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Summary 

Our purpose is to summarize the major effects of space travel on 

skeletal muscle with particular emphasis on factors that alter function. The 

primary deleterious changes are muscle atrophy and the associated decline in 

peak force and power. Studies on both rats and humans demonstrate a rapid 

loss of cell mass with microgravity. In rats, a reduction in muscle mass of up 

to 37% was observed within 1 week. For both species, the antigravity soleus 

muscle showed greater atrophy than the fast-twitch gastrocnemius. However, 

in the rat, the slow type I fibers atrophied more than the fast type II fibers, 

while in humans, the fast type II fibers were at least as susceptible to space-
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induced atrophy as the slow fiber type. Space flight also resulted in a 

significant decline in peak force. For example, the maximal voluntary 

contraction of the human plantar flexor muscles declined by 20–48% 

following 6 months in space, while a 21% decline in the peak force of the 

soleus type I fibers was observed after a 17-day shuttle flight. The reduced 

force can be attributed both to muscle atrophy and to a selective loss of 

contractile protein. The former was the primary cause because, when force 

was expressed per cross-sectional area (kNm−2), the human fast type II and 

slow type I fibers of the soleus showed no change and a 4% decrease in 

force, respectively. Microgravity has been shown to increase the shortening 

velocity of the plantar flexors. This increase can be attributed both to an 

elevated maximal shortening velocity (V0) of the individual slow and fast 

fibers and to an increased expression of fibers containing fast myosin. 

Although the cause of the former is unknown, it might result from the 

selective loss of the thin filament actin and an associated decline in the 

internal drag during cross-bridge cycling. Despite the increase in fiber V0, 

peak power of the slow type I fiber was reduced following space flight. The 

decreased power was a direct result of the reduced force caused by the fiber 

atrophy. In addition to fiber atrophy and the loss of force and power, 

weightlessness reduces the ability of the slow soleus to oxidize fats and 

increases the utilization of muscle glycogen, at least in rats. This substrate 

change leads to an increased rate of fatigue. Finally, with return to the 1g 

environment of earth, rat studies have shown an increased occurrence of 

eccentric contraction-induced fiber damage. The damage occurs with re-

loading and not in-flight, but the etiology has not been established.  

KEY WORDS 
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 skeletal muscle 

 muscle 

 atrophy 

 contractile properties. 

Introduction 

A major goal of the international space community is a manned 

mission to Mars. Before this can become a reality, significant 

biological, psychological and environmental problems must be solved 

(Nicogossian et al., 1994). One of the major biological problems 

concerns the wasting of bone and skeletal muscle. The susceptibility of 

these tissues to space flight has been known since the Skylab missions 
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of the mid-1970s. The purpose of this paper is to highlight some of the 

main effects of microgravity on skeletal muscle that we reviewed in 

detail previously (Fitts et al., 2000) and to present new data on the 

effects of space flight on muscle glycogen. We will focus on the 

functional properties of muscle (force, shortening velocity and power) 

and discuss the possible cellular mechanisms for the observed changes 

in function induced by space flight.  

Muscle diameter and force 

Research from the Cosmos biosatellite and US Shuttle programs 

has demonstrated that muscle atrophy in space-flown rats occurred 

rapidly, with up to 37% reductions in muscle mass within 1 week (Fitts 

et al., 2000). In rats, antigravity slow muscles atrophy more than fast-

twitch muscles, and extensors more than flexors (Jiang et al., 1992; 

Ohira et al., 1992; Tischler et al., 1993). Human data from Skylab and 

Mir suggest that leg extensors atrophy and lose peak force faster than 

flexors, but when the flight duration is long enough (>200 days) both 

groups of muscles show similar declines of approximately 30% in 

isokinetic strength (Greenleaf et al., 1989).  

Until recently, the effects of space flight on muscle force or 

strength were confined to studies of whole-muscle function. While 

providing important information regarding the extent of atrophy and 

loss of strength, such studies could not distinguish selective effects on 

slow versus fast fibers or the cellular mechanism for the loss of 

function. A cellular analysis of the calf muscles demonstrates a clear 

difference in the response of rats and humans to microgravity. For 

both species, fibers from the antigravity slow soleus showed greater 

atrophy than fibers from the fast-twitch gastrocnemius. However, 

when fibers within a given muscle were examined, rats, but not 

humans, showed selective atrophy of the antigravity slow type I fiber 

(see Fig.1)(Fitts et al., 2000). Data on the vastus lateralis and soleus 

muscles suggest that in humans the fast type II fibers may be even 

more susceptible to microgravity-induced atrophy than the slow type I 

fiber (Fitts et al., 2000). Following an 11-day human space flight, 

Edgerton et al. (Edgerton et al., 1995) observed a significant decline in 

the cross-sectional area of fibers from the vastus lateralis, with the 

decline being greatest in the IIb fibers and least in the type I fibers. 
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Widrick et al. (Widrick et al., 1999) made similar observations for the 

