCTCATGGGCGCCGTCGAAGGCTACCGCGTGGCCGGCGGGCCTCTGGGCGAGGTCGTCGACCCGCT 

841 

A 

Y P G G S F D P L G L A D D P E A F A E L K V K E I K N G R L A M F S M F G F F  

GTACCCCGGCGGCAGCTTCGACCCGCTGGGGCTGGCCGACGACCCCGAGGCCTTTGCGGAGCTGAAGGTGAAGGAGATCAAGAACGGACGCCTGGCCATGTTCTCCATGTTCGGGTTCTT 

961 

I I A 

V Q A I V T G K G P L E N L A D H L A D P V N N N A W A F A T N F V P G K  

CGTGCAGGCCAT•GTCA••GGGAAGGGCCCCCTCGAGAACTTGGCGGACCATCTCGCCGACCCCGTCAACAACAACGCCTGGGCCTTCGCC•CCAACTTCGTCCCCGGCAAGTGAGAGGC 

tO81 
CCCGAGCTGTTCTCGTGACCCCTGTCCAATGTACATGAGGAGAAGACTATGTTCTATAATGTATCATTATCGTTCTCATTTTATCCATTTCATCCTTTTACCATTTCCAACCTTGGATAG 

1321 
CAAATTTCCATCCTAAAAAGCTAATGGAGGAGGAATA~GCATGTGATGTCCATCTTTTACTCAATTTTCTATCCCAAATCGCCACCCTAGATGATAATCTGCGTCATGCCTTGTATGT~ 
144I 
TTGCACATTTCCGTCCCAAAAAGTTAAGAGAGGAGGAATAT~ACTATTGAATTATTATACTTAATTTATAGGA 

1561 

Fibre 1. The nucleotide and derived amino acid sequence of AB30, and a comp~son with AB 19 (25). Above the nonc~ing DNA strand is 
the complete amino acid sequence ~r AB30. Amino acids that are d i ~ n t  in ABl9 are indicat~ above tho~ ~r AB30, and a (-) indicates 
a deletion at that position. • indicates the p r o ~ d  site of proce~ing (25). An ~terisk (*) indi~tes identi~l ba~s in AB30 and AB 19 that are 
upstream of the site of tran~ription initiation. The box enclo~s a re,  on of homolo~ ~und ~ n  the Lemna clones and Cab genes of 
petunia (15). The pu~t ive  T A T T A  and CAAT ~ x e s  are overlined. A ~ l i d  b i l l  (O) and an o ~ n  circle (O) denote the approximate sites of  

transcription initiation, and termination, res~ct ive ly .  A~ows  a p ~ a f i n g  at the 3'  end of  the sequence show an i m p e ~ c t  d ire~  r e . a t .  
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In Vitro Expression of pLHCP 

We chose AB30 as template for in vitro pLHCP RNA pro- 
duction because this clone represents an uninterrupted coding 
sequence for a pLHCP. We isolated a genomic fragment, 
whose 5' terminus coincides with the in vivo transcription 
start site (Sst I site at 338), that contains a complete transcrip- 
tion unit and that extends ~300 bp beyond the in vivo poly 
(A) addition site to a Barn HI site. This fragment was inserted 
into the Sst I/Bam H1 sites of pSP65 to create the plasmid 
psp65ab30. The in vitro expression of this clone is shown in 
Fig. 2. Transcription of Hind III-digested psp65ab30 with 
SP6 RNA polymerase (18) produced a -1,300 base uncapped 
RNA that contains an LHCP transcription unit and an addi- 
tional 300 bases at the 3' terminus (Fig. 2a). This AB30 RNA 
was then translated in a wheat germ extract to incorporate 
[3~S]methionine into a pLHCP that migrated at the same 
position (32 kD) observed for the pLHCP in Lemna poly (A) 
RNA translation products (48). The predicted molecular 
weight of pLHCP from the nucleotide sequence is 28,735. 
This size is lower than that predicted from its mobility in 
denaturing gels. The AB30 translation product can be im- 
munoprecipitated with the LHCP monoclonal antibody (data 
not shown). 

