
ORIGINAL RESEARCH
published: 21 January 2016

doi: 10.3389/fncom.2016.00001

Frontiers in Computational Neuroscience | www.frontiersin.org 1 January 2016 | Volume 10 | Article 1

Edited by:

John Suckling,

University of Cambridge, UK

Reviewed by:

Adam B. Barrett,

University of Sussex, UK

Jamie Sleigh,

University of Auckland, New Zealand

*Correspondence:

Uncheol Lee

uclee@med.umich.edu

Received: 26 October 2015

Accepted: 04 January 2016

Published: 21 January 2016

Citation:

Kim M, Mashour GA, Moraes S-B,

Vanini G, Tarnal V, Janke E, Hudetz AG

and Lee U (2016) Functional and

Topological Conditions for Explosive

Synchronization Develop in Human

Brain Networks with the Onset of

Anesthetic-Induced

Unconsciousness.

Front. Comput. Neurosci. 10:1.

doi: 10.3389/fncom.2016.00001

Functional and Topological
Conditions for Explosive
Synchronization Develop in Human
Brain Networks with the Onset of
Anesthetic-Induced
Unconsciousness
Minkyung Kim 1, 2, 3, George A. Mashour 1, 2, 4, Stefanie-Blain Moraes 1, Giancarlo Vanini 1,

Vijay Tarnal 1, Ellen Janke 1, Anthony G. Hudetz 1, 2, 4 and Uncheol Lee 1, 2*

1Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA, 2Center for Consciousness

Science, University of Michigan Medical School, Ann Arbor, MI, USA, 3Department of Physics, Pohang University of Science

and Technology, Pohang, South Korea, 4Neuroscience Graduate Program, University of Michigan Medical School, Ann

Arbor, MI, USA

Sleep, anesthesia, and coma share a number of neural features but the recovery profiles

are radically different. To understand the mechanisms of reversibility of unconsciousness

at the network level, we studied the conditions for gradual and abrupt transitions in

conscious and anesthetized states. We hypothesized that the conditions for explosive

synchronization (ES) in human brain networks would be present in the anesthetized

brain just over the threshold of unconsciousness. To test this hypothesis, functional brain

networks were constructed from multi-channel electroencephalogram (EEG) recordings

in seven healthy subjects across conscious, unconscious, and recovery states. We

analyzed four variables that are involved in facilitating ES in generic, non-biological

networks: (1) correlation between node degree and frequency, (2) disassortativity (i.e., the

tendency of highly-connected nodes to link with less-connected nodes, or vice versa),

(3) frequency difference of coupled nodes, and (4) an inequality relationship between

local and global network properties, which is referred to as the suppressive rule. We

observed that the four network conditions for ES were satisfied in the unconscious

state. Conditions for ES in the human brain suggest a potential mechanism for rapid

recovery from the lightly-anesthetized state. This study demonstrates for the first time

that the network conditions for ES, formerly shown in generic networks only, are

present in empirically-derived functional brain networks. Further investigations with deep

anesthesia, sleep, and coma could provide insight into the underlying causes of variability

in recovery profiles of these unconscious states.
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INTRODUCTION

The mechanisms of the emergence from unconsciousness
in sleep, anesthesia, and coma are still elusive. Consistent
network features of the unconscious state have been reported,
including the reconfiguration of functional brain networks
with inhibited long range connections, reduced information
transmission, disrupted hub structures, and increased functional
modularity (Alkire et al., 2008; Boveroux et al., 2010; Ferrarelli
et al., 2010; Ku et al., 2011; Schröter et al., 2012; Jordan
et al., 2013; Lee et al., 2013a,b, 2015; Barttfeld et al., 2015).
Diverse anesthetics reduce network communication and the
capacity of information integration (Lee et al., 2009, 2013a;
Casali et al., 2013), which is thought to be necessary for
consciousness (Mashour, 2013; Oizumi et al., 2014). However,
how an inefficient, disrupted brain network is able to rapidly
return to a normal configuration and support conscious brain
function remains to be answered. In this study, we hypothesized
that, despite the anesthetic-mediated disruption of information
integration, brain networks just past the threshold for the loss
of consciousness have network conditions that can allow rapid
recovery.