soleus: following a 17-day flight, the type IIa fiber cross-sectional area 

declined by 26% compared with a 15% reduction in the cross-sectional 

area of the slow type I fiber. Fig.1 shows an electron micrograph of 

soleus muscle fibers obtained pre- and post-flight from astronaut B 

(Widrick et al., 1999). The space-flight-induced atrophy of the 

myofibrils is clearly observed.  

  
Fig. 1.  

Cross section electron micrographs of soleus muscle fibers obtained pre-flight (A) and 

post-flight (B) from astronaut B of the 17-day STS-78 shuttle flight. The micrographs 

show the spaceflight-induced atrophy of the myofibrils and the rounding of the 

mitochondria. The I-bands of representative myofibrils are labeled (I). The amount of 

glycogen-like particles (the black dots surrounding the fibrils) is similar in both fibers. 

Scale bar, 0.5μm.  

Data from both Skylab and Mir have demonstrated that space 

flight reduces the peak force of limb skeletal muscle (Fitts et al., 
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2000). The decline in peak force can be attributed both to muscle 

atrophy and to a selective loss of contractile protein. Baldwin et al. 

(Baldwin et al., 1990) showed a significant decline in myofibril yield 

(mgproteing−1muscle) in the rat slow-twitch vastus intermedius but 

not in the fast-twitch vastus lateralis following a 12.5-day space flight. 

The authors concluded that the decline in myofibrillar protein content 

was attributable to a reduced slow (type I) and intermediate 

(presumably type IIa) myosin content. In humans, there are no 

published data on muscle protein content following space flight; 

however, the loss of force per cross-sectional area in the slow type I 

fibers suggests that slow myosin was also selectively lost in humans 

(Widrick et al., 1999).  

Recently, we studied the contractile properties of individual fibers 

isolated from the soleus and gastrocnemius of four astronauts before 

and immediately after a 17-day space flight (STS-78). Consistent with 

previously published whole-muscle studies (Skylab and Mir) and 

single-fiber analyses of the human vastus lateralis, considerable 

variability was noted in the degree of cell atrophy and the loss of peak 

force among astronauts (Widrick et al., 1999). Studies of Mir 

cosmonauts after 6 months of space flight showed declines of calf 

plantar flexor volume ranging from 6 to 20%, while maximal voluntary 

contractions (MVCs) of the same muscle group declined by 20–48% 

(Zange et al., 1997). Recently, a similar result was reported by 

Lambertz et al. (Lambertz et al., 2000), who found an average 17% 

decline in the isometric torque measured during an MVC of the human 

plantarflexor muscle following 90–180 days in microgravity. Individual 

variability was also noted: 12 of the 14 cosmonauts showed decreases 

in torque ranging from 2 to 37%, while two subjects showed slightly 

increased MVCs. In our study, we observed a 21% decline in the 

average peak absolute force of the slow type I fiber following a 17-day 

space flight, while in individual astronauts the change ranged from 12 

to 40%. Currently, it is not known whether the observed variability 

among individuals is caused by a true difference in susceptibility to 

microgravity or results from variable amounts of in-flight 

countermeasure exercise. The average peak force for the post-flight 

soleus type IIa fibers was 25% lower than the pre-flight value – a 

decline somewhat greater than that observed for the type I fibers.  
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From a quantitative perspective, the most important cause of 

the decline in peak force is cell atrophy. When our data were corrected 

for the reduced mass by expressing fiber force in kNm−2, the 17-day 

space flight resulted in an average 4% decline in peak force (Widrick 

et al., 1999). Fig.2 shows the relationship between peak force (mN) 

and fiber diameter pre- and post-flight for the type I soleus fibers of 

subject B (the subject with the greatest microgravity-induced decline 

in fiber size and peak force). Pre-flight, the majority of fibers had 

diameters greater than 100μm and peak forces greater than 1mN, 

while the post-flight fiber diameters were mostly less than 100μm with 

forces less than 1mN. Fig.2 also demonstrates the post-flight increase 

in the expression of type IIa myosin, as reflected by the increased 

number of type IIa fibers and the appearance of hybrid (type I/IIa) 

fibers in this subject.  
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Fig. 2.  