Uptake and Processing of pLHCP by Chloroplasts 

We next sought to incorporate the pLHCP synthesized in 
vitro into the LHC of Lemna thylakoids. In an attempt to 
mimic the in vivo process as well as possible, we used chlo- 
roplasts from the same organism, and therefore conditions 
were established for the isolation of intact active L. gibba 
chloroplasts. Several common isolation buffers were tested 

Figure 2. In vitro transcription, translation, and incorporation of 
oLHCP into thylakoid membranes. (a) Ethidium bromide stain of a 

denaturing agarose gel (37) showing 1 #g ofpLHCP RNA synthesized 

with SP6 RNA polymerase, b-e show a fluorograph of a denaturing 
12.5% polyacrylamide gel containing: (b) the products of the trans- 
lation of this pLHCP RNA in a wheat germ extract; (c) the thylakoid 

fraction of chloroplasts incubated with pLHCP; (d) same as in lane 
c, except the uptake reaction lacked ALA and SAM; (e) the stroma 
fraction of the same incubation shown in lane c; and (f)  immunolog- 

ical staining of thylakoids from mature plastids with LHCP monoclo- 
hal antibody. 

(20), but the use of a nuclear isolation buffer (23) provided 
the highest yield of intact, functional chloroplasts. Labeled 
pLHCP was incubated with a crude chloroplast preparation 
isolated from greening plants (see Materials and Methods). 
After 60 min, the reaction mixture was treated with the 
protease thermolysin to digest any protein that was not located 
within the chloroplasts. Protein within intact organelles re- 
mains undigested as thermolysin does not cross the envelope 
(12). We and others (8, 13) have chosen thermolysin because 
this protease causes less damage to the envelopes and therefore 
less plastid breakage compared with the more commonly used 
trypsin (20). After separation of intact chloroplasts from those 
broken during isolation and incubation, thylakoid and 
stromal fractions were prepared from them. The results of the 
uptake of pLHCP by Lemna chloroplasts are shown in Fig. 
2. Fluorography of gels displaying the chloroplast compart- 
ments showed that labeled protein was associated only with 
the thylakoid fraction and migrated with a mobility that was 
identical to that of the mature LHCP (Fig. 2 c). We conclude 
that pLHCP can be incorporated and processed by Lemna 
chloroplasts. 

A striking observation is the detection of three radioactive 
polypeptides that differ slightly in electrophoretic mobility 
(Fig. 2 c). LHCP monoelonal antibody reactions (Fig. 2f)  and 
Coomassie Blue staining of denatured thylakoids from green- 
ing chloroplasts reveal only two prominent bands, and these 
correspond in size to the two faster migrating radioactive 
LHCPs. The slowest, third radioactive band that is of equiv- 
alent intensity to the other two bands on the fluorograph is 
not detected by the monoclonal antibody or Coomassie Blue 
staining of thylakoids from greening plants. A band which 
corresponds in size to the slowest migrating radioactive LHCP 
(Fig. 2 c) could only be detected with the monoclonai antibody 
or Coomassie Blue stain in thylakoids prepared from mature 
chloroplasts (data not shown). Such plastids, isolated from 
Lemna grown on sucrose in continuous white light, contain 
higher levels of LHCP (48). In most in vitro uptake experi- 
ments using chloroplasts isolated from greening tissue, we 
observe three radioactive bands of approximately equal inten- 
sity, but in some cases the number and intensities of the bands 
vary. 

We also considered the possibility that the various forms 
arise through the degradation of a single species during the 
isolation procedure. We therefore fractionated and fluoro- 
graphed a sample of the uptake reaction mixture taken before 
the preparation of thylakoid and stroma fractions. These 
results are shown in Fig. 3 b. Three radioactive bands were 
isolated from this early stage of the procedure, indicating that 
the multiple forms arise before the fractionation of the chlo- 
roplast. We have also added translation products to the pellet 
of intact chloroplasts, and we noted that the pLHCP did not 
undergo degradation during subsequent fractionation (Fig. 
3 a). Thus the three bands are not an artifact of the isolation, 
and we are left to conclude that the multiple LHCPs arise 
during the uptake and processing steps. 

We wished to determine whether one LHCP band accu- 
mulated before any of the others to see whether the higher 
molecular forms gave rise to the lower forms. We therefore 
incubated the chloroplasts with pLHCP for varying amounts 
of time. The results of this analysis are shown in Fig. 3, c-fi 
The intensity of each of the LHCP bands increases over 1 h 
of incubation and each variant accumulates at a similar rate. 
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Figure 3. Evidence that the multiple LHCP bands arise during 
pLHCP import and processing by chloroplasts. Fluorograph of a gel 
containing: (a) pLHCP incubated with pelleted intact chloroplasts 
and fractionated with the thylakoid membranes; (b) a sample of the 
uptake reaction prior to chloroplast disruption and fractionation; (c- 
f)  thylakoid preparations from intact chloroplasts incubated with 
pLHCP for 0, 5, 20, or 40 min, respectively. 