A series of studies since 2011 investigated the mechanisms
of explosive synchronization (ES) in complex networks (Gómez-
Gardeñes et al., 2011; Leyva et al., 2013; Li et al., 2013; Liu et al.,
2013; Skardal et al., 2013; Zhang et al., 2013, 2014, 2015; Zhu et al.,
2013; Skardal and Arenas, 2014; Navas et al., 2015; Sendiña-Nadal
et al., 2015). ES was originally described as an abrupt transition
from incoherent to synchronized states at a critical coupling
strength in a model network. In a general synchronization path,
pairs of nodes are entrained to a more extensive pattern of
synchronization, and the likelihood of two synchronized clusters
merging is proportional to their size. Once a large cluster has
formed, it dominates the system, absorbing any smaller clusters
that merge and grow locally. However, with ES, each cluster of
synchronization grows, but the growth of the largest cluster is
suppressed. This allows many large but disconnected clusters
to grow, until the system reaches the critical threshold where
a small perturbation of connection or synchronization strength
triggers a rapid transition to global synchronization. All clusters
combine at once in a single explosive unification. Zhang et al.
(2014) explained the mechanism of this abrupt synchronization
path by introducing the “suppressive rule” (i.e., suppression of
the largest cluster driving a gradual synchronization process)
as a necessary condition for synchronization between pairs
of nodes. This process is similar to explosive percolation
(Zhang et al., 2014; D’Souza and Nagler, 2015), where it has
been shown that ES in dynamical phase space occurs by the
same mechanism as the explosive percolation in configuration
space.

Various network conditions for ES have been identified. ES
can occur with small network perturbations if: (1) the natural
frequencies of oscillators and the degrees of nodes in a scale-
free network have a positive correlation (Gómez-Gardeñes et al.,
2011; Liu et al., 2013); (2) a network has reduced degree
disassortativity (i.e., the tendency of highly-connected nodes
to link with less-connected nodes, or vice versa) in various

network types (Li et al., 2013; Liu et al., 2013; Zhu et al., 2013;
Sendiña-Nadal et al., 2015); (3) a network has large frequency
differences in connected oscillators (Leyva et al., 2013; Zhu
et al., 2013; Skardal and Arenas, 2014); and (4) the frequency
difference of coupled nodes is larger than a critical value that
is determined by the global network properties (the product of
global coupling strength and phase synchronization) according
to the suppressive rule (Zhang et al., 2014, 2015). In general, an
ES transition is associated with the phenomenon of hysteresis,
which has been observed in the brain during anesthetic state
transitions (Kelz et al., 2008; Friedman et al., 2010; Joiner et al.,
2013).

In this study, we investigated whether the four known
network conditions for ES also hold in a functional brain
network derived from multichannel EEG from seven healthy
human volunteers. The synchronization of large populations
of neurons is thought to be a necessary condition for the
conscious state (Laureys and Tononi, 2011). Accordingly,
we assumed that the breakdown of temporal coordination
through synchrony in brain networks would reflect the
state transition between conscious and unconscious states.
We used the inhaled anesthetic sevoflurane to gradually
modulate the level of consciousness across multiple states: eyes-
closed waking, unconsciousness, recovery, and the transitions
between. Our empirical findings using graph-theoretical network
analysis from human EEG directly supported the hypothesis,
demonstrating that slow titration of the inhaled anesthetic
sevoflurane results in a dose-dependent reconfiguration of
network topology and dynamics, including: (1) increased
positive correlation between node degree and frequency, (2)
diminished degree disassortativity and disruption of strong hub
structures found in the resting state, (3) increased frequency
difference between coupled nodes, and (4) absence of a modified
definition of the suppressive rule. All of these properties
are known to impair normal network synchronization and
create conditions for ES, which can occur with small network
perturbations.

