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Functional and/or structural brain changes
in response to resistance exercises and
resistance training lead to cognitive
improvements – a systematic review
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Abstract

Background: During the aging process, physical capabilities (e.g., muscular strength) and cognitive functions (e.g.,
memory) gradually decrease. Regarding cognitive functions, substantial functional (e.g., compensatory brain activity) and
structural changes (e.g., shrinking of the hippocampus) in the brain cause this decline. Notably, growing evidence points
towards a relationship between cognition and measures of muscular strength and muscle mass. Based on this emerging
evidence, resistance exercises and/or resistance training, which contributes to the preservation and augmentation of
muscular strength and muscle mass, may trigger beneficial neurobiological processes and could be crucial for healthy
aging that includes preservation of the brain and cognition. Compared with the multitude of studies that have investigated
the influence of endurance exercises and/or endurance training on cognitive performance and brain structure, considerably
less work has focused on the effects of resistance exercises and/or resistance training. While the available evidence
regarding resistance exercise-induced changes in cognitive functions is pooled, the underlying neurobiological processes,
such as functional and structural brain changes, have yet to be summarized. Hence, the purpose of this systematic review is
to provide an overview of resistance exercise-induced functional and/or structural brain changes that are related to
cognitive functions.

Methods and results: A systematic literature search was conducted by two independent researchers across six electronic
databases; 5957 records were returned, of which 18 were considered relevant and were analyzed.

Short conclusion: Based on our analyses, resistance exercises and resistance training evoked substantial functional brain
changes, especially in the frontal lobe, which were accompanied by improvements in executive functions. Furthermore,
resistance training led to lower white matter atrophy and smaller white matter lesion volumes. However, based on the
relatively small number of studies available, the findings should be interpreted cautiously. Hence, future studies are
required to investigate the underlying neurobiological mechanisms and to verify whether the positive findings can be
confirmed and transferred to other needy cohorts, such as older adults with dementia, sarcopenia and/or dynapenia.
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Background
Aging, the brain, and cognition

Throughout the lifespan, the human organism under-
goes considerable changes. As a consequence of aging,
the structure and function of organic systems (i.e., brain)
can be negatively affected, which in turn can converge in
a decline of individual capabilities (e.g., cognition). In
this regard, in recent years, evidence has shown that the
hippocampus [1–4] and the grey matter in the frontal
lobe [1–3, 5–12] are affected by age-related shrinking. In
contrast, the grey matter volume of other brain struc-
tures such as the parietal and occipital cortices have
been reported to change slightly with increasing age [1,
5, 8], whereas a severe decline in white matter volume
of the prefrontal cortex (PFC) is most pronounced in the
very oldest [1, 8, 9, 13, 14]. These age-related changes in
brain structure [15, 16] are assumed to play major roles
in the worsening of cognition functions, such as process-
ing speed and memory [17–20]. In fact, in older adults,
it was observed that a decrease in hippocampal volume
is associated with worsening of memory performance
[21–23]. Conversely, an increase in hippocampal volume
after a yearlong aerobic training intervention was associ-
ated with memory improvements [24]. These findings
suggest that the preservation of brain structures (e.g.,
hippocampus) is important to ensure the proper func-
tioning of cognitive processes (e.g., memory). Similar to
the relationship of brain structure and cognition, it is
assumed that changes in brain function (e.g., brain acti-
vation during a cognitive task) contribute to changes in
cognition [16, 25–27]. Such an intertwined relationship
between brain activation and cognition is underpinned
by the findings linking activation of the PFC to behav-
ioral performance in executive function tasks [28–31], in
visuomotor tasks [32], or in working memory tasks [33–
35]. Currently, several hypotheses exist that aim to explain
age-related alterations in brain activation and cognition
[16, 25–27]. For instance, the HAROLD model predicts
that there is hemispheric asymmetry reduction in older
adults in the PFC during the execution of memory tasks
[27, 36]. In the compensation-related utilization of the
neural circuits hypothesis (CRUNCH), it is postulated that
adults will recruit more brain regions (mainly the PFC) as
the task load increases and that older adults need to re-
cruit these brain regions at lower levels of cognitive load
than younger adults (e.g., during working memory tasks)
[26, 37–39]. In the Scaffolding Theory of Aging and Cog-
nition (STAC), it is postulated that increased brain activity
with age, especially in the PFC, is a compensatory mech-
anism caused by reorganization of the brain in response
to the age-related decline in neural structures and neural
functioning [16, 39, 40]. To date, none of these hypotheses
satisfactorily explain the observed age-related changes in
brain function [41], but all of these hypotheses emphasize

the important role of the PFC in age-related functional
brain changes. It is well recognized in the literature that
physical exercises [28–30, 42, 43] and physical training
[44–47] lead to positive changes in cognitive performance
(e.g., executive functions) and brain activation patterns.
Furthermore, the changes in brain activation patterns (i.e.,
shown by higher levels of oxygenated hemoglobin in brain
regions) are associated with cognitive performance
improvements [28–30, 47], which illustrate the important
role of physical interventions in preserving cognition and
brain health.
In summary, distinct cognitive functions (e.g., mem-

ory) are negatively affected, and substantial changes in
brain structure (e.g., shrinkage of hippocampus) and
brain function (e.g., compensatory brain activation; i.e.,
of PFC) occur as consequences of “normal” aging. Not-
ably, regular engagement in physical exercise is a valu-
able strategy to counteract age-related decline in brain
and cognition [48–52].

Aging, muscular system, and cognition

There is solid evidence in the literature that muscle mass
(sarcopenia) [53–57] and muscular strength (dynapenia)
[53, 57–59], which constitute the ability to produce mus-
cular force and power [60], decline gradually as a function
of age. Notably, the age-related decrease in muscular
strength was noticed to be more pronounced than the de-
crease in muscle mass [61–63]. Moreover, the decline in
maximum muscular strength is more serious in the lower
limbs than in upper limbs [62, 64–67]. In general, it was
observed that the age-related loss in, for instance, max-
imum isokinetic hip/leg extensor strength is rather min-
imal until the fifth decade of life but accelerates
considerably thereafter [58, 68–70]. Potential reasons for
the pronounced decline in muscular strength are the re-
duction in cross-sectional area of the muscle fibers [64, 71]
as well as the loss of muscle fibers and motor units [55, 56,
58, 61, 72, 73]. However, appropriate levels of muscular
strength are needed for independent and healthy living.
For instance, an appropriate level of muscular strength in
the muscles of the lower limbs (e.g., hip and leg extensors)
is required to ensure proper function for engaging in activ-
ities of daily living (e.g., balance and gait) [74, 75]. Hence,
it is not surprising that a decline in isokinetic muscular
strength in leg extensors is associated with reduced mobil-
ity [76–78] and increased risk of mortality [77, 79, 80].
However, there is growing evidence that an appropri-

ate level of muscular strength is also linked to brain
health and functioning (e.g., cognitive functions). In this
regard, it has been reported in the literature that higher
levels of isokinetic strength of the M. quadriceps femoris

are linked to better performance in general cognitive
abilities (operationalized by Mini-Mental State Examin-
ation [MMSE]) [81] and to better performance in
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executive functions [82, 83]. This link is further rein-
forced by the findings that higher leg power [84] and
higher whole-body muscle strength [85] are associated
with higher scores in standardized cognitive test batter-
ies. Furthermore, higher handgrip strength is linked to
higher scores in general cognitive abilities (e.g., opera-
tionalized by MMSE) [86, 87] and to higher scores in
standardized cognitive test batteries [88–90]. Moreover,
it was observed that gains in dynamic muscular strength
(assessed by one repetition maximum in different resist-
ance exercises) after 6 months of progressive resistance
training mediate improvements in global cognitive per-
formance (according to the Alzheimer’s Disease Assess-
ment Scale–cognitive subscale) [91]. Similar to the
previously mentioned finding, it was reported that
changes in isokinetic knee extension and knee flexion
torques after 3 months of progressive resistance training
mediate improvements in executive functions [92]. Not-
ably, a meta-analysis did not observe a correlation be-
tween muscle size and cognition [93] but reported that
both muscle function (e.g., muscular strength) and
muscle structure (e.g., muscle size) were linked to brain
structure [93].
Taken together, during aging processes, a substantial de-

cline in muscular strength, especially in lower limb mus-
cles, occurs, and accumulating evidence suggests that
lower muscular strengths are linked to poorer cognitive
performance. Hence, resistance (strength) exercises (a sin-
gle bout of resistance exercise, also referred to as acute ex-
ercise) and resistance (strength) training (more than one
resistance exercise session, also referred to as chronic
exercise; see also section ‘Data extraction’) seem to be
promising activities to ensure the preservation of physical
functioning and cognitive functions with aging.

Resistance exercises, resistance training, brain, and

cognition

One physical intervention strategy that is frequently recom-
mended to counteract the age-related deterioration of both
physical functioning and cognition is the continuous and
regular execution of resistance exercises and/or resistance
training [94–106]. There is solid evidence in the form of sys-
tematic reviews and meta-analyses indicating that resistance
exercises and resistance training (for distinction, see section
‘Data extraction’) have substantial benefits for specific do-
mains of cognitive functions (e.g., executive functions) [105,
107–111], but the underlying neurobiological mechanisms
of resistance exercise-induced improvements in cognitive
functions are not yet fully understood [107, 110].
As shown in Fig. 1, cognitive improvements in response

to resistance exercises and/or resistance training are based
on changes on multiple levels of analysis [112, 113]. At the
first level, molecular and cellular changes occur, which are
summarized in the “neurotrophic hypothesis” [114–117].
The “neurotrophic hypothesis” claims that in response to
physical exercises (e.g., resistance exercises), a pronounced
release of distinct neurochemicals occurs (e.g., brain-
derived neurotrophic factor [BDNF]) [114–117]. The
pronounced release of specific neurochemicals triggers
complex neurobiological processes evoking functional
and/or structural brain changes that facilitate, at best, im-
provements in cognitive functions [24, 50, 114, 118–120].
With regard to the molecular and cellular levels, a system-
atic review summarized the evidence of resistance exercise
and resistance training-induced changes in the release of
several myokines (e.g., BDNF) and highlighted their posi-
tive effects on cognitive functions [121]. However, with re-
spect to functional and structural brain changes and
socioemotional changes (see Level 2 and Level 3 in Fig. 1),

Fig. 1 Schematic illustration of the objective of the present systematic review and the levels of analysis. ‘a’ indicates that the brain could be regarded as
an outcome, a mediator or a predictor [122]. ‘b’ indicates several possibilities for how structural and functional brain changes, socioemotional changes, and
cognitive changes are intertwined [112]. ERP: event-related potentials; FDG-PET: F-2-deoxy-D-glucose (FDG) positron-emissions tomography (PET); GMV:
grey matter volume; LTM: long-term memory; STM: short-term memory; WMV: white matter volume
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knowledge about resistance exercise and/or resistance
training-induced changes is still relatively scarce, and the
available literature has not yet been systematically pooled.
In particular, the pooling of available evidence regarding
functional and structural brain changes is needed because
the brain may act as a mediator for the effect of resistance
exercises and/or resistance training on cognition [112,
122]. Such a systematic pooling of available evidence is
needed to provide evidence-based recommendations for
individualized exercise prescriptions [123–125]. Because
resistance exercises and/or resistance training is a promis-
ing strategy that could “hit many birds with one stone”
(i.e., simultaneously counteracting different types of phys-
ical and brain-related health problems), the objective of
this systematic review is to provide an overview of resist-
ance exercise and/or resistance training-induced functional
and/or structural brain changes that are related to changes
in cognitive functions.

Methods

Search strategy and process

In accordance with the guidelines for systematic reviews
[126], two independent researchers conducted a system-
atic literature search on the 25th of April 2019 across
the following six electronic databases (applied specifica-
tions): PubMed (all fields), Scopus (title, abstract, key-
words), Web of Science (title), PsycInfo (all text),
SportDiscus (abstract), and the Cochrane Library (title,
abstract, keywords; trials). The following terms were
used as search strings:

� “strength exercise” OR “strength training” OR

“resistance exercise” OR “resistance training” OR

“weight exercise” OR “weight training” OR “weight

lifting” OR “weight bearing” OR “elastic band” OR

toning OR calisthenics OR “functional training”

AND

� mental OR neuropsychological OR brain OR

cogniti* OR neurocogni* OR executive OR attention

OR memory OR “response time” OR “reaction time”

OR accuracy OR error OR inhibition OR visual OR

spatial OR visuospatial OR processing OR recall OR

learning OR language OR oddball OR “task

switching” OR “problem solving” OR Flanker OR

Stroop OR Sternberg OR “Trail Making” OR “Tower

of London” OR “Tower of Hanoi” OR “Wisconsin

Card Sorting” OR “Simon task”

AND

� cortex OR hemodynamic OR oxygenation OR “grey

matter” OR “gray matter” OR “white matter” OR

“brain volume” OR plasticity OR neuroelectric OR

electrophysiological OR “P 300” OR “P 3” OR “event-

related potentials” OR ERP OR Alpha OR Beta OR

Gamma OR Theta OR NIR OR fNIRS OR “functional

near-infrared spectroscopy” OR “near-infrared

spectroscopy” OR “functional near-infrared

spectroscopic” OR “optical imaging system” OR

“optical topography” OR fMRI OR MRI OR “MR

imaging” OR “magnetic resonance imaging” OR EEG

OR electroencephalography OR electrocorticography

OR MEG OR magnetoencephalography OR PET

OR “positron emission tomography”

Afterwards, the results of the systematic search were
loaded into a citation manager (Citavi 6.3), which was
used for further analyses and for removing duplicates
(see Fig. 2).