Therefore, no precursor-product relationship is evident 

among the three bands. 

Chlorophyll Synthesis Factors Affect 

pLHCP Incorporation 

LHCP does not accumulate in the absence of  chlorophyll, 

and we wished to determine whether the import of  LHCP 

into L. gibba thylakoid membranes was affected by chloro- 

phyll synthesis. We found that the addition to the reaction 

mixture of  ALA, a precursor, and SAM, a co-factor, needed 

for chlorophyll synthesis ( 17, 2 l) greatly enhanced the amount 

of  mature LHCP detected in thylakoid membranes (Fig. 2, c 

and d). 

LHCP Is Incorporated into Chlorophyll- 

Protein Complexes 

To determine whether the processed LHCP is assembled into 

LHCs and whether it might bind pigment molecules, we 

fractionated isolated thylakoids after an uptake reaction in a 

nondissociating gel system (Fig. 4, horizontal arrow; cf. Peter, 

G., and J. P. Thornber, manuscript in preparation). In this 

electrophoresis system all detectable chlorophyll remains 

bound to protein. When this gel is run in a second dimension 

(Fig. 4a, vertical arrow) under denaturing conditions (28), 

green band II is shown to contain only mature LHCP and 

two other minor proteins. A thylakoid preparation from an 

uptake experiment was run concurrently in the denaturing 

dimension to serve as a marker (Fig. 4, asterisk). The slowest 

migrating green bands of  the first dimension (band I in Fig. 

4A) are composed of  polypeptides of  photosystem I prepara- 

tions (36). 
Fluorography of such two-dimensional gels after uptake of  

radioactive pLHCP demonstrates that most of  the labeled 

LHCP in the thylakoid is present in LHC II (Fig. 4 B, asterisk). 

Although Coomassie Blue stain had revealed that all of the 

Figure 4. Assembly into LHC II of LHCP synthesized in vitro. The 
horizontal arrow lies above, and indicates the direction of migration 
in nondenaturing gel electrophoresis that displays visible amounts of 
chlorophyll (bands I and II). This first dimension was placed on top 
of a Laemmli gel (28) and subjected to electrophoresis in the direction 
of the vertical arrow. This second gel is shown stained with Coomassie 
Blue (A), and then fluorographed (B). Also shown in the second 
dimension are lanes m (molecular weight markers [Mr x 10 -~ are 66, 
58, 45, 29, 20] including wheat germ translation products of AB30 
RNA), and th (a thylakoid preparation from chloroplasts incubated 
with pLHCP). * indicates the position of LHCP. 

native LHCP was present only in the green complex, some of  

the introduced labeled LHCP in the thylakoid migrated to 

the position of  polypeptide not in complex (Fig. 4 B). 

LHCP Mutants 

Having established that exogenous pLHCP can be processed 

and incorporated into the correct LHC, we determined 

whether the removal of  specific portions of the mature LHCP 

coding sequence would disrupt the normal assembly process. 

We chose to delete various parts of the polypeptide chain 

which corresponded to regions defined by our model for the 

folding of  LHCP in the thylakoid membrane. For example, 

we removed segments that purportedly span the lipid bilayer 

(mutants E, F, or J), or ones that protrude into either the 

lumen or stroma (mutants D, I, or K) (Fig. 5). 