METHODS

Anesthesia and EEG Recording
This study was conducted at the University of Michigan
Medical School and was approved by the Institutional Board
Review (HUM00061087). Seven healthy volunteers (4 males,
20–23 years of age) who gave their written informed consent
participated in this study. Participants who were pregnant,
or with a history of obstructive sleep apnea, gastroesophageal
reflux, cardiac conduction abnormalities, asthma, epilepsy,
history of problems with anesthesia, family history of problems
with anesthesia, history of drug use, and any neurologic or
psychiatric history were excluded from this study. Participants
kept their eyes closed during waking states throughout the
experiment and were administered sevoflurane anesthesia by
mask inhalation with a tight seal at an initial concentration
of 0.4% in high-flow oxygen (8 L/min). Sevoflurane was
allowed to equilibrate for 15min at each specified concentration.
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After equilibration, there was a 10min recording period at
the target concentration. EEG data for a given concentration
reflect steady-state levels only, after equilibration occurred.
Sevoflurane concentration was increased by levels of 0.2%
until loss of consciousness (LOC) was achieved, as judged
by the surrogate of loss of behavioral responsiveness. After
a 10-min period of LOC, we performed the reverse protocol
until participants recovered consciousness. After recovery of
consciousness (ROC), anesthetic concentration was titrated
downward until end-tidal values were 0%. Responsiveness was
assessed every 30 s by compliance with auditory instruction
to squeeze an object in the hand (randomized to right or
left). EEG data were acquired using a 64-channel sensor net
from Electrical Geodesics, Inc. (Eugene, OR) with a sampling
frequency of 500Hz. All channels were referenced to the
vertex with impedance reduced to below 50 K� before data
collection. After the EEG data were collected, signals were
high-pass filtered at 0.1Hz, and re-referenced to an average
reference. An investigator visually inspected the data and
removed channels or epochs with noise and artifacts (Blain-
Moraes et al., 2015).

State of Consciousness
For each participant, we identified two key time points
in the experiment; (1) LOC: The first non-response to
an auditory command during induction followed by at
least 5min of 0% responsiveness; and (2) ROC: The first
response to an auditory command after LOC. Based on
these two time points, we defined the following five 5-min
states: (1) Baseline: Before sevoflurane administration, eye-
closed resting state (100% responsiveness); (2) Transition to
unconsciousness (TransUN): During induction, immediately
before LOC (>0% responsiveness); (3) Unconscious (UCS):
Between LOC and ROC (0% responsiveness); (4) Transition to
recovery (TransCON): During emergence, immediately after ROC
(>0% responsiveness); (5) Recovery: After emergence, eye-closed
resting state (100% responsiveness; Blain-Moraes et al., 2015).

EEG Network Analysis
We divided the signal into several frequency bands including
delta (1–4Hz), theta (4–8Hz), alpha (8–13Hz), beta (13–30Hz),
and broadband (1–50Hz) using band-pass filtering methods.
In this paper, we focused on the alpha band because of its
characteristic connectivity and topography directly reflecting
various states of consciousness induced by anesthesia (Cimenser
et al., 2011; Lee et al., 2013b; Purdon et al., 2013). No significant
results were observed in the other bands; results from other
bandwidths are presented in the Supplementary Figures.

To construct a functional brain network from EEG, we used
the weighted phase lag index (WPLI) (Vinck et al., 2011), which
is a robust method that reduces the volume conduction problem.

WPLIij =
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where I(Cij) is an imaginary part of cross-spectrum Cij between
two signals i and j. The cross-spectrum Cij is defined as ZiZ

∗
j ,

where Zi is the complex value Fourier spectra of the signal i for
each frequency, and Z∗

j is the complex conjugate of Zj. Cij can

be written as Reiθ, where R is magnitude and θ is the relative
phase between signal i and j. If the phases of one signal (i)
always lead or lag those of the other signal (j), that is, that is,
Pr{sgn(I(Cij)) = 1 or − 1}, then WPLIij equals 1. On the other
hand, if the phase lead/lag relationship of two signals is random,
theWPLIij value is 0.

Based on theWPLI matrix, we constructed a binary adjacency
matrix Aij. If the WPLIij value of nodes i and j is larger than a
threshold, the connection is equal to 1, otherwise, it equals 0. To
find an threshold for the given data, we tested the effect of varying
thresholds (ranging from the top 30% to the 70% ofWPLI values)
on the network properties. All thresholds showed similar results,
thus, in this study we used the binary networks of the top 30% of
WPLI for further analysis.

We calculated basic network topological properties such as
node degree, betweenness centrality (BC), global efficiency (GE)
(reflecting information integration capacity) and modularity
(reflecting local functional segregation). The degree is defined as
the number of connections for each node. The BC is a measure
of the influence of a node on the information transmission in
a network through the facilitation of shortcuts. It is calculated
by the fraction of the shortest paths passing through a node
with respect to all possible shortest paths in a network. The
GE is evaluated by an inverse of the average shortest path
length over all pairs of nodes; the shorter the path length, the
higher the efficiency. The modularity was calculated using the
Louvain algorithm with a brain connectivity toolbox (Rubinov
and Sporns, 2010). The node degree and BC were used to define
hubs in a network. The GE and modularity were used to estimate
the global functional integration and local functional segregation
of a network, respectively.