Relationship between fiber diameter and peak Ca2+-activated isometric force (P0) for 

subject B of the 17-day STS-78 shuttle flight. Each symbol represents the results from 

a single soleus fiber. Type I fibers, shaded circles; type IIa fibers, filled triangles; type 

I/IIa fibers, open triangles (redrawn from) (Widrick et al., 1999).  

The 17-day space flight affected the fibers of the gastrocnemius 

less than the soleus fibers. In fact, space flight had no effect on the 

mean diameter or mass-specific force of fast or slow fibers in the 

gastrocnemius (Widrick et al., 2001). A small reduction was observed 

in the average absolute peak force (mN) for the gastrocnemius type I 

fiber. It is not clear why space flight induced greater atrophy and force 

decline in soleus than in gastrocnemius fibers. One possibility is that 

space flight causes a shift in neuronal recruitment favoring flexors over 

extensors and, within the calf, the gastrocnemius over the soleus. The 

data of Recktenwald et al. (Recktenwald et al., 1999) support this 
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hypothesis because they observed a shift towards a higher activation 

of the gastrocnemius relative to the soleus post-flight compared with 

pre-flight during treadmill walking in the rhesus monkey. However, 

mean integrated electromyographic activity per day recorded from the 

same STS-78 astronauts that we studied showed that soleus activity 

was greater in-flight than pre- or post-flight, while gastrocnemius 

activity was unaltered by flight (Fig.6) (Edgerton et al., 2001). These 

data indicate that the selective atrophy of the soleus compared with 

the gastrocnemius fibers in the STS-78 flight was not explained by a 

greater relative decline in the in-flight soleus EMG activity. A second 

possibility is that the atrophy relates to the initial fiber size. Both 

Edgerton et al. (Edgerton et al., 1995) and Widrick et al. (Widrick et 

al., 1999) observed that muscles with large-diameter fibers pre-flight 

showed greater atrophy than muscles with smaller average pre-flight 

diameters. Since the soleus type I fibers are significantly larger in 

diameter than the gastrocnemius type I fibers, this may in part explain 

their greater atrophy following microgravity (Fitts et al., 2000).  

Maximal shortening velocity and peak power 

Experiments studying rats and humans have consistently 

demonstrated that the maximal shortening velocity (V0) of the calf 

muscles increases as a result of space flight (Caiozzo et al., 1994; 

Caiozzo et al., 1996; Goubel, 1997; Lambertz et al., 2000; Widrick et 

al., 1999). Caiozzo and colleagues used the force–velocity relationship 

to calculate the maximal shortening velocity (Vmax) of the rat soleus 

and found a 14% and 20% increase following 6 days (Caiozzo et al., 

1994) and 14 (Caiozzo et al., 1996) days of space flight, respectively. 

In both flights, the increased muscle velocity was associated with an 

increased expression of the fast type IIx myosin and a decline in 

expression of the slow type I myosin. Similar results were obtained 

when the velocity of human plantar flexors was evaluated following 3–

6 month Mir flights. Goubel (Goubel, 1997) found a significant space-

flight-induced increase in plantar flexor velocity in six out of seven 

subjects when velocity was measured during a contraction at 15% of 

peak power. Consistent with this result, Lambertz et al. (Lambertz et 

al., 2000) recently reported an average 31% increase in the 

shortening velocity during a 10% MVC for 14 cosmonauts following 
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90–180 days in space. As with muscle atrophy, considerable variability 

was observed: the velocity increases ranged from 4 to 75%.  

Widrick et al. (Widrick et al., 1999) studied the effects of a 17-

day space flight on the single-fiber contractile properties of fibers 

isolated from the soleus and gastrocnemius muscles of four crew 

members. Maximal fiber shortening velocity was determined using the 

unloaded slack test technique (fiber V0) and calculated from the force–

velocity relationship (Vmax). Importantly, in the soleus, the type I fiber 

V0 and Vmax increased by 30 and 44%, respectively. Similar increases 

were observed in the soleus type IIa fiber, in which V0 increased by 

55% post-flight. The gastrocnemius fibers were less affected by space 

flight: the slow type I fibers from this muscle showed a 22% increase 

in V0, while this variable was unaltered in the fast type IIa fibers.  