We created deletions in the mature LHCP by removing 

selected DNA sequences from the coding region of  the clone 

pAB30 (see Materials and Methods). All deletions are in the 

mature portion of the protein; the transit peptide is kept intact 

to enable import into the chloroplast (34, 43, 50). These 

mutant coding sequences were then cloned into a plasmid so 

that the transcription unit would be downstream of the SP6 

RNA polymerase promoter. The reconstructed LHCP coding 
regions served as templates for in vitro RNA synthesis using 
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Figure 5. Fractionation and tryptic digestion of compartments isolated from chloroplasts incubated with wild-type and six mutant LHCPs. 
Above each gel is a model for the folding of LHCP with respect to the thylakoid membrane (25). Open circles represent amino acids, and filled 
circles indicate the region deleted from each mutant construction (D, E, F, K, I, and J). The extent of the deletions, with nucleotide numbers 
and corresponding amino acids (Fig. l) for each are as follows: D, 741 (E)-821 (G); E, 803 0)-932 (M); F, 687 (E)-821 (V); K, 1109 (P)-1168 
(F); I, 895 (G)-1008 (K); and J, 1053 (A)-1098 (T). (See Materials and Methods for a complete description of the constructions.) WT refers to 
the wild-type AB30 polypeptide; S denotes stroma; M, membrane; and L, lumen. The fluorograms show mutant or wild-type pLHCP 
synthesized in vitro (lanes 1), and thylakoid (lanes 2) and stroma (lanes 5) fractions isolated after the incubation of the precursors with isolated 
chloroplasts. Thylakoid fractions (lanes 3, arrow) and pLHCP (lanes 4) after incubation with trypsin are also shown. Lanes 3 and 4 were 
exposed two times as long as the other lanes. 
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SP6 RNA polymerase, and proteins of the expected size were 
synthesized from this mutant AB30 RNA in a wheat germ 
extract in the presence of [3~S]methionine (Fig. 5, lanes I). 

Analysis of Mutants 

Each labeled mutant protein was incubated with Lemna 
chloroplasts. Fig. 5 displays thylakoid (lanes 2) and stroma 
(lanes 5) fractions isolated from plastids incubated with the 
pLHCP of each of the six mutants. The same quantities (cpm) 
of translation products were incubated with the chloroplasts, 
and equal amounts of the uptake reactions were loaded on 
the gels for each of the deletions. Thus, the relative intensities 
reflect the relative abundance of the mutant polypeptides in 
the thylakoid membranes. We did not quantitate the differ- 

ences, so these comparisons are only qualitative. We find that 
with several mutants, F, D, E, and K, the thylakoid but not 
the stroma fraction contains a labeled protein having the 
expected size of a processed mature species. Several other 
mutants, including I and J, cannot be detected in either the 
stroma or thylakoid fractions (Fig. 5). 

To ensure that the processed mutants are indeed associated 
with thylakoids, and not with envelope membranes, we iso- 
lated envelopes from chloroplasts which had been incubated 
with mutant pLHCPs by flotation on sucrose gradients ( l l). 
Approximately 95% of either the newly introduced mutant 

or wild-type LHCP pelleted with the thylakoid membranes, 
while no more than 5% could be found in the envelope 
fraction (data not shown; see also reference 8). The small 
amount found in the envelope fraction presumably represents 
a contamination with thylakoids also noted in other reports 
(l l). A similar distribution is seen when we obtain sufficient 
Lemna chloroplast material to allow for Coomassie Blue and 
antibody staining. These large preparations show that enve- 
lope and thylakoid proteins fractionate to the expected loca- 

tion on the gradients. 

Accessibility of  Wild-Type and Mutant Peptides 

to .Trypsin 

Trypsin has been shown to cleave a 2-kD segment from the 
amino terminus of the mature LHCP in pea thylakoids; this 

portion is exposed on the stromal side (1, 35, 42, 45). A 
simila, result has been obtained for L. gibba: trypsin treatment 
of thylakoid membranes that have incorporated wild-type 
LHCP in vitro reduces the major labeled protein band by ~2 
kD (Fig. 5, WT, lane 3), indicating that the AB30 polypeptide 
does indeed have a terminus that is accessible to trypsin 
cleavage in a similar location. 

Trypsin treatment of the mutant proteins after incorpora- 
tion should indicate whether they are similarly accessible to 
trypsin and, thus, whether the location of the amino terminus 
with respect to the thylakoid membrane is similar to that of 
the wild-type protein. The results of such experiments are 
shown in lanes 3 of Fig. 5 (arrows). Trypsin treatment of 
membranes containing the processed mutant D shows that 
this polypeptide also has a - 2  kD segment cleaved. However, 
mutants E, F, and K, which are found in the thylakoids, do 
not have an amino terminus that is accessible to trypsin. 