Inclusion and exclusion criteria

Screening for relevant studies was conducted using the
established PICOS-principle [126, 127]. The acronym
“PICOS” stands for participants (P), intervention (I), com-
parisons (C), outcomes (O), and study design (S) [126,
127]. The following inclusion and exclusion criteria were
used: (P) we applied no restrictions and included all age
groups regardless of pathologies; (I) only studies involving
resistance exercises and/or resistance training were in-
cluded; (C) in this systematic literature search, no specific
restrictions were used; (O) studies considered relevant
assessed functional brain changes and/or structural brain
changes related to cognitive changes; (S) interventional or
cross-sectional studies.
As shown in Fig. 3, 46 studies were excluded after full

text screening because they did not meet our inclusion
criteria. Eight studies were excluded because they only
assessed functional or structural brain changes but did not
measure cognitive performance [128–135]. Vice versa, 38
studies were excluded because they solely measured
changes in cognitive performance without quantifying
functional or structural brain changes [81, 91, 136–171].

Data extraction

We extracted information about the first author, year of
publication, population characteristics including age,
gender, cognitive status, exercise characteristics (e.g.,
muscle action, loading and volume, rest period between
sets/between exercises, repetition velocity, frequency, re-
sistance exercise selection), cognitive testing (e.g., tested
cognitive domain, administration after exercise cessa-
tion), and functional and structural brain data. The
extraction of information followed the recommendations
of Hecksteden et al. [173].
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Prior to presentation of the findings, it is necessary to
clarify the different terms used in the field of exercise cog-
nition. ‘Physical activity’ is defined as any muscle-induced
bodily movements that increase energy expenditure from
1.0 to 1.5 MET [174, 175]. Hence, physical activity covers a
wide range of acute and chronic physical activities (e.g.,
from housework to resistance exercises/resistance training).
Specific forms of structured, planned, and regularly (chron-
ically) conducted physical activities aiming to increase indi-
vidual capabilities in a certain fitness domain are referred to
as ‘training’ or ‘chronic (repetitive) exercises’ [174, 176–
178]. Single sessions of physical activities (exercises) are re-
ferred to as ‘an acute (single) bout of physical activities’ or
‘physical exercises’ [174, 179, 180]. In this article, we use
the term ‘resistance training’ when more than two exercise
sessions were conducted. Consequently, a single session of
resistance exercises is referred to as ‘a single (acute) bout of
resistance exercises’ and/or ‘resistance exercises’. Further-
more, we use ‘exercise prescription’ as an umbrella term to
denote exercise (e.g., load for an exercise) and training vari-
ables (e.g., frequency).

Risk of bias assessment

Two evaluators independently performed the risk of bias
assessment using the Cochrane Collaboration’s Risk of
Bias tool [181]. The Cochrane Collaboration’s Risk of
Bias tool evaluates the methodological quality of a study
by rating the risk of bias in distinct criteria (see Figure
3) as being ‘low’, ‘high’, or ‘unclear’ [181]. Any discrepan-
cies in the ratings of the risk of bias were resolved by a
discussion among the two evaluators or/and the consult-
ation of the third author of the review. The risk of bias
assessment is summarized in Fig. 3.

Results
Risk of bias

As shown in Fig. 3, the results regarding the judgment of
risk of bias are heterogeneous. In the domains of sequence
generation, allocation concealment, blinding of participants
and personnel, and blinding of outcome assessment, the
majority of studies were rated as low risk of bias or unclear
risk of bias. The reviewed studies were judged as having an
unclear risk of bias in those domains because procedures

Fig. 2 Flow chart with information about the search, screening, and selection processes that led to the identification of relevant articles included
in this systematic review
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were not described in sufficient detail (e.g., method of ran-
dom sequence generation). In the domains of incomplete
outcome data, selective reporting, and other bias, most
studies were judged as having a low risk of bias.

Participants’ characteristics and study design

In the reviewed studies, the effect of resistance exercises
and/or resistance training on cognition and the brain
was investigated in different cohorts, including healthy
young adults [43, 182, 183], healthy older adults [44, 45,
184–188], older adults with mild cognitive impairment
[188–191], older adults in an early stage of dementia
[192], and individuals with multiple sclerosis [193]. De-
tailed information about participant characteristics (e.g.,
age, height, body mass) is provided in Table 1.
Regarding the study design, almost all studies could be

classified as interventional and as randomized controlled
trials [43–45, 183–186, 188–190, 195, 197].
Additionally, three resistance exercise studies [43, 182,

183, 195] accounted for circadian variability as a possible
moderating factor.

Resistance exercise characteristics

In four studies investigating the acute effects of single
resistance exercise sessions on cognitive performance
and on functional neuroelectric or hemodynamic brain
processes, the exercise sessions lasted approximately 30
min [183] or 40 min [43, 182, 195].
Studies on the effects of resistance training on cognition

and functional and/or structural brain changes involved
groups who trained 1 day [45, 184–186], 2 days [45, 184–
186, 188–190, 193, 197], or 3 days per week [44, 187, 191].
Exercise sessions in the resistance training studies lasted
30min [44], 40min [191], 60min [45, 184–189, 197] or
90min [190]. The regimes were conducted for 9 weeks
[194], 10 weeks [192], 12 weeks [188], 16 weeks [44, 191],
24 weeks [193], 26 weeks [190, 197], 48 weeks [187], or 52
weeks [45, 184–186, 189]. In most of the resistance train-
ing studies reviewed, the exercise sessions were conducted
in supervised classes [44, 45, 184–187, 189–191, 193,
197]. Furthermore, in most of the reviewed studies, partic-
ipants were asked to perform two or three sets during the
exercise sessions with a minimum of six and a maximum
of ten repetitions of upper and lower body exercises at a
load ranging from 50 to 92% of 1RM (one repetition max-
imum) using free weights and/or machines (for a detailed
overview, see Table 1).

Main findings

Functional brain changes and cognition

Hemodynamic functional brain changes and cognition

With regard to an acute bout of resistance exercises, in
healthy young adults, a decrease in tissue oxygenation
index in the left prefrontal cortex during the Stoop test
and improved behavioral performance (i.e., faster reac-
tion time and higher number of solved items in neutral
condition) was observed after a single bout of high-
intensity resistance exercise [43].

Fig. 3 Analysis of the risk of bias in the included studies in accordance
with the Cochrane Collaboration guidelines. This figure was created
using Review Manager [172]. A “green plus” indicates a low risk of bias, a
“yellow question mark” indicates an unclear risk of bias, and a “red
minus” denotes a high risk of bias
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Table 1 Overview of the population characteristics and resistance exercises and/or resistance training characteristics of the reviewed studies

First author [ref.] Study design and sample characteristics Resistance exercise characteristics

(1) Design / Comparison groups
(2) Participants characteristics
(2.1) Number of participants (N) (N female / N male),

[included in fMRI or EEG], gender / mean age
in years ± SD

(2.2) Mean height in cm ± SD / mean body mass in
kg ± SD / BMI ± SD in kg/m2

(3) Cognitive status / disability status

(1) Muscle action
(2) Load, number of sets, and number of repetitions
(3) Inter-set rest periods and inter-exercise rest periods
(4) Repetition velocity
(5) Resistance exercise selection
(6) Duration of an exercise session
(7) Training frequency
(8) Training density
(9) Training duration
(10) Training setting

Functional near-infrared spectroscopy

Chang et al. [43] (1) IS (RCT, between-group design) / CON (n),
HIRE, MIC, HIA

(2) Healthy young adults
(2.1) - CON: N = 9 (9 f / 0 m) / 21.8 ± 1.4

- HIRE: N = 9 (9 f / 0 m) / 21.1 ± 1.6
- MIC: N = 9 (9 f / 0 m) / 20.4 ± 1.5
- HIA: N = 9 (9 f / 0 m) / 22.1 ± 1.4

(2.2) - CON: 160.8 ± 4.1 / 52.2 ± 6.2 / 20.3 ± 3.1
- HIRE: 162.1 ± 5.0 / 56.3 ± 5.0 / 21.4 ± 1.8
- MIC: 162.9 ± 5.5 / 56.4 ± 5.8 / 21.2 ± 1.3
- HIA: 166.0 ± 5.3 / 59.6 ± 5.7 / 21.6 ± 2.1

(3) N.A.

(1) Dynamic
(2) 3 sets with 8 to 10 repetitions per exercise at 80% of 1RM
(3) Work to rest ratio of 1:2
(4) N.A.
(5) Machines and free weights (e.g., leg extension, leg curl, lat

pull-down, seated row, squat, bench press, and arm curl)
(6) Ca. 40 min (10 min warm-up, 30 min exercising)
(7) One single session
(8) N.A.
(9) N.A.
(10) Individual and supervised

Coetsee et al. [44] (1) IS (RCT, between-group design) / CON (n),
HIIT, MCT, RT

(2) Healthy older adults
(2.1) - CON: N = 19 (11 f / 8 m) / 62.5 ± 5.6

- HIIT: N = 13 (10 f / 3 m) / 64.5 ± 6.3
- MCT: N = 13 (10 f / 3 m) / 61.6 ± 5.8
- RT: N = 22 (15 f / 7 m) / 62.4 ± 5.1

(2.2) - CON: 168.7 ± 7.9 / 76.8 ± 13.7 / 26.9 ± 3.7
- HIIT: 166.0 ± 8.9 / 73.8 ± 13.7 / 26.6 ± 4.0
- MCT: 163.5 ± 8.6 / 71.0 ± 14.4 / 26.5 ± 4.2
- RT: 167.8 ± 7.8 / 73.3 ± 15.5 / 25.8 ± 4.0

(3) MOCA score
- CON: 28.2 ± 1.6
- HIIT: 27.9 ± 1.5
- MCT: 27.6 ± 1.3
- RT: 27.5 ± 1.3

(1) Dynamic
(2) 3 sets with 10 repetitions per exercise at 50, 75, and

100% of 10RM (first 8 weeks) / at 75, 85, and 100% of
10RM (second 8 weeks)

(3) N.A.
(4) N.A.
(5) Machines and free weights (e.g., upper and lower body

resistance exercises)
(6) Ca. 30 min (+ warm-up and cool-down)
(7) 3 days/week
(8) N.A.
(9) 16 weeks
(10) Group-based and supervised

Electroencephalography

Hong et al. [188] (1) IS (RCT, between-group design) / CON (n), RT
(2) Healthy older adults / older adults with MCI
(2.1) - HOA CON: N = 13 (6 f / 7 m) / 73.5 ± 5.6

(f); 73.0 ± 4.8 (m)
- HOA RT: N = 12 (10 f / 2 m) / 75.8 ± 4.5
(f); 76.5 ± 6.4 (m)

- MCI CON: N = 12 (9 f / 3 m) / 75.1 ± 4.5
(f); 78.3 ± 5.5 (m)

- MCI RT: N = 10 (7 f / 3 m) / 75.1 ± 4.5
(f); 78.3 ± 5.5 (m)

(2.2) - HOA CON: N.A. / 49.7 ± 4.5 (f); 63.4 ± 10.7 (m) / N.A.
- HOA RT: N.A. / 57.3 ± 8.4 (f); 68.9 ± 4.7 / N.A.
- MCI CON: N.A. / 56.3 ± 5.4 (f); 57.2 ± 7.6 (m) / N.A.
- MCI RT: N.A. / 54.1 ± 7.6 (f); 65.0 ± 3.3 / N.A.

(3) MOCA score
- HOA CON: 26.0 ± 1.7 (f) / 26.3 ± 1.6 (m)
- HOA RT: 26.4 ± 1.7 (f) / 25.0 ± 1.4 (m)
- MCI CON: 18.8 ± 5.6 (f) / 21.3 ± 2.4 (m)
- MCI RT: 20.0 ± 4.0 (f) / 22.3 ± 1.2 (m)

(1) Dynamic
(2) 15 repetitions per exercise correspond to ca. 65% of 1RM
(3) N.A.
(4) N.A.
(5) Elastic bands
(6) Ca. 60 min (10 min warm-up, 40 min exercising, 10 min

cool-down)
(7) 2 days/week
(8) N.A.
(9) 12 weeks
(10) N.A.