The data of Widrick et al. (Widrick et al., 1999) indicate that the 

space-flight-induced increase in the shortening velocity of the plantar 

flexor muscles is in part due to an increased velocity of the individual 

fiber types and not simply the result of an increased expression of 

fast-type myosin. Although we did observe an increase in the number 

of fibers expressing fast-type myosin post-flight, the significant 

increase in the velocity of the slow type I and fast type IIa fibers could 

not be explained by an altered myosin heavy chain isozyme content. 

The cause of the microgravity-induced increase in fiber V0 and Vmax is 

unknown. We did observe an increase in the content of the myosin 

light chain 3 in the slow soleus fibers post-flight; however, the 

increase did not show a significant correlation with V0. Widrick et al. 

(Widrick et al., 1999) proposed that the increased fiber V0 might be 

caused by a selective loss of the thin filament actin. Riley et al. (Riley 

et al., 2000) demonstrated that microgravity did indeed cause a 

selective loss of actin relative to myosin, and proposed that this 

change should increase the spacing between the thick and thin 

filaments. As a result, the cycling cross-bridges would be expected to 

detach sooner which, in turn, would reduce the internal drag that 

develops during the final portion of the cross-bridge stroke. The 

reduced drag would allow for an increased fiber V0. The thin filament 

concentration in the A-band was reduced by 26% post-flight, which 

resulted from a 17% reduction in the number of thin filaments and a 

9% increase in the number of filaments too short to penetrate into the 

overlap A-band region. Fig.3 presents a schematic representation of 
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the thin and thick filament layout in a normal and an atrophic 

sarcomere.  

 
Fig. 3.  

Schematic representation of the in vivo status of thin-filament packing density and 

spacing in half a sarcomere from a normal pre-flight muscle and in half a sarcomere 

from an atrophic muscle after a 17-day space flight in humans. Subsequent to atrophy 

after space flight, short thin filaments increased in number by 9%, and 17% of the 

thin filaments were lost. These changes summed to produce a 26% decrease in thin 

filament density in the overlap A-band region (redrawn) (from Riley et al., 2000).  

In rats, 6–14 days of space flight caused a 16–20% decline in 

the peak power of the soleus (Caiozzo et al., 1994; Caiozzo et al., 

1996). This decline occurred despite a significant increase in Vmax and 

was a direct result of muscle atrophy and the reduced force-generating 

capacity of the muscle. In the single-fiber study of Widrick et al. 

(Widrick et al., 1999), the peak power of the soleus type I fiber 

declined by approximately 20% in two of the four crew members. In 

the other two crew members, the increase in fiber velocity was enough 

to compensate for the reduction in force such that no significant 

change was observed in peak power. In all four astronauts, the force 

and velocity utilized to generate peak power were lower and higher, 

respectively, compared with the pre-flight fibers. Fig.4 shows 

composite force–velocity and force–power relationships for the pre- 

and post-flight slow type I fibers from astronaut B. The plots clearly 

demonstrate the reduced peak force (mN) and power and the 

increased Vmax in the post-flight fibers.  
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Fig. 4.  

Force–velocity (F-V) and force–power (F-P) relationships of pre- and post-flight soleus 

fibers from subject B of the 17-day STS-78 shuttle flight. Continuous lines represent 

composite pre-flight force–velocity and force–power relationships. Broken lines 

represent post-flight force–velocity and force–power relationships (redrawn 

from)(Widrick et al., 1999). FL, fiber length.  

Antonutto et al. (Antonutto et al., 1998; Antonutto et al., 1999) 

examined the maximal leg power of astronauts following space flights 

lasting 21–180 days. In one astronaut, leg power was reduced by 54% 

after only 21 days of weightlessness. This change was considerable 

greater than the decline in single-fiber peak power following a 17-day 

flight (Widrick et al., 1999) and suggests that factors other than fiber 

atrophy contributed to the decline. One possibility is that space flight 

altered the motor recruitment pattern, resulting in a greater activation 

of flexors than extensors, and that this contributed to the reduce 

power measured during a maximal leg extension test (Fitts et al., 

2000). The time course of the decline in peak power to a new 

microgravity steady state was approximately 6 months, a value similar 

to that observed for muscle mass and force (Greenleaf et al., 1989).  
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Substrate and metabolic changes with 

microgravity and their impact on fatigue 

Observations from both space flight and models of 

weightlessness suggest that microgravity reduces the ability of limb 

skeletal muscle to oxidize free fatty acids and increases the utilization 

of carbohydrates during exercise. Baldwin et al. (Baldwin et al., 1993) 

showed that muscle homogenates prepared from space-flown rats had 

a reduced ability to oxidize free fatty acids. Consistent with this 

observation, we observed that 2 weeks of hindlimb unloading 

increased the utilization of glycogen and the production of lactate 

during electrical stimulation of the rat soleus muscle (Grichko et al., 

2000). The latter observation was not simply the result of an increased 

number of fast-twitch glycolytic fibers because increased glycogen 

depletion and lactate production were observed in the slow type I 

fibers. These substrate changes have functional consequences because 

both weightlessness and hindlimb unweighting have been shown to 

increase the fatigability of the soleus muscle (McDonald et al., 1992). 