The assortativity of a network is the degree to which nodes
have a preference to attach to other nodes that have similar node
degree. Previous studies revealed that the assortativity plays an
important role for gradual/abrupt synchronization in a network
of Kuramoto oscillators (Li et al., 2013; Liu et al., 2013; Zhu et al.,
2013; Sendiña-Nadal et al., 2015). The simulation demonstrated
that highly positive or negative assortativity induces a gradual
state transition, while a small or neutral assortativity facilitates
a sudden state transition in a network. We computed the
assortativity by Newman’s algorithm (Newman, 2002),

a =
L−1

∑

i jiki −
[

L−1
∑

i
1
2 (ji + ki)

]2

L−1
∑

i
1
2 (j

2
i + k2i )−

[

L−1
∑

i
1
2 (ji + ki)

]2
(2)

where ji and ki are the degrees of the nodes at the ends of the ith
link, with i = 1, . . . L. The assortativity is bounded within the
range −1 ≤ a ≤ 1. If a is positive (or negative), the network
has an assortative (or disassortative) feature. Thus, if a network is
disassortative, it indicates that high-degree nodes are more likely
connect with the small-degree nodes, and vice versa. If a ∼ 0, the
network does not have such a bias.

The suppressive rule, introduced by Zhang et al. (2014), is
a necessary condition for synchronization of coupled nodes in
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TABLE 1 | Glossary of terms.

Keywords Descriptions

First-order phase

transition

Discrete changes from incoherent to synchronized

state or vice versa, as the coupling strength of

coupled oscillators increases or decreases,

respectively. A more continuous change is referred

to as a “second order phase transition.”

Explosive

synchronization (ES)

A phenomenon characterized by first-order phase

transition between incoherent and synchronized

states in a network of coupled oscillators.

Kuramoto model Mathematical model to study collective behavior of

large scale coupled phase oscillators in physical and

biological systems. The model consists of N phase

oscillators, their natural frequencies (ωi ), coupling

strengths (σ), coupling structure (aij ), and phase

differences of coupled oscillators (θj−θi ) as following,

θ̇i = ωi + σ

N
∑

j=1

aij sin(θj − θi )

Suppressive rule A necessary condition for synchronization of two

coupled oscillators. The condition was analytically

derived for coupled Kuramoto oscillators with a

positive correlation between node degrees and

coupling strengths (σ → σ|ωi |/ki ). Here, ki is the

node degree.

Order parameter A measure for average phase coherence of the

population of oscillators.

Weighted phase lag

index (WPLI)

A measure of phase locking based on phase lead

and lag relationship, which helps reduce (but cannot

eliminate) the volume conduction problem of EEG

signal.

Node degree The number of edges/links connected to a node in a

network.

Betweenness centrality

(BC)

A measure of the extent to which a node acts as a

bridge that creates the shortest path between two

other nodes.

Hub A node with higher node degree or larger

betweenness centrality. Hubs play an important role

in information integration in a network. Anesthesia

reduces or redistributes hub strength (node degree

and BC) in brain networks.

Modularity A measure reflecting the strength of division of a

network into functional units. Anesthesia increases

the modularity of brain networks.

Global efficiency (GE) The inverse of average shortest path lengths over all

pairs of nodes. This measure reflects the capacity of

global integration of a network. Anesthesia reduces

global efficiency.

Disassortativity A “preference” for higher degree nodes to connect

with lower degree nodes, or vice versa. Anesthesia

diminishes the preference of the brain network,

thereby randomizing the connectivity.

a Kuramoto network with a positive correlation between node
degrees and coupling strengths (see Table 1 for the details).
It is applicable regardless of the type of network structure.
The suppressive rule is presented as an inequality relationship
between frequency difference of coupled nodes and network

properties (local order parameters and coupling strength) in a
network. According to the suppressive rule in the Kuramoto
network, if the frequency difference of coupled nodes is larger
than a certain threshold, the synchronization of the coupled
nodes are suppressed. On the other hand, if the frequency
difference is smaller than the threshold, the two nodes are
synchronizable. In this experiment, EEG was collected over
varying states of consciousness, resulting in time-varying global
network properties (order parameter and coupling strength), and
frequency differences of coupled nodes. In order to investigate
the relationship between the brain network and behavioral state,
we examined the frequency difference, global network properties,
and their inequality relationship over time during the whole
experiment.