Özkaya et al. [194] (1) IS (RCT, between-group design) / CON (n), AT, RT
(2) Healthy older adults
(2.1) - CON: N = 12 (N.A.) / 72.3 ± 2.1

- AT N = 12 (N.A.) / 70.9 ± 3.1
- RT: N = 12 (N.A.) / 75.8 ± 2.8

(2.2) - CON: N.A. / N.A. / 29.5 ± 1.3

(1) Dynamic
(2) 1 set of 12 repetitions per exercise at 60% of 1RM

(in the first week); 3 sets of 12 repetitions per exercise
at 60% of 1RM (in the second week); increase in load
of 5% every 2 weeks until participants lifted 80% of 1RM

(3) N.A.
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Table 1 Overview of the population characteristics and resistance exercises and/or resistance training characteristics of the reviewed studies
(Continued)

First author [ref.] Study design and sample characteristics Resistance exercise characteristics

- AT: N.A. / N.A. / 29.1 ± 1.4
- RT: N.A. / N.A. / 31.2 ± 2.9

(3) MMSE score
- CON: 27.1 ± 0.6
- AT: 26.5 ± 0.6
- RT: 25.6 ± 0.7

(4) N.A.
(5) Free weights (e.g., hip extension, knee flexion, seated

lower-leg lift, chair squat, arm raise, biceps curl, and
abdominal crunch)

(6) N.A. (10 min warm-up, N.A., 10 min cool-down)
(7) 3 days/week
(8) N.A.
(9) 9 weeks
(10) Group-based and supervised

Tsai et al. [182] (1) IS (RCT, between-group design) / CON (r), HIRE, MIRE
(2) Healthy young adults
(2.1) - CON: N = 20 (0 f / 20 m) / 23.2 ± 2.1

- MIRE: N = 20 (0 f / 20 m) / 23.2 ± 2.5
- HIRE: N = 20 (0 f / 20 m) / 22.4 ± 2.4

(2.2) - CON: N.A. / N.A. / 22.0 ± 2.6
- MIRE: N.A. / N.A. / 20.8 ± 1.5
- HIRE: N.A. / N.A. / 21.5 ± 1.8

(3) MMSE score
- CON: 28.9 ± 0.9
- MIRE: 29.1 ± 1.0
- HIRE: 29.3 ± 1.0

(1) Dynamic
(2) 2 sets of 10 repetitions per exercise at 50% of 1 RM in

MIRT and at 80% of 1RM in HIRT
(3) 90 s between sets / 2 min between exercises
(4) “average speed”
(5) Machines and free weights (e.g., bench presses,

biceps curls, triceps extensions, leg presses, vertical
butterflies, and leg extensions)

(6) Ca. 40 min (10 min warm-up, 30 min exercising)
(7) One single session
(8) N.A.
(9) N.A.
(10) Individual and supervised

Tsai et al. [187] (1) IS (RCT, between-group design) / CON (n), RT
(2) Older adults
(2.1) - CON: N = 24 (0 f / 24 m) / 72.0 ± 4.1

- RT: N = 24 (0 f / 24 m) / 70.8 ± 3.4
(2.2) - CON: N.A. / N.A. / 24.6 ± 3.6

- RT: N.A. / N.A. / 26.0 ± 2.5
(3) MMSE score

- CON: 28.2 ± 1.0
- RT: 28.0 ± 1.2

(1) Dynamic
(2) 3 sets of 10 repetitions per exercise at 75 to 80% of 1RM
(3) 90 s between sets / 3 min between exercises
(4) “average speed”
(5) Machines and free weights (e.g., biceps curls, leg presses,

triceps extensions, hamstring curls, latissimus dorsi
pull-downs, calf raises, seated rowing)

(6) Ca. 60 min (10 min warm-up, 40 min exercising, 10 min
cool-down)

(7) 3 days/week
(8) N.A.
(9) 48 weeks
(10) Group-based and supervised

Tsai et al. [195] (1) IS (RCT, between-group design) / CON (r), AE, RE
(2) Older adults with amnestic MCI
(2.1) - CON: N = 20 (12 f / 8 m) / 64.5 ± 7.0

- AE: N = 25 (14 f / 11 m) / 65.5 ± 7.5
- RE: N = 21 (12 f / 9 m) / 66.1 ± 6.6

(2.2) - CON: 159.7 ± 8.81 / 61.4 ± 13.0 / 23.8 ± 3.1
- AE: 160.6 ± 7.85 / 62.1 ± 13.7 / 23.8 ± 3.2
- RE: 159.9 ± 8.51 / 62.1 ± 12.1 / 24.5 ± 3.2

(3) MMSE score
- CON: 27.00 ± 1.59
- AE: 26.96 ± 1.21
- RE: 26.76 ± 1.38

(1) Dynamic
(2) 2 sets of 10 repetitions per exercise at 75% of 1RM
(3) 90 s between sets / 2 min between exercises
(4) “average speed”
(5) Machines and free weights (e.g., biceps curls, triceps

extensions, bench presses, leg presses, leg extensions, and
vertical butterflies)

(6) Ca. 40 min (5 min warm-up, 30 min exercising, 5 min
cool-down)

(7) One single session
(8) N.A.
(9) N.A.
(10) Individual and supervised

Tsai et al. [191] (1) IS (RCT, between-group design) / BAST, AT, RT
(2) Older adults with amnestic MCI
(2.1) - CON: N = 18 (13 f / 5 m) / 65.2 ± 7.0

- AT: N = 19 (14 f / 5 m) / 66.0 ± 7.7
- RT: N = 18 (11 f / 7 m) / 65.4 ± 6.8

(2.2) - CON: N.A. / N.A. / 23.4 ± 2.8
- AT: N.A. / N.A. / 23.5 ± 3.3
- RT: N.A. / N.A. / 24.4 ± 3.1

(3) MMSE score
- CON: 27.00 ± 1.65
- AT: 27.16 ± 1.26
- RT: 26.56 ± 1.34

(1) Dynamic
(2) 3 sets of 10 repetitions at 60 to 70% of 1RM in the first 2

weeks and at 75% of 1RM in the remaining weeks
(3) 90 s between sets / 2 min between exercises
(4) N.A.
(5) Machines and free weights (e.g., biceps curls, vertical

butterflies, leg press, seated rowing, hamstring curls, and
calf raises)

(6) Ca. 40 min (5 min warm-up, 30 min exercising, 5 min
cool-down)

(7) 3 days/week
(8) N.A.
(9) 16 weeks
(10) Group-based and supervised

Vonk et al. [183] (1) IS (RCT, within-subject design) / RE, LM
(2) Healthy younger adults

(1) Dynamic
(2) 2 sets of 10 repetitions at 70% of 10RM
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Table 1 Overview of the population characteristics and resistance exercises and/or resistance training characteristics of the reviewed studies
(Continued)

First author [ref.] Study design and sample characteristics Resistance exercise characteristics

(2.1) N = 20 (11 f / 9 m) / 23.0 ± 2.0
(2.2) N.A.
(3) N.A.

(3) 60 s between sets / 90 min between exercises
(4) N.A.
(5) Machines and free weights (e.g., leg press, pull-down,

hamstring curls, vertical chest press, bilateral bicep curl,
bilateral triceps extension)

(6) Ca. 30 min (5 min warm-up, ca. 25 min exercising)
(7) Two separate sessions (RE and LM)
(8) N.A.
(9) N.A.
(10) Individual and supervised

Yerokhin
et al. [192]

(1) IS (no RCT, between-group design) / RT
(2) Healthy older adults
(2.1) - RT: N = 9 [5] (1 f / 8 m) / 62.8 ± 7.2
(2.2) - RT: N.A. / N.A. / N.A.
Individuals with early dementia
(2.1) - RT: N = 13 [9] (0 f /13 m) / 79.3 ± 11.0
(2.2) - RT: N.A. / N.A. / N.A.
(3) MMSE score
- N.A. in both groups

(1) Dynamic
(2) N.A. (detailed information can be found in Seguin et al., [196])
(3) N.A. (detailed information can be found in Seguin et al., [196])
(4) N.A. (detailed information can be found in Seguin et al., [196])
(5) Small free weights and body weight (e.g., different exercise

such as squat, toe stands, [detailed information could be
found in Seguin et al., [196])

(6) Ca. 45 min
(7) 3 to 5 days/week
(8) N.A.
(9) 10 weeks
(10) Supervised (older adults with early dementia) / individual

and home-based (HC)

Functional and structural magnetic resonance imaging

Best et al. [184] (1) IS (RCT, between-group design) / BAT,
1x RT, 2x RT
(2) Older adults
(2.1) - BAT: N = 49 [25/18/8] (49 f / 0 m) / 70.0 ± 3.3

- 1x RT: N = 54 [32/29/10] (54 f / 0 m) / 69.5 ± 2.7
- 2x RT: N = 52 [26/21/9] (52 f / 0 m) / 69.4 ± 3.0

(2.2) - BAT: 161.0 ± 6.9 / 67.0 ± 11.5 / N.A.
- 1x RT: 160.9 ± 7.0 / 69.2 ± 16.2 / N.A.
- 2x RT: 162.8 ± 6.5 / 72.1 ± 16.8 / N.A.

(3) MMSE score
- BAT: 28.8 ± 1.2
- 1x RT: 28.5 ± 1.3
- 2x RT: 28.6 ± 1.5

(1) Dynamic
(2) 2 sets of 6 to 8 repetitions of 7RM per exercise

(progressively increased)
(3) N.A.
(4) N.A.
(5) Exercises with pneumatic resistance machines (e.g., biceps

curls, triceps extensions, seated rows, latissimus dorsi
pull-downs, leg presses, hamstring curls, and calf raises)
and free weights (e.g., mini-squats, mini-lunges, and
lunge walks)

(6) Ca. 60 min (10 min warm-up, 40 min exercising, 10 min
cool-down)

(7) 1 day/week (in 1x RT) or 2 days/week (in 2x RT)
(8) One week-in-between (in 1x RT) / N.A. (in 2x RT)
(9) 52 weeks
(10) Group-based and supervised

Brinke et al. [197] (1) IS (RCT, between-group-design) / BAT, AT, RT
(2) Older adults with probable MCI
(2.1) - BAT: N = 28 [13/11] (28 f / 0 m) / 75.5 ± 3.9

- AT: N = 30 [14/10] (30 f / 0 m) / 76.1 ± 3.4
- RT: N = 28 [12/8] (30 f / 0 m) / 73.8 ± 3.8

(2.2) - BAT: 157.5 ± 8.1 / 64.8 ± 13.8 / N.A.
- AT: 158.8 ± 5.8 / 61.7 ± 6.8 / N.A.
- RT: 161.6 ± 8.1 / 63.3 ± 7.5 / N.A.

(3) MMSE score
- BAT: 27.17 ± 1.85
- AT: 27.54 ± 1.51
- RT: 26.67 ± 2.64

(1) Dynamic
(2) 2 sets of 6 to 8 repetitions of 7RM per exercise

(progressively increased)
(3) N.A.
(4) N.A.
(5) Exercises with pneumatic resistance machines (e.g., biceps

curls, triceps extensions, seated rows, latissimus dorsi
pull-downs, leg presses, hamstring curls, and calf raises)
and free weights (e.g., mini-squats, mini-lunges, and
lunge walks)

(6) Ca. 60 min (10 min warm-up, 40 min exercising,
10 min cool-down)

(7) 2 days/week
(8) N.A.
(9) 26 weeks
(10) Group-based and supervised

Bolandzadeh
et al. [185]

(1) IS (RCT, between-group design) / BAT,
1x RT, 2x RT
(2) Older adults
(2.1) - BAT: N = 15 [11] (15 f / 0 m) / 69.3 ± 2.8

- 1x RT: N = 22 [18] (22 f / 0 m) / 69.6 ± 2.6
- 2x RT: N = 17 [13] (17 f / 0 m) / 69.2 ± 3.1

(2.2) - BAT: 162.9 ± 5.8 / 69.5 ± 9.4 / N.A.

(1) Dynamic
(2) 2 sets of 6 to 8 repetitions of 7RM per exercise

(progressively increased)
(3) N.A.
(4) N.A.
(5) Exercises with pneumatic resistance machines (e.g., biceps

curls, triceps extensions, seated rows, latissimus dorsi
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Table 1 Overview of the population characteristics and resistance exercises and/or resistance training characteristics of the reviewed studies
(Continued)

First author [ref.] Study design and sample characteristics Resistance exercise characteristics

- 1x RT: 160.7 ± 6.4 / 68.2 ± 14.6 / N.A.
- 2x RT: 161.3 ± 7.4 / 68.1 ± 12.5 / N.A.