These metabolic adaptations do not appear to be caused by a reduced 

aerobic enzyme capacity because the activity of marker enzymes of 

the β-oxidative pathway and the Krebs cycle were not altered by either 

space flight or models of weightlessness in either rats or humans (Fitts 

et al., 2000).  

We have observed that both hindlimb unloading in rats and bed 

rest in humans increased the resting muscle glycogen content of the 

soleus (Grichko et al., 2000). However, 17 days of space flight had no 

effect on soleus glycogen content in humans (R. H. Fitts, V. P. Grichko 

and M. L. De La Cruz, unpublished observations). This result can be 

observed in Fig.1. The small particles surrounding the myofilaments 

are glycogen particles, and equal numbers are observed in the pre-

flight (Fig.1A) and post-flight (Fig.1B) micrographs. The lack of a 

significant increase in muscle glycogen content in this study may have 

resulted from an inadequate caloric intake. Stein et al. (Stein et al., 

1999) reported that the crew from this flight were in negative caloric 

balance. Thus, with an adequate caloric intake, space flight may 

induce an increase in resting muscle glycogen content similar to that 

observed following bed rest.  
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The cause of the increased reliance on carbohydrates following 

space flight and models of weightlessness is unknown (Baldwin et al., 

1993; Grichko et al., 2000). As stated above, the increase does not 

seem to be caused by an altered aerobic enzyme capacity. Our 

working hypothesis is that it results from a combination of a change in 

substrate regulation at the onset of exercise and an inhibition of 

carnitine palmitoyltransferase (CPTI), the rate-limiting enzyme for the 

oxidation of long-chain fatty acids. We have previously shown that 

steady-state skeletal muscle blood flow is not altered by hindlimb 

unloading (McDonald et al., 1992). However, recent evidence suggests 

that the rate of increase in blood flow with the onset of exercise may 

be depressed. Hindlimb unloading has been shown to reduce 

endothelium-dependent dilation in soleus feed arteries, and soleus 

blood flow measured using the microsphere technique was depressed 

in the first minute of exercise following 28 days of hindlimb unloading 

(Jasperse et al., 1999)(M. D. Delp, personal communication). Thus, 

the possibility exists that models of weightlessness and space flight 

may reduce the rate at which muscle blood flow increases with the 

onset of exercise. This, in turn, would increase the rate of creatine 

phosphate and ATP hydrolysis, increase ADP, AMP and inorganic 

phosphate production and stimulate glycolysis. The elevated glycolytic 

rate would increase the production of acetyl-CoA and malonyl-CoA. 

The latter is a known inhibitor of CPTI and, thus, fatty acid oxidation 

would be reduced. In addition, space flight and models of 

weightlessness may reduce the activity of adenosine-5′-

monophosphate-activated protein kinase (AMPK). This enzyme 

appears to be a metabolic master switch controlling the activity of 

various metabolic pathways (Winder and Hardie, 1999). Of importance 

here, a reduced AMPK activity would reduce the inactivation of the 

target protein acetyl-CoA carboxylase (ACC), which would allow levels 

of the product of ACC (malonyl-CoA) to remain high. It is also possible 

that the exercise-induced mobilization of fatty acids from the adipose 

sites may be depressed by space flight or models of weightlessness. 

This would reduce fatty acid oxidation by limiting their delivery to and 

uptake by the skeletal muscle.  
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Muscle fiber damage following space flight 

Muscle fiber damage following space flight is a major problem. 

Currently, there are no data on astronauts that address this issue, but 

rat studies have shown the problem to be caused by re-loading post-

flight (Riley et al., 1996). These studies were recently reviewed in 

detail (Fitts et al., 2000), so only a few of the key data will be 

described here. The initial evidence of fiber damage post-flight came 

from the Russian Cosmos flights (Riley et al., 1990; Riley et al., 1992). 