First, we determined the peak frequency of the EEG signal
(i.e., the frequency with the maximal power in the spectrum)
within the alpha frequency range (8–13Hz). We segmented the
EEG into 10-s epochs, and applied the power spectrum density
function (“psd.m” in Matlab, with 5 s Hanning windows and 1 s
overlaps). The average peak frequency over all epochs within the
states was defined as an average of the peak frequency of the
EEG signals. A frequency difference Yij between two coupled
nodes (i.e., EEG channels) in the network was determined by the
difference between two peak frequencies as follows.

Yij =
|fi − fj|

|fi| + |fj|
(3)

The fi is the peak frequency of node i for a frequency band, and
Yij is a normalized frequency frequency difference between two
nodes i and j. Yij will be 0 if fi = fj, otherwise 0 < Yij < 1.
The global frequency difference for a network is defined with the
average Yij for all connected nodes.

We considered local synchronization conditions based on
the extended local suppressive rule, which was introduced for a
network of Kuramoto oscillators (Zhang et al., 2014; Navas et al.,
2015). The local suppressive rule for each pair of coupled nodes
is defined as the following inequality relationship,

Yij ≤ λ(ri + rj) (4)

where λ is the absolute coupling strength and the ri is a local
order parameter of ith Kuramoto phase oscillator. To apply
this local suppressive rule to brain networks, we replaced the
coupling strength λ with 1− c, where c is the rescaled anesthetic
concentration (from 0 to 1). We assumed that the long-range
coupling strength of neural populations is inversely correlated
with anesthetic concentration (Moon et al., 2015). Furthermore,
the local order parameter ri of a node i in Equation (4) was
estimated as the averaged WPLI over the connected nodes,
ri =

1
N

∑N
j AijWPLIij, where N is the degree of node i. In the

model, Yij is the difference of natural frequencies of Kuramoto
However, for the application to EEG, we assumed that the
observed frequencies in a time window would serve as the initial
frequencies in the very next time window in a non-stationary and
dynamic brain. Thus, if the variability of the observed frequencies
for a state is small enough to differentiate the conscious and
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unconscious states, we consider the observed frequencies are
similar to the natural frequencies in the model for a state.

To account for a suppressive anesthetic effect on local
synchronization, we modified the local suppressive rule for all
coupled nodes. The status of coupled nodes i and j, eij, was
defined as suppressive or non-suppressive as follows:

sij = Yij − λ(ri + rj) (5)

eij =

{

1, if sij > 0, Suppressive
0, if sij ≤ 0, Non–suppressive

, (6)

where λ = 1 − c and c is anesthetic concentration scaling
0 as a minimum dose (baseline conscious state) and 1 as a
maximum dose (unconscious state). In the “suppressive” state,
the synchronization of coupled nodes is inhibited, whereas two
nodes are synchronizable in the “non-suppressive” state.

The local suppression strength (Si) of a node was calculated by
counting the status of all connected nodes:

Si =
1

Li

Li
∑

j

eij (7)

where Li is the degree of ith node.
Furthermore, we calculated the regional suppression strengths

(Sr) in the brain network (prefrontal, frontal, central, temporal,
parietal, and occipital regions according to the EEG channel
configuration) and measured which brain region has the
strongest suppression strength during anesthesia. The global
suppression strength S was obtained by taking average of the
all Si.

The whole study design and analysis are illustrated in
Figure 1.

Statistical Analysis
We performed the Kruskal-Wallis test (“kruskalwallis.m,” Matlab
statistical toolbox), which is a nonparameteric version of a
classical one-way ANOVA with Tukey’s multiple comparisons
(“multcompare.m” with alpha = 0.05 and ctype = “tukey-
kramer”) for node degree, BC, and peak frequency, taking
the average of EEG channels in the anterior (prefrontal and
frontal) and posterior (occipital) brain regions of each subject.
We also performed a repeated-measures One-way ANOVA
and a post hoc analysis with Tukey’s multi-comparison
test for GE, modularity, disassortativity, and frequency
difference comparisons across the states, treating each
participant as an independent sample. For the correlation
between node degree and frequency, we also treated each
subject as one sample taking the average of node degree
and peak frequency respectively for all epochs across the
states. Significance was obtained by using exact permutation
distributions with the null hypothesis of no correlation
against the alternative that the result had nonzero correlation.
The statistical significance between global S with change of
concentration and responsiveness was also performed using
repeated One-way ANOVA with Tukey multiple comparison.