(3) MMSE (MOCA) score
- BAT: 28.7 (24.4) ± 1.3 (3.5)
- 1x RT: 28.9 (25.8) ± 1.0 (2.9)
- 2x RT: 28.8 (25.6) ± 1.8 (2.9)

pull-downs, leg presses, hamstring curls, and calf raises)
and free weights (e.g., mini-squats, mini-lunges, and
lunge walks)

(6) Ca. 60 min (10 min warm-up, 40 min exercising,
10 min cool-down)

(7) 1 day/week (in 1x RT) or 2 days/week (in 2x RT)
(8) One week-in-between (in 1x RT) / N.A. (in 2x RT)
(9) 52 weeks
(10) Group-based and supervised

Kjølhede
et al. [193]

(1) IS (RCT, cross-over design) / WL, RT
(2) Adults with multiple sclerosis
(2.1) - WL: N = 17 [12] (N.A.)

- RT: N = 18 [17] (N.A.)
- mean of both groups: 43.2 ± 8.1

(2.2) - mean of both groups: 171.0 ± 8.0 /
75.0 ± 13.0 / N.A.

(3) EDSS score
- WL: 2.9 ± 0.2
- RT: 2.9 ± 0.2

(1) Dynamic
(2) Progressively increased with adjustment in sets, repetitions,

load [detailed information can be found in Kjølhede
et al. [198]

(3) 2 to 3 min [detailed information can be found in
Kjølhede et al. [198]

(4) N.A.
(5) Exercises with resistance machines (e.g., horizontal

leg press, hip flexion, leg extension, prone hamstring
curl, cable pull-down and cable triceps extension)

(6) N.A.
(7) 2 days/ week
(8) N.A.
(9) 24 weeks
(10) Group-based and supervised

Liu-Ambrose
et al. [186]

(1) IS (RCT, between-group design) / BAT, 1x RT, 2x RT
(2) Older adults
(2.1) - BAT: N = 49 [20/18] (49 f / 0 m) / 70.0 ± 3.3

- 1x RT: N = 54 [28] (54 f / 0 m) / 69.5 ± 2.7
- 2x RT: N = 52 [18] (52 f / 0 m) / 69.4 ± 3.0

(2.2) - BAT: 161.0 ± 6.9 / 67.0 ± 11.5 / N.A.
- 1x RT: 160.9 ± 7.0 / 69.2 ± 16.2 / N.A.
- 2x RT: 162.8 ± 6.5 / 72.1 ± 16.8 / N.A.

(3) MMSE score
- BAT: 28.8 ± 1.2
- 1x RT: 28.5 ± 1.3
- 2x RT: 28.6 ± 1.5

(1) Dynamic
(2) 2 sets of 6 to 8 repetitions of 7RM per exercise

(progressively increased)
(3) N.A.
(4) N.A.
(5) Exercises with pneumatic resistance machines (e.g., biceps

curls, triceps extensions, seated rows, latissimus dorsi
pull-downs, leg presses, hamstring curls, and calf raises)
and free weights
(e.g., mini-squats, mini-lunges, and lunge walks)

(6) Ca. 60 min (10 min warm-up, 40 min exercising,
10 min cool-down)

(7) 1 day/week (in 1x RT) or 2 days/week
(8) One week-in-between (in 1x RT) / N.A. (in 2x RT)
(9) 52 weeks
(10) Group-based and supervised

Liu-Ambrose
et al. [45]

(1) IS (RCT, between-group design) / BAT, 1x RT, 2x RT
(2) Older adults
(2.1) - BAT: N = 17 [17] (17 f / 0 m) / 69.2 ± 3.2

- 1x RT: N = 20 [20] (20 f / 0 m) / 69.7 ± 2.8
- 2x RT: N = 15 [15] (15 f / 0 m) / 68.9 ± 3.2

(2.2) - BAT: 162.4 ± 5.9 / 67.3 ± 9.5 / N.A.
- 1x RT: 161.7 ± 7.5 / 70.7 ± 13.8 / N.A.
- 2x RT: 162.7 ± 6.6 / 68.7 ± 10.9 / N.A.

(3) MMSE score
- BAT: 29.1 ± 1.1
- 1x RT: 28.6 ± 1.2
- 2x RT: 29.1 ± 0.85

(1) Dynamic
(2) 2 sets of 6 to 8 repetitions of 7RM per exercise

(progressively increased)
(3) N.A.
(4) N.A.
(5) Exercises with pneumatic resistance machines (e.g., biceps

curls, triceps extensions, seated rows, latissimus dorsi
pull-downs, leg presses, hamstring curls, and calf raises)
and free weights
(e.g., mini-squats, mini-lunges, and lunge walks)

(6) Ca. 60 min (10 min warm-up, 40 min exercising,
10 min cool-down)

(7) 1 day/week (in 1x RT) or 2 days/week (in 2x RT)
(8) One week-in-between (in 1x RT) / N.A. (in 2x RT)
(9) 52 weeks
(10) Group-based and supervised

Nagamatsu
et al. [189]

(1) IS (RCT, between-group design) / BAT, 2x AT, 2x RT
(2) Older adults with probable mild cognitive

impairment and subjective memory complaints
(2.1) - BAT: N = 28 [8] (28 f / 0 m) / 75.1 ± 3.6

- AT: N = 30 [7] (30 f / 0 m) / 75.6 ± 3.6
- RT: N = 28 [7] (28 f / 0 m) / 73.9 ± 3.5

(2.2) - BAT: 158.2 ± 7.3 / 66.4 ± 14.0 / N.A.
- AT: 159.2 ± 5.9 / 64.8 ± 12.8 / N.A.
- RT: 158.7 ± 7.0 / 65.2 ± 10.7 / N.A.

(1) Dynamic
(2) 2 sets of 6 to 8 repetitions of 7RM per exercise

(progressively increased)
(3) N.A.
(4) N.A.
(5) Exercises with pneumatic resistance machines (e.g., biceps

curls, triceps extensions, seated rows, latissimus dorsi
pull-downs, leg presses, hamstring curls, and calf raises)
and free weights (e.g., mini-squats, mini-lunges, and
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With regard to resistance training, after a 16-week
intervention with healthy older adults, oxygenated
hemoglobin and total hemoglobin were lowered in the
left prefrontal cortex during the Stroop task (Stroop
interference effect, posttest compared with pretest),
while cognitive task performance (i.e., reaction time) was
improved [44]. At the end of 52 weeks of resistance
training, older adults who had conducted resistance ex-
ercises twice a week exhibited better performance in
tasks of executive functions (i.e., Stroop test) than those
who had performed balance and toning exercises [45].
Furthermore, in the same study, the hemodynamic re-
sponse during the incongruent flanker condition was in-
creased in the left anterior insula and the left lateral
orbitofrontal cortex, whereas the hemodynamic response
during the congruent flanker condition decreased in the
same areas [45].
In older individuals with mild cognitive impairment

(MCI), the right lingual and occipital-fusiform gyri and the
right frontal pole exhibited increased activation during the
associative memory test after a twice-weekly performed re-
sistance training lasting for 52 weeks when compared with
older individuals conducting balance and toning exercises
in this time period [189]. Furthermore, in this study, a posi-
tive correlation between increased hemodynamic activity in
the right lingual gyrus and improved associative memory

performance was observed [189]. After 26 weeks of resist-
ance training, decreased resting-state functional connectiv-
ity of the PCFC with the left inferior temporal lobe and the
anterior cingulate cortex and between the HIPFC and the
right inferior temporal lobe was observed in older adults
with MCI [190]. In the same study, an increase in resting-
state functional connectivity between the HIPFC and the
right middle frontal lobe was evident in older adults with
MCI in the resistance training group [190].

Neuroelectric functional brain changes and cognition

With regard to an acute bout of resistance exercises,
cognitive performance was improved in younger adults
[182, 183] and older adults with MCI [195]. After exer-
cising in younger adults, an increase in the P3 amplitude
during a Go/No-Go task combined with the Eriksen
Flanker paradigm was observed [182], and in older
adults with MCI, the P3 amplitude across all electrode
positions (except Pz) during the Eriksen Flanker task
was larger posttest compared with pretest [195]. Further-
more, in younger adults, a time-dependent and
condition-dependent increase in P3 amplitude (obtained
during the Stroop task) was observed [183]. In incongru-
ent trials, larger P3 amplitudes were observed 30 min
and 40min after exercise cessation, whereas in congru-
ent trials, larger P3 amplitudes were observed 10 min

Table 1 Overview of the population characteristics and resistance exercises and/or resistance training characteristics of the reviewed studies
(Continued)

First author [ref.] Study design and sample characteristics Resistance exercise characteristics

(3) MMSE (MOCA) score
- BAT: 27.1 (22.5) ± 1.7 (2.8)
- AT: 27.4 (22.2) ± 1.5 (2.8)
- RT: 27.0 (21.4) ± 1.8 (1.3)

lunge walks)
(6) Ca. 60 min (10 min warm-up, 40 min exercising,

10 min cool-down)
(7) 2 days/week
(8) N.A.
(9) 52 weeks
(10) Group-based and supervised

Suo et al. [190] (1) IS (RCT, between-group design) / SHAM, RE + SHAM,
RE + CCT, CCT + SHAM

(2) Older adults with dementia prodrome mild
cognitive impairment

(2.1) - ALL: N = 100 (68 f / 32 m) / 70.1 ± 6.7 (55–87)
- SHAM: N = 27 [22] (N.A.)
- RE + SHAM: N = 22 [19] (N.A.)
- RE + CCT: N = 27 [22] (N.A.)
- CCT + SHAM: N = 24 [20] (N.A.)

(2.2) - N.A.
(3) MMSE score

- ALL: 24–28 (29 was acceptable only if error
noted in memory registration)

(1) Dynamic
(2) 5 to 6 exercises with 3 sets of 8 repetitions per exercise at

80 to 92% of 1RM
(3) N.A.
(4) N.A.
(5) Exercises with pneumatic resistance machines (e.g., chest

press, leg press, seated row, standing hip abduction, knee
extension, hip flexion, hip extension, calf raise) and free
weights (e.g., lateral raise, biceps curls)

(6) Ca. 90 min
(7) 2 days/week
(8) N.A.
(9) 26 weeks
(10) Group-based and supervised

Please note that the sham treatments in Suo et al. [190] were conducted as follows: (i) the cognitive training group (CCT + SHAM) included physical exercises that

did not significantly increase heart rate or improve aerobic capacity balance or strength performance (e.g., stretching, toning, and seated calisthenics), and (ii) the

resistances exercise group (RE + SHAM) included a computerized, active cognitive control training

AE Aerobic exercises, AT Aerobic training, BAT Balance and toning exercise, BAST Balance and stretching training, BMI Body mass index, cm Centimeters, CON (n)

Non-exercising control group, CON (r) Control group read magazines, EDSS Expanded disability status scale, f Female, HIA High-intensity aerobic exercise, HIIT

High-intensity aerobic interval training, HIRE High-intensity resistance exercises, HIRT High-intensity resistance training, HOA Healthy older adults, kg Kilogram, LM

Loadless movement group, MCI Mild cognitive impairments, MIC Moderate-intensity exercise combining resistance training and walking, MCT Moderate

continuous aerobic training, MIRE Moderate-intensity resistance exercises, m Male, min Minute, MMSE Mini-mental state examination, MOCA Montreal cognitive

assessment, N Number of participants, N.A. Not applicable, RCT Randomized controlled trials, RM Repetition maximum, RE Resistance exercises, RT Resistance

training, SD Standard deviation, WL Wait list
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and 40min after exercise cessation [183]. However, in
the same study, no statistically significant differences be-
tween the resistance exercise group and the loadless
movement group were observed [183]. Additionally, lar-
ger P3 amplitudes were associated with lower serum
cortisol levels after an acute bout of resistance exercise
in younger adults [182].
With regard to resistance training, after 9 weeks of

training (three times per week), the elderly participants
showed a significant decrease in N1 latencies at the Fz
and Cz positions during an auditory task, whereas the
N1-P2, P2-N2 and N2-P3 amplitudes (at Fz) and the
N1-P2 amplitude (at Cz) increased [194]. In comparison
to both an aerobic training group and an inactive control
group, the resistance training group showed a greater
absolute reduction in P2 and N2 latencies and larger ab-
solute increase in N1-P2, P2-N2, and N2-P3 amplitudes
[194]. Furthermore, after 10 weeks of resistance training
in healthy older adults and in older adults at an early
stage of dementia, a decrease in beta asymmetry, a de-
crease in N200 A asymmetry, and an increase in theta
asymmetry was observed [192]. The decrease in N200 A
asymmetry was significantly negatively correlated with
improvements in the Fuld immediate recall score and
the Fuld delayed recall score, while the increase in delta
asymmetry was significantly positively correlated with a
better Fuld delayed recall score [192]. After resistance
training with elastic bands for 12 weeks, healthy older
adults showed a decrease in relative theta power at P3
and P4, but their cognitive measures remained un-
changed [188]. However, in the same study, exercising
older adults with MCI exhibited significantly higher
scores in the digit span backward test than their non-
exercising counterparts [188]. Furthermore, from pre- to
posttest, theta power at F3 increased and alpha power at
T3 decreased in exercising older adults with MCI [188].
After 16 weeks of resistance training in older adults with
amnestic MCI, larger P3 amplitudes during a task-
switching paradigm were observed [191]. Furthermore, in
the same study, decreased reaction times (i.e., in the non-
switching condition and in the switching condition) and
higher accuracy rates (i.e., in the pure condition, in the
non-switching condition, and in the switching condition)
were noticed in the resistance training group and the aer-
obic training group when the posttest was compared with
the pretest [191]. Additionally, in the resistance training
group, a positive correlation between changes in serum
levels of insulin-like growth factor 1 (IGF-1) and P3 am-
plitudes (measured during switching condition) and a
negative correlation between serum levels of tumor necro-
sis factor-alpha and accuracy rates in the switching condi-
tion were observed, which both barely failed to attain
statistical significance [191]. In another study, 48 weeks of
resistance training led to superior cognitive performance

(i.e., reaction time) as well as to larger P3a and P3b ampli-
tudes in an oddball task [187]. Moreover, serum IGF-1
concentrations increased and were correlated with faster
reaction times and larger P3b amplitudes only in the re-
sistance group [187].