To ensure that any proteolytic digestion observed was due 
to exogenous trypsin and was not, in fact, due to an endoge- 
nous protease, we also incubated thylakoids in the absence of 
trypsin for a similar time (Fig. 5, lanes 2). No 2-kD shift was 
observed for the bands that correspond to mature mutant 

LHCPs. Moreover, pLHCPs are not susceptible to a similar 
cleavage or protection from cleavage when not associated with 
the lipid bilayer; no radioactivity was detected on the gel after 
a comparable amount of precursor translation product was 
incubated with trypsin (Fig. 5, lanes 4). Thus the trypsin 
susceptibility patterns of F, K, D, E, and wild-type thylakoid- 
associated proteins are due to their association with the mem- 

brane. We note that the additional lower molecular mass 
bands, seen in the thylakoid preparations containing mutant 
polypeptides, are digested by trypsin. These bands could 
represent peptides that are not integral membrane proteins 
and that are sensitive to trypsin. 

The fluorographs of the tryptic digests (lanes 3 and 4) have 
been exposed twice as long as the other lanes to clearly 
visualize these less radioactive products. Although added pro- 
tease reduces the total amount of mutant LHCP recovered, 
we still see totally protected (i.e., undigested) labeled peptide. 

The reduction in the amount of labeled protein after trypsin 
treatment is also observed for the wild-type LHCP and mutant 
D, yet there is also a concurrent 2-kD shift. We conclude, 
therefore, that at least a fraction of the mutant proteins E, F, 
and K are resistant to protease treatment when they are 
associated with the thylakoids. We have yet to determine the 
nature of the loss of radioactivity, but we consider it probable 
that the protease treatment has a general disruptive effect on 
our membrane preparations rendering much of the protein 

accessible to digestion. Indeed, the temperature of incubation 
and the concentration of trypsin are critical factors in such 
analyses (45), and a further probing of these parameters 
should provide more detail of the protein's orientation in the 
membrane. 

Mutants Are Not Detected In LHC H 

We next sought to determine whether the mutant polypep- 
tides that were found in thylakoid membranes were also 
contained in LHC II. Fig. 6 shows the resolution of thylakoid 
complexes from chloroplasts incubated with the mutant 
LHCPs. All of the processed mutant protein migrates as a 
monomeric protein near the electrophoretic front in the first 
dimension of the gel (region F, Fig. 6) and not as a member 

of LHC II (region C, Fig. 6). In a separate experiment (data 
not shown), each uptake reaction also included wild-type 
precursor to ensure that mature LHCP would be detected in 
the complex. When the wild type was present, radioactivity 
arising from this peptide migrated with the front (Fig. 6, 
region F) as well as in the LHC II position, and therefore 
obscured any other protein which might run as monomeric 
LHCP. We show, therefore, in Fig. 6 an experiment that 
included only the mutant polypeptide. We have never been 
able to see any of our mutant peptides associated with com- 
plexes. Thus although precursor mutants F, D, E, and K are 
processed and thylakoid bound, they are not associated with 
LHC II. 

Discussion 

We have characterized a second chlorophyll a/b-binding pro- 
tein gene, AB30, from Lemna gibba which does not contain 
an intron (cf. ABI9, reference 25) and which is highly ho- 
mologous in its amino acid sequence to Cab genes of other 
species. We have used this cloned gene to synthesize pure 
pLHCP and analyze its uptake and incorporation into LHCs 
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Figure 6. Mutant LHCPs are not assembled into LHC II. Fluorograms 
are shown of thylakoid membrane, from chloroplasts incubated with 
mutant LHCPs, subjected to electrophoresis in a nondenaturing gel 
(first dimension), followed by fractionation in a denaturing gel system 
(see Fig. 4). Mutant and wild-type pLHCP translation products (P) 
were also run in the denaturing dimension. Only the the fluorographs 
of the denaturing gels are shown. WT, wild-type AB30 pLHCP; D, 
E, F, and K, mutant pLHCP. The letters C and F above the fluoro- 

in the thylakoid membranes of isolated L. gibba chloroplasts. 

The amount of mature LHCP found in the thylakoids is 

greatly increased by the addition to the reaction of a co-factor, 
SAM, and a precursor, ALA, of chlorophyll synthesis (Fig. 2). 

Our results suggest, but do not prove, a requirement for 
concurrent synthesis of chlorophyll for integration of LHCP 
into the thylakoid membranes of the isolated Lemna chloro- 
plasts. A similar observation has been made for maize, but 

not for barley (8), and we believe that the differing results 
reflect the available chlorophyll and chlorophyll precursor 
pool sizes within the isolated chloroplasts of the different 

species. We are currently attempting to determine the nature 
of this requirement. 