MATLAB (Natick, MA) was used for the statistical tests and
differences were considered significant at adjusted P-values
less than 0.05 (for the figures, ∗P < 0.05, ∗∗P < 0.01, and
∗∗∗P < 0.001).

RESULTS

Reconfiguration of Brain Network
Structure and Dynamics across States of
Consciousness
Figure 2 demonstrates the overall changes across states of brain
network structure (node degree and BC) and dynamics (peak
frequency) as well as global efficiency (GE) and modularity.
In the resting state with eyes closed, the occipital region has
a higher node degree and BC, i.e., it is the primary hub
structure (Figure 2B). However, anesthesia significantly inhibits
the posterior hubs in the unconscious state (node degree,
p < 0.05; BC, p < 0.01), which recovers along with
consciousness (BC, p < 0.01). Figure 2C demonstrates that
after induction of unconsciousness, the peak frequency of alpha
power distribution is increased, and shifted to the frontal region
in the unconscious state (Baseline vs. TransUN , p < 0.05;
Baseline vs. UCS, p < 0.05; UCS vs. Recovery, p < 0.05).
Notably, separate analysis on the same data demonstrated that
the total power of alpha band (over 8–13Hz) did not consistently
increase and there was no consistent anteriorization during
unconsciousness (Blain-Moraes et al., 2015). We also observed
disrupted GE and increased modularity during unconsciousness,
as shown in Figures 2D,E (GE: Baseline vs. TransUN , p < 0.001;
Baseline vs. UCS, p < 0.01; Baseline vs. TransCON , p < 0.05;
TransUN vs. Recovery, p < 0.05; UCS vs. Recovery: p <

0.001; TransCON vs. Recovery, p < 0.05, Modularity: p <

0.001; Baseline vs. TransUN , p < 0.05; Baseline vs. UCS,
p < 0.01; UCS vs. Recovery, p < 0.05). These characteristic
changes of network structures and dynamics were only observed
in the alpha band (see Figures S1–S3 for the other frequency
bands).

Change of Correlation between Node
Degree and Peak Frequency across States
The correlation between node degree and frequency in a
network is one condition for ES. It has been demonstrated in a
previous study with generic networks that positive and negative
correlations between node degree and frequency produce abrupt
and gradual synchronizations, respectively (Liu et al., 2013).
In brain networks, the abrupt and gradual synchronizations
could be associated with fast and slow transitions between
unconscious and conscious states. Figures 3A,B show the
relationship between peak frequency and node degree in an
EEG network for the alpha band, and how the relationship
changes across states. To determine the peak frequency, we
chose two EEG channels from prefrontal and central regions,
and measured their peak frequencies and node degrees in the
EEG network. The averaged peak frequency and node degree
were calculated from segmented 10 s epochs for each EEG
channel. It can be seen in one participant that during UCS
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FIGURE 1 | Schematic diagram of study design. The functional brain network topology and dynamics were analyzed with high-density EEG recorded across

states: eye-closed resting; transition to unconsciousness; unconsciousness; transition to consciousness; recovery. To construct a functional network, we used

weighted phase lag index (WPLI), which is relatively robust to the volume conduction problem of EEG. Four network conditions for explosive synchronization (ES)

reported in generic networks were applied to the brain network and investigated for each state, as well as typical properties of network topology and dynamics.

(Figure 3B), the higher degree node (21.33) has a higher peak
frequency (13.3Hz) and the lower degree node (15.46) has a
lower peak frequency (8.5Hz). However, in baseline (Figure 3A),
the same two EEG channels (with average node degree of 15.42
and 10.54, respectively) did not show any significant difference
in terms of peak frequency. We observed that the average
power of the alpha band is slightly decreased, and the peak
frequencies are shifted to a comparatively higher frequency range
in UCS. In addition, the range of peak frequency distribution
(dotted lines in Figures 3A,B) becomes broader in UCS than
baseline.

The change of correlation between node degree and
peak frequency across states is clear. Figure 3C presents the
relationship between the average node degrees and the average
peak frequencies for all seven subjects. The node degree and peak
frequency for a specific EEG channel were obtained by averaging
over seven subjects. In Figure 3C, the average peak frequencies of
nodes in baseline are narrowly distributed while the average node
degrees are broadly distributed. The baseline did not show any
correlation (Spearman coefficient of−0.024, p = 0.86). However,
the two transitional states presented weak negative correlations
(TransUN : Spearman coefficient of −0.282, p < 0.05, TransCON :
Spearman coefficient of −0.343, p < 0.01). A significant positive
correlation was observed in UCS (Spearman coefficient of 0.473,
p < 0.001), suggesting that the brain network during a lightly
anesthetized state is predisposed to an abrupt state transition,
whereas the other states are predisposed to gradual transition.
This is the first empirical observation of a significant linear
correlation between the peak alpha frequency and node degree
in the brain. After the recovery of consciousness, the correlation
diminished (Spearman coefficient of −0.022, p = 0.87). The

correlations between node degree and frequency for all individual
subjects and states are presented in Figure S6.