Structural brain changes and cognition

After resistance training performed once or twice weekly
for 52 weeks, compared with older adults conducting
balance and toning exercises, older adults in the resist-
ance training groups exhibited (i) an increased perform-
ance in Stroop test [186], (ii) a reduction in whole brain
volume [186], (iii) a lower volume of cortical white mat-
ter atrophy [184], and (iv) a lower degree of cortical
white matter lesions [185]. In older female adults with
probable MCI, resistance training over 26 weeks did
not led to significant changes in hippocampal volume
[197]. In another study, older adults with MCI resistance
training performed twice a week for 26 weeks exhibited
improved ADAS-Cog scores (global cognition assessed
with Alzheimer’s Disease Assessment Scale) and in-
creased the cortical thickness of grey matter in the pos-
terior cingulate gyrus [190]. Moreover, the increase in
grey matter thickness was negatively correlated with
ADAS-Cog scores, indicating better cognitive perform-
ance [190]. In individuals with multiple sclerosis (MS),
resistance training lasting 24 weeks led to an increase in
cortical thickness in the anterior cingulate sulcus and
gyrus, the temporal pole, the inferior temporal sulcus,
and the orbital H-shaped sulcus [193]. The increased
thickness in the temporal pole was significantly nega-
tively correlated with lower scores on the Expanded Dis-
ability Status Scale (i.e., lower disability) [193]. More
detailed information on the main findings is provided in
Table 2.

Discussion
Risk of bias

In general, our results regarding the source of the risk of
bias are somewhat heterogeneous (see Fig. 3); neverthe-
less, the overall quality of the majority of the reviewed
studies can be regarded as sufficiently high. However,
the risk of bias could be further minimized by proper
planning of the study, which would strengthen the
plausibility of observed effects. To ensure and enhance
the study quality, it appears imperative that future stud-
ies report their procedures in sufficient detail (e.g., exer-
cise and training variables) and pay attention to
established guidelines such as the CONSORT statement
[202] or the STROBE statement [203].

Selection of participants and study design

The reviewed studies were conducted with healthy
young adults, healthy older adults, or older adults with
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Table 2 Overview of the characteristics of cognitive testing and the main outcomes of the reviewed studies

First author [ref.] (1) Cognitive testing

(2) Main findings (related to functional and/or structural brain changes in response to resistance
exercises or resistance training)

Functional near-infrared spectroscopy

Chang et al. [43] (1) Executive functions (Stroop test) during fNIRS (conducted 15 min after exercise cessation)

(2) Between group comparisons (postexercise, neutral condition):

- ↓ TOI in lt. PFC during CT (HIR vs. CON (n) / MIC)

- ↑ Solved items and ↓ response time during CT (HIR vs. CON (n))

Between group comparisons (postexercise, incongruent condition):

- ↓ TOI in lt. PFC (HIR vs. CON (n) / MIC)

- ↓ TOI in rt. PFC (HIR vs. CON (n) / MIC / HIA)

(ROI: lt. and. rt. PFC)

Coetsee et al. [44] (1) Executive functions (Stroop test) during fNIRS

(2) Posttest vs. pretest:

- ↓ OxyHb in lt. PFC in RT during CT (Stroop interference effect)

- ↓ THI in lt. PFC in RT and MCT during CT (Stroop interference effect)

- ↓ Reaction time in RT during CT (naming and executive condition)

(ROI: lt. and rt. PFC)

Electroencephalography

Hong et al. [188] (1) Cognitive test battery (Stroop test, COWAT, DFDB; Rey 15-Item Memory Test) and resting EEG

(2) Posttest versus pretest:

- ↓ Relative theta power (at F3) in MCI RT

- ↑ Relative alpha power (at T3) in MCI RT

- ↓ Relative theta power (at P3 and at P4) in HOA RT

- DB scores were significantly higher in MCI RT than in MCI CON (at posttest)

Özkaya et al. [194] (1) Auditory task during EEG

(2) Posttest vs. pretest:

- ↓ Latencies of N1 (at Fz) and N1 (at Cz) in RT and AT

- ↑ Amplitudes of N1-P2, P2-N2 and N2-P3 (at Fz) and N1-P2 (at Cz) in RT

Between group comparisons:

- ↓ Absolute changes in latencies of P2 and N2 (at Fz and at Cz) in RT compared with AT and CON

- ↑ Absolute changes in amplitudes of N1-P2, P2-N2, and N2-P3 (at Fz) and N1-P2 and N2-P3 (at Cz) in RT
compared with AT and CON

Tsai et al. [182] (1) Executive functions (Go/No-Go task combined with the Eriksen Flanker paradigm) during EEG
measurements (CT was conducted after exercise cessation when the participant’s body temperature
and HR had returned to within 10% of pre-exercise levels, which was on average approximately 5 min
after acute resistance exercise cessation.)

(2) Posttest vs. pretest:

- ↑ P3 amplitude (i.e., at Fz, Cz, and Pz) in MIRT and HIRT during CT

- ↓ Reaction time in MIRT and HIRT during CT (Go condition)

- ↑ Accuracy in MIRT and HIRT during CT (incongruent No-Go condition)

- ↑ Serum GH and serum IGF-1 in MIRE and HIRE (prior to cognitive testing at pretest vs. prior to cognitive
testing at posttest)

- ↓ Serum cortisol in MIRE and HIRE (prior to cognitive testing at pretest vs. prior cognitive
testing at posttest)

- ↓ Serum GH and serum IGF-1 in HIRE (prior to cognitive testing at posttest vs. after cognitive testing at posttest)

- ↑ Serum GH in MIRE and HIRE, serum IGF in MIRE (prior to cognitive testing at pretest vs. after cognitive
testing at posttest)
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Table 2 Overview of the characteristics of cognitive testing and the main outcomes of the reviewed studies (Continued)

- ↓ Serum cortisol in MIRE (prior to cognitive testing at pretest vs. after cognitive testing at posttest)

- Lower serum cortisol levels were associated with higher P3 amplitude

Tsai et al. [187] (1) Executive functions (oddball task) during EEG measurements

(2) Between group comparisons:

- ↑ P3a amplitude (i.e., at F3 and F4) and P3b amplitude (i.e., at Cz, Pz, and Oz) in RT during CT
compared with CON (n)

- ↑ Accuracy in RT during CT compared with CON (n)

- ↓ Reaction time in RT during CT compared with CON (n)

Posttest vs. pretest:

- ↓ Reaction time in RT during CT

- ↑ Serum IGF-1 levels in RT

- ↓ Serum homocysteine levels in RT

- Higher serum IGF-1 levels in RT were associated with the faster reaction times and larger
P3b amplitudes

Tsai et al. [195] (1) Working memory (Memory span from WAIS-IV); executive functions (Flanker task) during EEG
measurements (CT was conducted after exercise cessation when the participant’s body temperature
and HR had returned to within 10% of pre-exercise levels, which was on average approximately
5 min after acute resistance exercise cessation.)

(2) Posttest vs. pretest:

- ↑ P3 amplitudes (i.e., at Fz, Cz, and Pz, except the Pz electrode in RE) in AE and RE during CT
(in all conditions)

- ↓ Reaction time in AE and RT during CT (congruent and incongruent condition)

- ↑ Serum IGF-1 in AE and RE; serum BDNF and serum VEGF in AE (prior to cognitive testing at
pretest vs. prior to cognitive testing at posttest)

- ↓ IGF-1 in AE and RE and serum BDNF in AE (prior to cognitive testing at posttest vs. after cognitive testing
at posttest)

- Lower P3 latency across all participants was associated with higher IGF-1 levels (prior to cognitive
testing at posttest)

Tsai et al. [191] (1) Working memory (Memory span from WAIS-IV); executive functions (Task switching) during
EEG measurements

(2) Posttest vs. pretest:

- ↑ P3 amplitudes in AE and RT

- ↓ Reaction time in AE and RT during CT (non-switching condition and switching condition)

- ↑ Accuracy rate in AE and RT during CT (pure condition, non-switching condition, and
switching condition)

- ↑ Serum IGF-1 in RT and serum BDNF in AT

- ↓ Serum TNF-α and serum IL-15 in RT and AT / ↑ serum TNF-α in CON

- Higher levels of VO2max are associated with higher levels of serum BDNF in RT and AT

Vonk et al. [183] (1) Executive functions (Stroop test) during EEG measurements (conducted 10min, 20 min, 30 min, and
40 min after exercise cessation)

(2) Posttest vs. pretest:

- ↓ Response time in RE and LM during CT (congruent and incongruent condition, 10 min after
exercise cessation vs. pretest)

- ↓ Response time in RE and LM during CT (congruent condition, 10 min vs. 30 min after exercise cessation)

- ↓ Accuracy in RE and LM during CT (incongruent condition, 30 min after exercise cessation vs. pretest)

- ↑ P3 amplitude in RE and LM during CT (incongruent condition, 30 min and 40 min after exercise
cessation vs. pretest)

- ↑ P3 amplitude in RE and LM during CT (congruent condition, 10 min and 30 min after exercise
cessation vs. pretest)

Yerokhin et al. [192] (1) Cognitive test battery (Stroop test, FOME; CFT); executive functions (oddball paradigm) during EEG
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Table 2 Overview of the characteristics of cognitive testing and the main outcomes of the reviewed studies (Continued)

(2) Posttest vs. pretest:

- ↓ Beta asymmetry and ↓ N200 A asymmetry

- ↑ Delta asymmetry

- ↑ Figure delayed recall and Fuld immediate recall

- Decreased N200 A asymmetry was significantly correlated with improvements in Fuld
immediate and Fuld delayed recall

- Increase in delta asymmetry was significantly correlated with an improvement in Fuld delayed recall

(ROI: frontal lobe [FP1, FP2, F7, F8])

Functional and structural magnetic resonance imaging

Best et al. [184] (1) Cognitive test battery (Stroop test, TMT A&B, DB, RAVLT, DSST)

(2) Between group comparisons:

- ↓ Cortical WM atrophy 2x RT compared with BAT at 2-year follow-up

- ↑ Executive functions in 1x RT compared with BAT considering changes from baseline to postintervention

- ↑ Executive functions in 1x RT and 2x RT compared with BAT considering changes from baseline to a 2-year
follow-up

- ↑ Memory performance in 2x RT compared with BAT considering changes from baseline to 2-year follow-up

- ↑ Peak muscle power in 2x RT compared with BAT considering changes from baseline to postintervention
and to a 2-year follow-up

Brinke et al. [197] (1) Memory (RAVLT)

(2) Between group comparisons:

- No significant differences between AT and RT in hippocampal volume after 26 weeks

- ↑ Hippocampal volume in rt. and lt. hemisphere / total hippocampal volume in AT compared with AT after 26 weeks

- Positive partial correlation between increase in left hippocampal volume and change in RAVLT
(loss after interference condition)

Bolandzadeh et al. [185] (1) Executive functions (Stroop test)

(2) Between group comparisons:

- ↓ Cortical WML volume 2x RT compared with BAT at 2-year follow-up

- ↓ WML progression in 2x RT at postintervention was associated with maintenance of gait speed

Kjølhede et al. [193] (1) Working memory & auditory information processing speed (PASAT)

(2) Changes in cortical thickness in response to RT:

- ↑ E.g., in subcentral sulcus and gyrus; anterior cingulate sulcus and gyrus, middle anterior
cingulate sulcus and gyrus, inferior parietal angular gyrus, inferior temporal gyrus, middle
temporal gyrus, temporal pole, superior circular sulcus of insula, superior and transverse
occipital sulcus, inferior temporal sulcus, orbital H-shaped sulcus, inferior and superior parts
of the precentral sulcus, inferior and superior temporal sulcus

Between group comparisons regarding cortical thickness:

- ↑ Anterior cingulate sulcus and gyrus, temporal pole, inferior temporal sulcus, orbital H-shaped
sulcus in RT compared with WL after 24 weeks

- Greater thickness in the temporal pole was correlated with lower EDSS scores

Liu-Ambrose et al. [186] (1) Cognitive test battery (Stroop test, TMT A&B, DFDB)

(2) Between group comparisons:

- ↑ Stroop test performance in 1x RT and 2x RT compared with BAT at 2-year follow-up

- ↑ Peak muscle power in 2x RT compared with BAT at postintervention and to a 2-year follow-up

- ↓ Whole brain volume (from baseline) in 1x RT and 2x RT compared with BAT at a 2-year follow-up

- Improvement in Stroop test performance during intervention was significantly associated with increased gait speed

Liu-Ambrose et al. [45] (1) Executive functions test (modified Eriksen Flanker task) during fMRI

(2) Between group comparisons:

- ↑ Activation of the left anterior insula extending into the lateral orbital frontal cortex in 2x RT compared with
BAT at posttest in the incongruent condition
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MCI or beginning dementia. Therefore, our knowledge
about the effect of resistance exercises and/or resistance
training on cognitive functions is limited to these co-
horts, and further investigations with other cohorts are

required. In particular, older adults with sarcopenia are a
key group because there is a high prevalence (ranging
from 1 to 33%) of this condition in various older popula-
tions [204], which poses major economic costs to the

Table 2 Overview of the characteristics of cognitive testing and the main outcomes of the reviewed studies (Continued)

- ↓ Activation of the left anterior insula extending into the lateral orbital frontal cortex
and anterior portion of the left middle temporal gyrus in 2x RT compared with BAT at
posttest in the congruent condition

- ↓ Reduction in interference score (better performance) in 2x RT compared with BAT

Nagamatsu et al. [189] (1) Cognitive test battery (Stroop test, TMT A&B, DFDB; EPT) and associative memory (memorizing face-scene pairs)
during fMRI

(2) Between group comparisons:

- ↑ Stroop test performance and associate memory task performance in RT compared with
BAT at postintervention

- ↑ Activation of the right lingual and occipital-fusiform gyri and the right frontal pole in 2x
RT during CT compared with BAT at postintervention (encoding and recall of associations)

- Higher hemodynamic activity in the right lingual gyrus was correlated with better
performance in the associative memory test

Suo et al. [190] (1) Cognitive test battery (e.g. ADAS, TMT A&B, BVRT, COWAT, Category Fluency, SDMT, Logical
Memory WMS-III, Matrices WMS-III, Similarities WMS-III)

(2) Between group comparisons:

- ↓ ADAS-Cog score (i.e., improved cognition) at posttest in the RT groups compared with all other groups

- ↑ Posterior cingulate cortex grey matter thickness at postintervention in RT groups compared
with all other groups

- ↓ White matter hyperintensities volumes in the rt. periventricular zone and the rt. parietal zone
in RT groups compared with all other groups (significant when analyzed at the regional level /
not-significant when whole brain-corrected)

- Greater posterior cingulate cortex grey matter thickness was significantly correlated with lower
ADAS-Cog score (i.e. improved cognition)

Functional connectivity changes:

- ↓ PCFC connectivity with the left inferior temporal lobe and the anterior cingulate cortex in RT +
SHAM / ↓ PCFC connectivity between the PC and the anterior cingulate cortex in CCT + SHAM

- ↓ PCFC between the PC and the anterior cingulate cortex in RT + CCT

- ↑ HIPFC connectivity with the right middle frontal lobe and ↓ connectivity with the right inferior
temporal lobe in RT + SHAM

- ↑ HIPFC connectivity between the hippocampus and the left superior frontal lobe in CCT + SHAM

- ↑ Hippocampal–anterior cingulate cortex connectivity and the hippocampal–right superior frontal
lobe connectivity in RT + CCT

- ↑ Superior functional connectivity between the hippocampus and the superior frontal lobe is
associated with improved memory domain performance

Please note that the sham treatments in Suo et al. [190] were conducted as follows: (i) the cognitive training group (CCT + SHAM) included physical exercises that

did not significantly increase heart rate or improve aerobic capacity balance or strength performance (e.g., stretching, toning, and seated calisthenics), and (ii) the

resistances exercise group (RE + SHAM) included a computerized, active cognitive control training.

ADAS-Cog Alzheimer’s disease assessment scale, AE Aerobic exercises, AT Aerobic training, BAT Balance and toning exercise, BDNF Brain-derived neurotrophic

factor, BVRT Benton visual retention test, CFT Complex figure test, CON (n) Non-exercising control group, CON (r) Control group read magazines, COWAT Controlled

oral word association test, CT Cognitive test, DB Verbal digits backward test, DFDB Verbal digits forward and verbal digits backward tests, DSST Digit symbol

substitution test, EEG Electroencephalography, EDSS Expanded disability status scale, EPT Everyday problem solving test, fMRI Functional magnetic resonance

imaging, fNIRS Functional near-infrared spectroscopy, FOME Fuld object memory evaluation, GH Growth hormone, HIA High-intensity aerobic exercise, HIIT High-

intensity aerobic interval training, HIRE High-intensity resistance exercises, HIRT High-intensity resistance training, HOA Healthy older adults, IGF-1 Insulin-like

growth factor 1, MCI Mild cognitive impairments, MIC Moderate-intensity exercise combining resistance training and walking, MCT Moderate continuous aerobic

training, MIRE Moderate-intensity resistance exercises, LM Loadless movement group, lt. Left, min Minute, oxyHb Oxygenated hemoglobin, PASAT Paced auditory

serial addition test, PFC Prefrontal cortex, RAVLT Rey auditory verbal learning test, RCT Randomized controlled trials, RM Repetition maximum, RE Resistance

exercises, RT Resistance training, rt. Right, SDMT Symbol digit modalities test, THI Total hemoglobin index, TMT A&B Trail making test A&B, TOI Tissue oxygenation

index, TNF-α Tumor necrosis factor-alpha, VEGF Vascular endothelial growth factor, VO2max Maximal oxygen uptake during a graded exercise test, vs. Versus, WL

Wait list, WM White matter, WML White matter lesion volume, WAIS-IV Wechsler-IV adult intelligence test, WMS Wechsler memory scale, ↑: significant increase; ↓:

significant decrease / F3, F4, F7, F8, FP1, FP2, P3, T3, Cz, Fz, Oz and Pz are specific positions in the international system for EEG electrode placement [199],

whereas N1, N2, P1, P2, P3 (P300) constitute specific EEG parameters [200, 201]
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welfare system [205]. Sarcopenia comprises the age-
related loss of muscle mass [206–210] but in the litera-
ture the term has often been (incorrectly) extended to
the age-related loss of muscle function (e.g., muscle
strength) [210–219]. The latter one should be referred
to as dynapenia which encompasses the age-related loss
of muscle function (e.g., loss of muscular strength and
power) [209–211, 220]. However, age-related muscular
changes (e.g., sarcopenia) could also lead to a decline in
cognitive performance [221, 222]. Hence, older adults
with sarcopenia and/or dynapenia may profit in two
ways (physically and cognitively) from resistance exer-
cises/resistance training.
In the terms of study design, in future resistance exer-

cise and/or resistance training studies, moderator vari-
ables such as gender [223–226] or genotype [227, 228],
which may influence the effectiveness of the resistance
exercise and/or resistance training, should be considered
and analyzed. The assessment and analysis of moderators
may help provide a better understanding of the observed
inter-individual variability regarding the effect of physical
exercise (e.g., resistance training) on the brain and on cog-
nitive functions and help to foster the optimization of
physical exercise interventions [125]. Furthermore, chro-
nobiological factors (such as circadian variability) should
be considered since they affect muscular adaptions in re-
sponse to resistance exercises [229–232] and affect cogni-
tive performance [233–235]. However, hemodynamic
responses are reported to be relatively unaffected by, for
instance, circadian variability [236].
Moreover, larger cohorts and longer intervention

intervals could be beneficial (especially in [f] MRI
studies) for increasing the external validity and for
adaptation processes to manifest [237]. In addition,
concerning cognitive testing, it seems advisable to use
standardized sets of cognitive tests or to employ the
latent variable approach (create an unobserved [latent]
variable for a distinct set of cognitive tests) [238]. In
this context, the ‘human baseline hypothesis’ should be
considered, which claims that the baseline values of
strength (e.g., grip strength, knee extensor strength)
assessed prior to resistance training and/or after a
detraining period are a more appropriate indicator of
health outcomes than the training-related increase in
strength values [239].
With regard to upcoming cross-sectional studies, neu-

roimaging methods (e.g., fNIRS, see [179]) should be
employed as they help to better understand the associ-
ation between superior cognitive performance (e.g., in
global cognitive abilities) and superior muscular per-
formance previously operationalized by (i) hand grip
strength [86, 88, 89], (ii) isokinetic quadriceps strength
[82, 83], (iii) leg power [84], or (iv) whole-body muscular
strength [85].

Functional brain changes and cognition in response to

resistance exercises or resistance training

Hemodynamic functional brain changes and cognition

Currently, only a few studies have investigated the in-
fluence of resistance exercises and/or resistance train-
ing on functional brain parameters in healthy adults
during standardized cognitive tasks. However, regard-
less of whether resistance exercises were conducted as
an acute bout [43] or over a period of 16 weeks [44],
proxies of cortical activation in the prefrontal cortex
during the Stroop test were found to be decreased. In
another resistance training study (52 weeks), a decrease
in brain activation was observed exclusively during the
relatively easy task condition, whereas increased activa-
tion was found in the more difficult task condition [45].
These observations stand in contrast to the findings of
acute aerobic exercise studies [28, 29, 43] and aerobic
training studies [44], in which, in general, increased ac-
tivation of prefrontal areas during cognitive testing was
observed after exercising [180]. Notably, similar to the
findings of most aerobic exercise or aerobic training
studies, the reviewed resistance exercise and/or resist-
ance training studies also reported improved cognitive
functions [43–45]. Hence, decreases in the applied
proxies of neuronal activity might indicate more effi-
cient processing or automatization of cognitive pro-
cesses. Moreover, it is likely that the decrease in brain
activation in response to resistance exercises and/or re-
sistance training is related to neurobiological mecha-
nisms different from those induced by aerobic exercises
or aerobic training [107, 223, 240]. Future studies are
urgently needed to investigate the underlying neurobio-
logical mechanisms of different types of acute physical
exercises (e.g., resistance exercises vs. aerobic exercises)
and chronic physical training (e.g., resistance training
vs. aerobic training). Analysis of the neurobiological
changes in response to different physical exercise/train-
ing interventions will also contribute to a better under-
standing of the functional changes in the brain. In this
regard, Liu-Ambrose et al. [45] noticed that after the
completion of a 52-week long resistance training pro-
gram, functional brain activations in the left anterior
insula extending from the lateral orbital frontal cortex
and in the anterior portion of the left middle temporal
gyrus during execution of a cognitive task were altered
[45]. The left anterior insula, for instance, plays an im-
portant role in successful performance in response in-
hibition tasks [241], which may be based on their
involvement in (i) the stopping ability [242], (ii) the as-
surance of general task accuracy [242], and (iii) main-
taining a stable task set control [243, 244]. The left
middle temporal gyrus is especially activated in com-
plex Go−/No-Go situations [245]. However, in contrast,
in comparable aerobic training, higher task-related
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activation in prefrontal areas and parietal cortices and
decreased activation of the anterior cingulate cortex
was observed [246]. Parietal areas [247] and prefrontal
areas [248, 249] are involved in a variety of cognitive
processes, among them attention [250, 251]. In particu-
lar, the parietal areas [252, 253] and the prefrontal areas
[254, 255] are strongly involved in selective attention
and the frontoparietal network in maintaining and ma-
nipulating task-relevant information in working mem-
ory [243]. In the context of attentional processes, the
anterior cingulate cortex is also an important structure
because it allocates attentional resources based on the
recruitment of task-appropriate processing centers
[256]. Moreover, the anterior cingulate cortex is acti-
vated in conflict processing where erroneous responses
are highly probable [257–260]. Taken together, resistance
training might be beneficial for cognitive processes that
aim to avoid unwanted responses (e.g., maintaining stable
task set control and increased stop efficacy), whereas aer-
obic exercises may enhance cognitive processes such as
selective attention (e.g., maintaining task-relevant infor-
mation) [45]. Further research is needed to verify this
assumption.
The positive effect of resistance training on brain

health is also underpinned by findings of Nagamatsu et
al. [189], who observed higher cortical activation during
an associative memory task in older individuals with
MCI after they had undergone long-term resistance
training (52 weeks). Moreover, this higher cortical activ-
ity was positively correlated with improvements in cog-
nitive performance [189]. Another mechanism through
which resistance training may ensure or/and improve
brain health in MCI may be related to the modulation of
functional connectivity. It was observed that (i) the
resting-state functional connectivity between posterior
cingulate cortex and other brain regions is generally de-
creased in individuals with MCI [261–264], (ii) func-
tional connectivity between the posterior parietal cortex
and the temporal cortex is associated with performance
on neuropsychological tests [261], and (iii) the resting-
state functional connectivity between the hippocampus
and other brain regions is disturbed in individuals with
MCI [265] or Alzheimer’s disease [266, 267]. Notably,
resistance training lasting 26 weeks increases the func-
tional connectivity among the posterior cingulate cortex,
the left inferior temporal lobe, and the anterior cingulate
cortex and between the hippocampus and the right mid-
dle frontal lobe [190]. Based on the mentioned changes
in resting-state functional connectivity in neurological
diseases (e.g., MCI) and the positive influence of resist-
ance training on resting-state functional connectivity, it
can be speculated that resistance training may be a
beneficial intervention strategy for ensuring or/and im-
proving brain health and cognition in those cohorts.