The 14-day Cosmos 2044 flight showed that rats killed 8–11h after 

landing exhibited extensive sarcomere disruption and edema but 

minimal tissue necrosis and macrophage and satellite cell activation 

(Riley et al., 1992). Fig.5 shows a longitudinal section of adductor 

longus muscle fibers from a rat flown on the Cosmos 2044 mission. 

The central muscle fiber exhibits foci of sarcomere eccentric-like 

contraction damage, representing myofilament disruption. On average, 

15% of the soleus fibers and 44% of the adductor longus fibers 

showed damage in the post-flight sections.  

 
Fig. 5.  

Toluidine-Blue-stained, longitudinal semithin section of adductor longus muscle fibers 

from a rat orbited in microgravity for 2 weeks in Cosmos biosatellite mission 2044 and 

returned to terrestrial gravity loading for approximately 10h before tissue fixation. The 

central muscle fiber exhibits large and small lighter-stained foci of sarcomere 
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eccentric-like contraction damage, representing myofilament disruption. Sarcomere 

lesions were detected in 44% of the fibers examined. Scale bar, 42μm.  

It was not until the 1993 SLS-2 mission, during which rat 

muscles were examined in space, that it was possible to separate in-

flight from post-flight changes in cell structure (Riley et al., 1996). The 

soleus and adductor longus samples collected in-flight showed no 

evidence of fiber damage. This documented what had previously been 

suspected, that muscle fiber damage was primarily a post-flight 

condition resulting from eccentric contractions during re-loading in a 

normal-gravity environment.  

Although the problem of fiber damage post-flight has not been 

studied in man, it probably occurs because astronauts complain of 

persistent muscle soreness for up to months post-flight. The 

microgravity environment has apparently altered the muscle so that it 

is more susceptible to eccentric-induced contractile damage post-

flight. Following weightlessness and hindlimb unloading in rats, the 

slow type I fibers showed preferential damage, which was attributed to 

the selective recruitment of this fiber type (Riley et al., 1996). The 

causative factors of fiber damage are not known, but damage might in 

part relate to cell atrophy and the selective loss of the contractile 

protein actin (Fitts et al., 2000). Post-flight, any load and strain on the 

atrophied fiber would be relatively greater and thus more likely to 

cause damage. At the fibril level, the load would be distributed to 

fewer actin filaments, which might increase their susceptibility to 

damage. Other possibilities include changes in the protein titin, the 

cytoskeletal protein desmin and/or alterations in the dystrophin–

glycoprotein complex. Titin is a protein known to extend from the Z-

line to the M-line of the A-band. It is thought to play a role in 

establishing resting tension and in the orientation of the thick filament 

myosin (Labeit et al., 1997). Thus, alterations in this protein could 

cause the thick filament to move from the center of the sarcomere 

towards the Z-line. A breakdown in desmin and/or reduction or 

absence of a single component of the dystrophin–glycoprotein complex 

could result in greater susceptibility of the sarcolemma to contraction-

induced damage (Chopard et al., 2001; Lieber et al., 1996).  
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Concluding remarks 

One of the primary problems associated with weightlessness and 

models of weightlessness, such as bed rest, is muscle cell atrophy. 

Extensors atrophy at a faster rate than flexors and, within the plantar 

flexor group, the antigravity soleus muscle atrophies more than the 

gastrocnemius. In rats, the slow type I fiber shows selective atrophy, 

while in humans the fast type II fibers atrophy as much as, if not more 

than, the slow fibers. This cell wasting leads to a reduced peak force 

and power. In addition to atrophy, weightlessness causes a selective 

loss of contractile proteins, with the decline in actin content being 

greater than that for myosin. The latter may contribute to the space-

flight-induced increase in fiber shortening velocity.  

In rats (and perhaps humans), space flight and models of 

weightlessness increase resting muscle glycogen content, and 

glycogen depletion and lactate production are accelerated during 

activity. The increased dependence on glycogen is associated with a 

reduced ability to oxidize free fatty acids. The reduced ability to 

oxidize fats may be caused by substrate inhibition of CPTI, the rate-

limiting enzyme in fatty acid oxidation.  

Finally, muscle fiber damage following space flight has been 

observed in rats. Although some damage may occur in space, the 

majority occurs following re-loading upon return to earth. The lesions 

are similar to those observed following eccentric contractions. The 

etiology of the increased sensitivity to cell damage following 

microgravity is unknown, but may be caused by the cell atrophy and 

reduced actin content and/or to the selective loss of other proteins 

such as titin, desmin and dystrophin.  
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