Multiple Forms of  LHCP 

Our experiments demonstrate that a single pLHCP can be 
converted into several distinct processed forms, each of which 
corresponds in electrophoretic mobility to a form seen in 
native thylakoid membranes. It has been previously suggested 

that several different LHCP forms may arise from the different 
members of the LHCP gene family (7, 14, 15, 25, 42, 47). We 

do not exclude this likely possibility as the source of at least 

some of the variations seen. However, we do show here that 
for Lemna the observed LHCP pattern can be mimicked by 
the processing of a single gene product in vitro. We think that 

the three forms do not arise through a nonspecific proteolytic 
event because (a) analysis of proteins before chloroplast lysis 
and fractionation shows that the three radioactive bands are 
already present at this time and thus do not occur as break- 
down products during these procedures; (b) the addition of 
pLHCP to the thylakoid preparations during membrane iso- 
lation does not result in any degradation of the added protein; 
(c) the fastest migrating forms do not accumulate with increas- 
ing times of chloroplast incubation in a manner that would 

suggest a precursor-product relationship between the fast and 
slow forms; and (d) mutant D, which can be cleaved by 
trypsin after insertion into the thylakoid, is processed to only 
one form. We do not know how the three forms arise, but we 
and others (4, 32) think it a reasonable possibility that an 
LHCP-specific protease or modification enzyme is acting 
during the uptake reaction. 

We have noted that while incorporated wild-type LHCP is 
found in multiple bands, only one band is observed in the 
region where a correctly processed mutant polypeptide would 
be expected to migrate. Thus, as only the wild-type LHCP is 
found in the LHC, there is a relationship between association 
with LHC II and the occurrence of the multiple forms. 

Cleavage by trypsin of  the multiple forms of LHCP in 
membranes of L. gibba produces a single electrophoretic band 

(Fig. 5). Similar experiments with pea, which has two readily 
resolved LHCP bands, also results in a single band (45). Since 
the tryptic digestion is known to cleave an amino-terminal 

segment (35, 45), it is possible that the three LHCP forms 
differ at their amino termini. Alternatively, although all three 
bands are incorporated into LHC II, only one may be resistant 
to trypsin, while the others may be digested to fragments too 
small to detect. Perhaps knowledge of the conditions that 
influence the appearance and relative amounts of the different 
forms will be of help in distinguishing the various possibilities. 
The variation in the number of radioactive bands that we 

gram denote the positions in the gels of the LHC II complex and 
monomeric polypeptides (electrophoretic front), respectively. 
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sometimes observe between different experiments may origi- 
nate with the tissue itself; we do note a variation in the degree 
of greening of individual fronds with a single culture of the 
plants. Further characterization of the multigene families 

from several species, and the use of antibodies against oligo- 
peptides specific for individual gene products may also help 
to determine the nature of the observed LHCP heterogeneity. 

Analysis of the Mutant Proteins 

Through our initial analysis of the mutant proteins, we have 
learned that some altered LHCPs are found in a processed 
form in thylakoid membranes, but are not incorporated into 
LHC. Thus, stable complex formation is not required for the 
integration of altered LHCPs into thylakoid membranes. Any 
transient association of mutant LHCPs with LHC II would 
not have been detected in our experiments. Although the 
mutant peptides cannot be detected in LHC II, we have yet 
to determine whether they are capable of binding chlorophyll 

or carotenoid. 
Mutants D, E, F, and K all appear in the thylakoid fraction 

at a size expected of a normally processed form. We have not 
determined whether the processing activity occurs before or 
after the integration of LHCP into thylakoid membranes. 

Here we have presented a qualitative analysis, and our results 
suggest that different mutant polypeptides are accumulated 
to different degrees (Fig. 5). These differing levels of accu- 
mulation might result either from differing uptake or from 
differential stabilities within the chloroplast. The latter, if 
true, might reflect a differential pigment binding. 