Change of topological and dynamical
Network Conditions for Explosive
Synchronization (ES) across States
Two network properties, disassortativity, and frequency
difference, were investigated. Figure 4A presents the
timeline of the anesthetic concentration (brown line) and
responsiveness (green line) over the experimental period for
a single volunteer as an example. Figure 4B presents the
disassortativity and frequency difference in coupled nodes for
the same volunteer. In the baseline and recovery states, the
network showed disassortativity, i.e., a tendency for highly-
connected nodes to link with less-connected nodes. However,
the overall frequency difference was relatively small with
similar peak frequencies among the EEG channels, which
could facilitate global synchronization. After induction of
unconsciousness, the disassortativity and frequency difference
decreased and increased, respectively. Finally, during UCS,
the disassortativity was neutralized and the frequency
difference reached a maximum. The heterogeneous network
topology was changed to a homogenous network topology.
Concurrently, the homogeneous frequency distribution changed
to a more heterogeneous frequency distribution, making
global synchronization more difficult. It is also notable that
the disassortativity and frequency difference were closely
correlated with even a small change of responsiveness (see
around 25min in Figures 4A,B). The changes of connection
strength difference and peak frequency difference among nodes
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FIGURE 2 | The reconfiguration of brain network structure and dynamics during sevoflurane anesthesia. For the alpha band, the changes of (A) the

topography of node degree, (B) betweenness centrality, (C) peak frequency (Hz), (D) global efficiency, and (E) modularity are presented across five states: baseline,

transition to unconsciousness (TransUN ), unconscious state (UCS), transition to consciousness (TransCON ), and recovery. The disruption and recovery of posterior hub

structures, as defined by higher node degree and betweenness centrality, is obvious with loss and recovery of consciousness (node degree, p < 0.05; BC, p < 0.01).

An increase of peak frequency in the unconscious state is also observed (p < 0.05). In addition, the reduced global efficiency and increased modularity in UCS are

significant. Error bars indicate standard deviation for seven subjects. Significance level using ANOVA: ***p < 0.001.

across states are presented in Figures 4C,D, respectively.
The results for all individual subjects are presented in
Figure S7.

Relationship of ES Conditions with State,
Anesthetic Concentration, and
Responsiveness
Figures 5A–F demonstrates the average disassortativity and
frequency difference over all participants with respect to
the states, anesthetic concentration, and responsiveness. The
disassortativity and frequency difference were calculated with 30
EEG epochs (10 s long for each epoch) for a participant and
then averaged over six participants. We excluded one participant

who had only two levels of responsiveness (100 and 0%) in this
calculation.

In Figure 5A, the disassortativity was significantly reduced in
transitional states and UCS (both, p < 0.001), and returned to
the baseline level with recovery of consciousness. In contrast, in
Figure 5D the frequency difference in coupled nodes significantly
increased after induction (p < 0.001).

Figures 5B,C,E,F demonstrate the correlations of average
disassortativity and frequency difference with anesthetic
concentration (0, 0.4, 0.6, and 0.8 %) and behavioral
responsiveness (100%[before], 100%[after], 20∼80%, 0%),
respectively. We divided 100% responsiveness into two
behavioral states, before induction and after induction. The
disassortativity linearly decreased along with anesthetic
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FIGURE 3 | Change of the correlation between node degree and frequency across states. The peak frequencies of alpha power for high (red line) and low

(blue line) degree nodes are compared in (A) baseline and (B) UCS for a subject as an example. The high degree node has a larger peak frequency in UCS, whereas

there is no significant dependency of peak frequency on node degree in baseline. The range of peak frequencies is also wider in UCS. (C) The correlation between

average node degree and average peak frequency changes significantly across states. The node degree and peak frequency for a node is expressed as average

values over seven subjects. There is a positive correlation between degree and peak frequency in UCS (Spearman coefficient of 0.473, p < 0.001), while no correlation

appears in baseline (Spearman coefficient of −0.024, p = 0.86) and recovery (Spearman coefficient of −0.022, p = 0.87) states of consciousness. However, the

transitional states showed relatively small negative correlations. The results suggest that the brain network in the UCS is in a condition primed for abrupt state

transition, whereas the other states are in a condition conducive to gradual state transition.