Neuroelectric functional brain changes and cognition

A higher P3 amplitude (also known as P 300) was ob-
served in younger adults after an acute bout of resist-
ance exercises [182, 183] and in healthy older adults
after 48 weeks of resistance training [187]. Furthermore,
a higher P3 amplitude was observed in individuals with
MCI after an acute bout of resistance exercises [195] or
after 16 weeks of resistance training [191]. Elevated P3
amplitudes are generally associated with neural activity
and cognitive processes [268, 269]. Upregulation of the
P3 amplitude after resistance exercises and/or resistance
training may be beneficial for brain health because di-
minished P3 amplitudes were observed in older individ-
uals [270, 271] and individuals with neurological
diseases (e.g., Alzheimer’s disease) [272]. The associa-
tions between event-related potentials (e.g., P3 ampli-
tude) and neurotrophic factors obtained after acute
resistance exercises [182, 195] and/or resistance training
[191] support the “neurotropic hypotheses” [114–117].
Profound changes in neuroelectric outcomes were also
observed after 12 weeks of resistance training with de-
creased resting-state theta power in older adults with
and without MCI and increased resting-state alpha
power in older adults with MCI [188]. The relevance of
these findings is currently unclear because contradictory
observations regarding meaningful changes in alpha and
theta power are found in the literature. For instance, on
the one hand, more resting-state alpha power and less
resting-state theta power were associated with better
cognitive performance [273, 274], whereas, on the other
hand, it has also been reported that higher resting-state
theta power is linked to superior cognitive performance
(e.g., in category fluency task) [275, 276]. Nevertheless,
the notion that resistance training positively affects brain
health was clearly confirmed by the observation of statis-
tically significant correlations between neuroelectric
changes (e.g., in asymmetry index) and changes in mem-
ory performance in older adults in response to a resist-
ance intervention lasting 10 weeks [192]. In addition,
Özkaya et al. [194] observed differences in neuroelectric
parameters as a function of the type of physical training.
This observation supports the idea that resistance and
aerobic training have different impacts on the underlying
neurobiological processes [223, 225, 240].
In sum, based on the small number of studies, it is too

early to draw generalizable conclusions with respect to
functional brain changes, but the available results suggest
that resistance exercises and/or resistance training can be a
promising strategy to ensure brain health. However, further
studies are urgently needed to investigate the effect of an
acute bout of resistance exercises and/or resistance training
on functional brain changes. Here, upcoming studies
should also pay attention to the investigation of neurobio-
logical processes that may cause functional brain changes.
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Structural brain changes and cognition in response to

resistance training

In response to resistance training over an intervention
period of 52 weeks (performed two times per week), (i) a
reduction in whole brain volume [186], (ii) a reduction
in cortical white matter atrophy [184], and (iii) a reduc-
tion in white matter lesions [185] were observed in com-
parison to training with balance or toning exercises. The
reduction in whole brain volume is surprising because,
in general, ‘more’ is often associated with ‘better’. How-
ever, it is assumed that the reduction in whole brain vol-
ume is perhaps caused by the improvement of certain
brain pathologies, in particular the removal of amyloid
plaques and shifts in cerebral fluids [186, 277, 278],
which, in turn, might positively influence brain health.
This view is supported by the recent findings of Yoon et
al. [279], who observed a relationship between brain
amyloid-β levels and hand grip strength (e.g., high levels
of brain amyloid-β and low grip strength). The removal
of amyloid plaques could be one possible neurobiological
mechanism explaining the observed improvements in
executive functions [186] because accumulation of
amyloid-β plaque is commonly linked to worsened
domain-specific cognitive functions (e.g., executive func-
tions and memory) [280–282], and neurological diseases
such as Alzheimer’s disease [283–286].
Furthermore, given that white matter abnormalities

(e.g., high load of white matter lesions) are linked to a
decline in cognitive functions (i.e., global cognition and
processing speed) [13, 287–290] and are associated with
neurological diseases such as dementia [291, 292], the
resistance training-induced changes in white matter
(e.g., reduced volume of lesions and reduced atrophy)
are likely to be beneficial for brain health. Notably, the
reduced volumes of white matter lesions after 52 weeks
of resistance training are linked to increased gait speed
[185]. Based on the findings that both slower gait speed
[293] and white matter lesion load [294] are linked to an
increased fall risk, the positive changes within the white
matter in response to resistance training suggest that en-
gaging in resistance training could play a substantial role
in preservation of the neural correlates of all-day tasks
(e.g., safe walking).
In response to resistance training, which was per-

formed twice a week for 26 weeks, grey matter thick-
ness in the posterior cingulate cortex was found to
increase significantly [190]. This increase in cortical
thickness of the posterior cingulate cortex was linked
to improved global cognitive performance [190]. This
neurobiobehavioral relationship underpins the as-
sumption that the posterior cingulate cortex is im-
portant for cognition, although there is still no
agreement about its exact role [295]. However, reduc-
tions in metabolism [296] and volume [297] were

observed in the posterior cingulate cortex in Alzhei-
mer’s disease. Hence, the possible ability to shape this
cortical structure by engaging in resistance training is
a promising approach to ensure brain health and to
prevent neurological diseases. In the context of
neurological diseases, it was also observed that resist-
ance training for 24 weeks increased the cortical
thickness in distinct areas, such as the temporal pole,
in individuals with MS. The increased cortical thick-
ness in the temporal pole was associated with better
scores on the Expanded Disability Status Scale
(EDSS), suggesting that resistance training has a posi-
tive impact on brain health and functional abilities in
this cohort. There are even reports in the literature
that a single resistance exercise (leg press) has pro-
found effects on brain volumes (but without a rela-
tion to cognitive functions) in healthy older adults.
Here, statistically significant increases in grey matter
density in the posterior and anterior lobe of the cere-
bellum, the superior frontal gyrus in the frontal lobe,
and the anterior cingulate cortex in the limbic lobe
were observed [131]. In summary, these results sup-
port the view that robust neuroplastic changes can be
evoked through resistance training, which contribute
to the maintenance of brain health.
Interestingly, one of the reviewed studies directly com-

pared resistance and aerobic trainings and found no sta-
tistically significant difference in hippocampal volume
changes between trainings [197]. Although an increase
in hippocampal volume was reported after both aerobic
[24] and resistance training in older adults [130], few
brain imaging studies are currently available that directly
compare different types of physical training. For in-
stance, it was observed that dancing conducted for sev-
eral months led to a greater increase in cortical grey
matter in frontal and temporal regions [298–300] and in
hippocampal volumes [301] than a combination of re-
sistance, endurance, and flexibility training. Hence, com-
paring different types of physical interventions (e.g.,
resistance training vs. aerobic training vs. dancing) with
regard to their effectiveness in evoking structural and
functional brain changes is an interesting topic for fur-
ther studies. Such knowledge is necessary to foster the
development of individualized physical interventions,
which are deemed to be more effective than the ‘one-
size-fits-all approach’ [125, 223, 302].
Taken together, resistance training reduces white mat-

ter atrophy and increases grey matter volumes in distinct
brain areas. Based on the observed relationship between
structural changes and behavior [185, 190], the positive
role of resistance training in ensuring (and improving)
brain health is reinforced. Further studies comparing dif-
ferent types of physical interventions with respect to
structural brain changes are required.
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Neurophysiological adaptation processes in connection

with resistance exercises and resistance training

Structural brain changes in response to resistance train-
ing rely at least partly on the modulation of specific mo-
lecular and cellular pathways that are involved in
neuroplasticity and – consequently – in positive effects
of cognitive performance [112, 240]. In this context, the
modulating role of resistance exercises and/or resistance
training on the release of neurochemicals such as BDNF,
IGF-1, and homocysteine is discussed in the literature
[121, 223, 303, 304]. In the following, we briefly outline
how these neurochemicals may contribute to the ob-
served functional and structural brain changes.

BDNF

In particular, structural brain changes after physical in-
terventions are assumed to be mediated by BDNF [114,
118, 119, 223, 240]. In addition, serum BDNF concentra-
tions have been linked to spatial memory performance
[21] and higher serum BDNF concentrations in response
to acute physical exercises [305] or physical training
[306] have been associated with improvements in execu-
tive functions. Furthermore, BDNF is involved in many
neuroplastic processes, such as synaptogenesis, long-
term potentiation of synaptic transmission, regulation of
the differentiation of neuronal precursor cells, and neur-
onal survival [120]. The important role of BDNF in neu-
roplasticity is underpinned by the findings that reduced
serum BDNF concentrations were linked to a decline in
hippocampal volume and that changes in serum BDNF
concentrations after aerobic training were associated
with hippocampal volume changes [24]. Although hippo-
campal changes could not be observed in one of the
reviewed studies after 26 weeks of resistance training
[197], there is solid evidence that resistance exercises
(especially at high-load conditions) [307–311] and resist-
ance training (especially in males) [308, 312] upregulate
serum BDNF concentrations. Such an increase in re-
sponse to resistance exercise and resistance training was
also reported for plasma BDNF [313]. Notably, it is as-
sumed that concentrations of BDNF stored in immune
cells and/or platelets are mirrored in the level of serum
BNDF, while plasma BDNF is a marker of the concentra-
tion of freely circulating BDNF [314, 315]. Based on the
previously mentioned connections between (serum)
BDNF, brain physiology, and cognition (i.e., executive
functions), it can be speculated that BDNF-driven mech-
anisms might contribute to neurocognitive changes after
resistance exercises and/or resistance training. However,
further studies are urgently needed to deepen our know-
ledge regarding the interrelationship between resistance
exercises and/or resistance training-induced expression
of (serum) BDNF in humans and its relation to

functional and structural brain changes as well as to
cognitive performance (as a function of age).

IGF-1

Engaging in resistance exercises [316] and resistance train-
ing [187, 317] fosters the expression of IGF-1, which is
predominantly released by the liver (global output, ~ 70%
of total circulating IGF-1), the musculature (local output),
and the brain (local output) itself [318, 319]. Because cir-
culating IGF-1 can cross the blood-brain barrier (BBB), lo-
cally expressed IGF-1 (e.g., from musculature) is likely to
be available in the brain [318, 319]. IGF-1 triggers various
mechanisms that contribute to neuroplasticity in the hu-
man brain, such as synaptic processes (e.g., long-term po-
tentiation) [320, 321], angiogenesis in the brain, axon
outgrowth, dendritic maturation, and synaptogenesis [319,
322]. Moreover, IGF-1 likely plays an important role in
structural grey matter changes because it is involved in
neuroplastic mechanisms that foster neuronal survival
[323] such as (i) proliferation of neural cells [324, 325], (ii)
inhibition of apoptosis of neural cells [324, 325], and (iii)
protection of neurons against toxicity by, for instance,
amyloid peptides [324]. While there is some evidence that
higher serum IGF-1 levels are linked to greater total brain
volumes [326] or hippocampal volume [327], the exact
roles of IGF-1 in the central nervous system remain elu-
sive [328]. However, the assumption that IGF-1-activated
pathways play an important role in changing brain func-
tion is underpinned by the findings of a reviewed study
that reported higher peripheral serum IGF-1 concentra-
tions after 52 weeks of resistance training in healthy older
individuals alongside behavioral (e.g., improved accuracy
and reaction times in executive function tests) and func-
tional improvements (e.g., P3 amplitude) [187, 191]. Such
a relationship between cognitive performance and periph-
eral serum IGF-1 concentrations would be in accordance
with previous findings linking peripheral serum IGF-1
levels to cognitive performance (e.g., global cognition
assessed by MMSE) in older individuals [329] and individ-
uals with MCI [330]. Notably, it has also been reported
that solely an optimal concentration of peripheral serum
IGF-1 is associated with superior global cognition
(assessed by MMSE) and processing capacity [331], which
could be related to the multiple and divergent roles that
IGF-1 plays in the human brain [319, 332]. On the one
hand, IGF-1 is linked to beneficial processes (e.g., stimu-
lating synaptogenesis and contributing to neuronal cell
survival), but on the other hand, IGF-1 is also associated
with detrimental processes (e.g., generation of reactive
oxygen species and inhibition of autophagy) [319]. There
is currently insufficient evidence to draw firm conclusions
regarding the relationship between physical exercise,
modulation of IGF-1, structural and functional brain
changes, and cognitive functions [333]. Hence, further
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studies are urgently needed to gain deeper insights into
the relationship between exercise-induced modulation of
IGF-1 release, functional and structural brain changes,
and cognitive performance [332, 333].