We have attempted to probe at least one aspect of the 
conformation of the mutant LHCPs in the thylakoid mem- 
brane by mild trypsin digestion. We find that trypsin can not 
cleave the amino terminus from several of the mutants (E, F, 
and K) when they are incorporated into the thylakoids (Fig. 
5). This finding suggests that these altered polypeptides could 
have a different orientation with respect to the membrane 
than the wild-type protein, perhaps with the amino terminus 
on the lumenal rather than the stromal side. We have consid- 
ered the possibility that the insensitivity to trypsin is a result 
of their being encapsulated by vesicles formed from disrupted 
membranes which fractionate with the thylakoids. However, 
we view this possibility as unlikely because any newly intro- 
duced LHCP or endogenous stromal proteins would also be 
expected to fractionate with the thylakoid membranes, and 
this is not observed; we find that I and J do not fractionate in 
this way, and our thylakoid fractions have no detectable 
stromal peptides (e.g., the large subunit of ribulose bisphos- 

phate carboxylase/oxygenase). 
We must consider with reference to the model how the 

deletions created in the mutant polypeptides could lead to 
such an altered orientation as we propose above. Mutations 
F and E both remove a putative membrane-spanning se- 
quence, and this could limit the LHCP chain to cross the 
membrane only twice rather than three times, resulting in the 
amino and carboxy termini being on the same side of the 
membrane. Indeed, trypsin does not cleave the amino termi- 
nus from F or E, and this is compatible with the amino 
terminus now being within the lumen and inaccessible to the 
protease. The absence of the region deleted in mutation D 
may still allow the membrane-spanning regions near the 
deletion to cross the membrane and thus leave the amino 
terminus in the stroma. This interpretation is consistent with 
the tryptic cleavage of a 2-kD fragment from the mutant D 

polypeptide in thylakoids. If it proves possible to obtain 
enough material, these ideas will be further tested by a tryptic 
digestion of "inside-out" thylakoids (i.e., with the lumenal 

rather than the stromal surface exposed) isolated from the 
chloroplasts after the uptake reaction. Another possible ap- 
proach would be to attempt such an analysis on plants trans- 
formed with the mutant genes. 

We have previously proposed that the carboxy-proximal 
regions deleted in mutants I, J, and K are involved in the 

insertion of LHCP into the thylakoid; the positively and 

negatively charged residues within these sequences could in- 
teract with the stromal surface and help to "lock" the protein 
in the proper orientation (25). Similar mechanisms have been 

proposed for prokaryotic membrane polypeptides (51, 52). 
Neither mutant J nor I is detected in the chloroplast, yet since 
their precursor forms carry the complete transit peptide, they 

should be imported; other LHCP mutants (see above) and a 
bacterial protein coupled to the pea SSU transit sequence (43, 
50) can be imported into chloroplasts. Upon longer exposures 
of the thylakoid fractions from chloroplasts incubated with 

mutant polypeptides J and I, we see faint bands that migrate 
faster than LHCP which may be degraded mutant protein. 

Therefore, we think that both the J and I mutant polypeptides 
are imported but rapidly degraded once within the chloro- 
plast. Indeed, there is no report of detectable wild-type LHCP 

(or its precursor) in vivo outside of thylakoid membranes. 
Thus, we suggest that regions deleted in mutants J and I may 
be involved in the initial association with or integration of 
LHCP into the thylakoid membrane. 

We would predict from the model that mutation K, which 

removes the carboxy-terminal portion of LHCP, would also 
influence the initial insertion event, but not necessarily inhibit 
it, as part of the carboxy-, negatively charged tail is still intact. 

The mutant K polypeptide is found in a processed form, 
indicating that the membrane insertion event is not inhibited. 

However, the protein is in an orientation that renders the 

amino terminus inaccessible to trypsin. We did not predict 

this lack of trypsin sensitivity from consideration of the 

model, but it may reflect the consequence of a disrupted 
initial insertion event. 

Our results are consistent with the previously proposed 

model, but certainly do not prove it to be correct. It is still 

possible, for example, that mutants F and E do not place the 
amino terminus in the lumen, but simply move this region 

closer to the membrane surface or change the secondary 

structure of the region rendering it inaccessible to trypsin. 
Regions covered by deletion I and J may contain domains 

essential for correct protein compartmentalization within the 
chloroplast (41). 

Further understanding will require additional mutations 

and a more refined analysis of their conformations. The 
qualitative observations of LHCP mutants that we present 
here have shown that the formation of stable LHC II is not 
required for (altered) LHCP insertion into the membrane, 
and suggest that this process is affected by the synthesis of 

chlorophyll. The results represent a step toward an under- 
standing of the processes that lead to the formation of mature 
LHCs in higher plants. 
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