Homocysteine

A possible neurobiological mechanism that elucidates, at
least partly, the effects of resistance training on white mat-
ter and cognition could be derived from the known effects
of resistance training on the amino acid homocysteine.
First, it is important to remember that a higher total
homocysteine level is linked to (i) a higher extent of white
matter lesions [334], (ii) a higher (faster) brain atrophy
rate [335–337], (iii) an increased risk of neurological dis-
eases [338–344], and (iv) poorer global cognitive perform-
ance and executive functioning [345–350]. Second, it is
known that resistance training decreases the level of
plasma [351] and serum homocysteine [187, 352]. Hence,
it could be speculated that reducing the homocysteine
level in response to resistance training may, at least partly,
have positive effects on brain structure (e.g., white matter
changes such as reduced atrophy) and/or cognitive func-
tions. However, such relationships have not been directly
observed in the studies reviewed [187] and have to be in-
vestigated in future studies.

Influence of exercise variables and training variables on

neurocognition

With regard to all studies reviewed, the exercise and
training variables of the resistance intervention protocols
were chosen as to induce muscle hypertrophy and
muscle strength improvements, which is not surprising,
as resistance training programs generally focus on im-
proving these two factors. Moreover, this observation is
consistent with two other reviews summarizing the re-
sults of resistance exercise and resistance training stud-
ies on outcomes on a behavioral level [107, 353].
However, given that the dose provided by a physical
intervention (e.g., resistance exercise or resistance train-
ing) is a function of exercise variables and training vari-
ables and that the reviewed studies are relatively
homogenous regarding the selection of exercise variables
and training variables, our knowledge about the dose-
response relationship in resistance exercise and resist-
ance training is relatively meager (especially in view of
the fact that resistance exercises and resistance training
can be designed in many different ways to focus on dif-
ferent aims for muscular performance). A deeper under-
standing of the dose-response relationship is needed
[105, 108, 110] because the dose (the design of exercise
variables and training variables, see Table 3) is a key fac-
tor influencing responsiveness [357, 358] and individual-
izing physical interventions [123, 124, 359].

In the following section, we outline promising starting
points for investigating the dose-response relationship in
resistance exercise and/or resistance training studies.
With regard to load, on the behavioral level, it was ob-

served that an acute bout of moderate-load resistance
exercises (70 to 100% of the 10RM, 10RM = the load
needed for 10 repetitions until maximum exhaustion)
improves the speed of processing, while resistance exer-
cises with low load (40% of the 10RM) improve execu-
tive functions [138]. Furthermore, it was reported that
improvements in executive functions were larger after
moderate-load (70% of 10RM) than low-load (40% of
10RM) resistance exercises [156]. The finding that resist-
ance exercises with moderate loads are especially benefi-
cial for cognitive performance is supported by the
observation that resistance exercises with moderate
loads (60% 1RM) lead to larger positive effects on higher
cognitive functions (i.e., Stroop interference score)

Table 3 Overview of exercise variables and training variables
[60, 113, 354–356]

Variables for structuring a single resistance exercise session
(exercise variables)

(i) Load (amount of weight that is used for an exercise; usually given
as a percentage of the one repetition maximum [1RM])

(ii) Number of repetitions

(iii) Number of sets

(iv) Inter-set rest period

(v) Inter-exercise rest period

(vi) Number of exercises (for the whole training session or for a muscle
or a muscle group with the same function)

(vii) Repetition velocity (with respect to the conducted resistance
exercise and the starting position, temporal details should be
given as follows: i.e., biceps curls starting with fully extended
arms [e.g., bench press starting with fully extended arms]:
concentric phase [eccentric phase] – inter-repetition rest
periods – eccentric phase [concentric phase] – rest period
up to the start of the next repetition, e.g., 2–0–2–1 s)

(viii) Muscle action (concentric, eccentric, isometric)

(ix) Exercise selection (e.g., multi-joint or single-joint exercises)

(x) Exercise order (e.g., squat, leg extension, biceps curl, and concentration
curl or squat, biceps curl, leg extension, and concentration curl)

(xi) Volitional muscle failure

(xii) Range of motion

Variables for structuring resistance training (training variables)

(1.) Frequency (number of training sessions per week)

(2.) Density (distribution of training sessions across a week with regard
to recovery time in-between training sessions)

(3.) Duration (duration over which a training program is carried out;
e.g., before exercise variables will be changed)

Please note, that some exercise variables are usually summarized into

variables with different designations: e.g., volume [exercise variables (ii), (iii),

and (iv)], time under tension [TUT, sum of the exercise variables (ii) and (vii)] or

duration of an exercise session [depends on exercise variables (ii), (iii), (iv), (v),

(vi), (vii), and the duration of warm-up and cool-down] [354, 356]
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compared with resistance exercises with heavier loads (≥
75% 1RM) [360]. In another study, it was noticed that a
single bout of high-load (100% of 10RM) resistance exer-
cises resulted in less interference and fastened reaction
times for the Stroop task 15 min after exercise cessation,
while 180 min after exercise cessation, low-load (40% of
10RM) and moderate-load (70% of 10RM) resistance ex-
ercises were associated with increased performance on
the plus-minus and the Simon task [146]. However, at
the moment, only two studies have employed neuroim-
aging methods to investigate the dose-response relation-
ship with respect to the exercise load [182, 183]. In this
study, no statistically significant differences in neuroelec-
tric outcomes between conditions were observed [182,
183]. Based on the sparse evidence in this area, further
research is required to investigate whether such load-
dependent cognitive improvements are mirrored in
acute processes of the central nervous system (e.g., mea-
sured prior and after resistance exercises by fNIRS [180]
or EEG [201, 360–362].
With regard to number of sets, on the behavioral level, it

was reported that younger adults performing three or five
sets of a resistance exercise showed after a 8-week inter-
vention period greater improvements in inhibitory control
(i.e., assessed by accuracy and mean response time in the
Stroop test) than younger adults performing one set of the
same resistance exercise [363]. Because the above-
mentioned study did not apply neuroimaging techniques
or quantify neurotrophic markers (e.g., BDNF) [363], fu-
ture investigations are needed to elucidate the underlying
neurobiological mechanisms.
With regard to frequency, on the behavioral level, resist-

ance training three times a week was more efficient than
training twice a week [109]. Since most reviewed studies
conducted resistance training twice a week [45, 184–186,
189, 190] and observed beneficial results or did not com-
pare a training with two sessions per week to other train-
ing frequencies [44, 187], the findings of Li et al. [109] are
not supported by functional or structural data. Hence, fu-
ture studies are required to investigate the influence of
training frequency on functional and structural brain
changes (e.g., one time per week vs. three times per week).
Since changes at the molecular and cellular levels (e.g.,

metabolic response, such as peripheral blood lactate
concentration) are linked to behavioral changes, a prom-
ising approach to positively influence neurocognition
could be the alteration of molecular and cellular pro-
cesses by adjusting the exercise prescription via exercise
and training variables.
In particular, after an acute bout of physical exercise,

postexercise concentrations of peripheral blood lactate
were found to be linked to improvements in executive
functions [364–366]. In this context, peripherally (e.g., in
the musculature) released lactate is expected to be utilized

as ‘fuel’ for cognitive processes because it can cross the
BBB with the help of monocarboxylate transporters [367–
371]. Furthermore, peripheral lactate may trigger the re-
lease of serum BDNF [309, 311, 372], but this relationship
seems to be highly reliant on the correct selection of re-
sistance exercise variables [309]. Notwithstanding, it has
been well demonstrated that serum BDNF contributes sig-
nificantly to changes in brain structure [21, 24] and per-
formance (e.g., cognition) [21, 305, 306]. Consequently,
given that the peripheral concentration of blood lactate is
a function of resistance exercise variables such as repeti-
tion velocity [373, 374] or inter-set rest periods [375], it
seems reasonable to speculate that a purposeful modifica-
tion of these exercise variables may also influence neuro-
cognition outcomes. Notably, in this context, it was also
hypothesized that resistance exercises with blood flow
restriction (BFR) could be beneficial for neurocognition
because resistance exercises with BFR or resistance train-
ing with BFR induce beneficial processes on a molecular
and cellular level (for review see [113]). However, further
research in this area with a strong focus on underlying
neurobiological processes, functional and structural brain
changes, and cognition is required.
Finally, similar to the major ongoing discussions regard-

ing which variables may be optimal to improve muscular
adaptions, such as muscle hypertrophy or strength [376–
390], the optimal exercise prescription (e.g., exercise vari-
ables and training variables) for resistance exercises and/
or resistance training with respect to brain health (includ-
ing appropriate functional and structural brain changes as
well as enhancement of cognitive functions) are largely
unknown and have to be elucidated in future studies [105,
108, 110]. In addition, the interested reader may find fur-
ther and more detailed information regarding the design
of resistance exercise sessions or resistance training in the
referenced literature [355, 391–394].

Recommendations for future studies

� Based on the available evidence derived from the

reviewed studies and other recommendations [107],

resistance exercises and/or resistance training

aiming to enhance cognitive functions and evoke

positive functional and structural brain changes

should be designed to induce muscle hypertrophy.

� Future studies are needed to investigate the

influence of the adjustment of different resistance

exercise variables (e.g., load, number of sets, training

frequency, training duration) on functional and

structural brain changes in conjunction with

cognitive functions.

� To understand the time-course of functional and

structural brain changes, neuroimaging should be

performed at several time points after an acute bout
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of resistance exercise or during the resistance training

intervention.

� The inclusion of further cohorts (e.g., older individuals

with sarcopenia and/or dynapenia) is needed to verify

whether resistance exercise-induced improvements also

occur in such needy cohorts and how this is related to

functional and structural brain changes.

� Interventional studies (or cross-sectional studies)

investigating the relationship of resistance exercises

(or strength, muscle function/structure) and cognition

should utilize different neuroimaging methods

during standardized cognitive testing and assess

neurochemical substances (e.g., neurotransmitters,

neurotrophic factors) to elucidate underlying

neurobiological mechanisms.

� Bed rest studies, which reported a worsening of

executive functions [395–397], profound brain

changes [397–399], and a decrease in muscle mass

as well as muscle strength [400–408], could be an

interesting model to study the relationship between

the muscular system, functional and structural brain

changes, and cognition.

Conclusions

In summary, resistance exercises and resistance training
are powerful physical intervention strategies to induce
meaningful functional brain changes, especially in the
frontal lobe, which are accompanied by improvements
in executive functions. Furthermore, based on the stud-
ies reviewed, resistance training leads to lower white
matter atrophy and lower volumes of white matter le-
sions. However, given the small number of available stud-
ies that have mostly been part of greater study projects
(Brain Power Study and SMART [Study of Mental and Re-
sistance Training]), further research investigating the in-
fluence of an acute bout of resistance exercise and chronic
resistance training on cognition and the underlying neuro-
biological mechanisms (e.g., functional and/or structural
brain changes) is needed. This future research should also
focus on the effects of systematically manipulating exer-
cise and training variables (dose-response relationship)
and further including specific cohorts with the greatest
need (e.g., older individuals with sarcopenia and/or dyna-
penia). Most importantly, engaging regularly in resistance
exercises and/or resistance training across the whole life-
span appears to be imperative for ensuring physical and
brain health because muscular weakness in the early years
of life (e.g., adolescence) has been shown to be associated
with disability in later life (e.g., after 30 years) [409] and
even 4 weeks of detraining (being physical inactive) com-
pletely reversed the physical and cognitive improvements
of 22-week resistance training in older adults [410].
Hence, to summarize in a metaphorical sense: “May the
force be with you across your lifespan.”
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