concentration (p < 0.01) and behavioral responsiveness
(p < 0.001). Conversely, the frequency difference in coupled
nodes significantly increased along with increasing concentration
(p < 0.05) and decreased responsiveness (p < 0.05).
Interestingly, even though the participants showed 100%
responsiveness before and after sevoflurane exposure, the
assortativity, and frequency difference after induction is altered.
Thus, the two network properties suggested as ES conditions
previously observed in generic networks were significantly
enhanced in the brain network during higher anesthetic
concentrations, lower responsivity, and unconsciousness.

Regional and Temporal Variability of
Suppression Strength for ES
We observed clear correlations of the two global network
properties (disassortativity and frequency difference) with
anesthetic concentration and responsiveness. We examined this
relationship with local ES conditions. Figure 6A demonstrates
the pairs of EEG channels that satisfy the local suppressive rule
across the five states for a single volunteer. In the baseline
and recovery states, most pairs of EEG channels did not satisfy
the suppressive rule (denoted with black dots in Figure 6A),
implying that they may contribute to gradual synchronization
path rather than ES. However, in the two transitional states
and unconscious state, the most highly coupled nodes in the
brain network satisfied the suppressive rule with significantly
increased frequency difference in the coupled nodes and a
reduced threshold. This threshold is determined by the product
of decreased coupling strength and phase synchronization for

each state (denoted with white dots in Figure 6A). In this
condition, the coupled nodes are more likely to provoke ES.

The regional suppression strength, Sr , was defined by the
proportion of connected nodes that satisfy the local suppressive
rule in a region. The regional suppression strength has a value,
0 ≤ Sr ≤ 1. If Sr = 1, it indicates that all connected
nodes satisfy the rule and the regional network facilitates
an ES. Otherwise, if Sr = 0, all connected nodes violate
their local rules, thus, it is highly probable for the region to
follow a gradual synchronization path. Figure 6B shows the
temporal and regional variability of the suppression strength.
The brain region with the largest Sr among the six regions
was presented at each 10 s interval. Figure 6C demonstrates the
significant change of the average global suppression strength
over all subjects with an increase of anesthetic concentration
(p < 0.001) and decrease of responsiveness (p < 0.001). In
particular, the average suppression strength S for the anesthetic
concentration of 0.8% (0.57 ± 0.09) was approximately 10-
fold higher than that of 0% concentration (0.04 ± 0.04).
The average suppression strength S for 100% responsiveness
(0.05 ± 0.04) was also about 10-fold higher than that of
0% responsiveness (0.54 ± 0.11) in Figure 6D. Note that in
comparison with two network properties that have about 3-
fold differences in Figure 5, the average S is more sensitive
to the change of anesthetic concentration and responsiveness.
Importantly, it quantitatively indicates that at the point where
50% of connected node pairs in the brain network are suppressed,
responsiveness is lost. Furthermore, S clearly differentiated the
two states of 100% responsiveness (before and after induction,
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FIGURE 4 | The network topology and topography of alpha peak frequency associated with ES change across states for one subject as an example.

(A) The time evolution of anesthetic concentration (brown line) and responsiveness (green line) over the whole experimental period for a single subject. For the same

subject, (B) both the disassortativity (blue line) and frequency difference (red line) are variable over time, showing a correlation with the behavioral profiles. (C) The

average difference of coupling strength and (D) the average difference of peak frequency among all nodes are presented to show the overall spatial distributions. The

selected five EEG epochs for each subject were averaged over seven subjects. In (C), the large difference of connection strength among specific EEG channels in

baseline are reduced such that all connection strengths become more homogenous in UCS. They are restored in recovery. On the contrary, (D) shows that the

relatively small difference of peak frequency among EEG channels is significantly increased in UCS. The overall changes of connection strength and frequency

difference are significant across states. For this display, the EEG channels are grouped in six brain regions (P, prefrontal; F, frontal; C, central; T, temporal; P, parietal;

and O, occipital).

p < 0.05), showing that the number of suppressed node pairs
was significantly increased from about 5 to 20% in the 100%
responsive state after recovery from anesthesia (100%[before]
vs. 20 ∼ 80%: p < 0.001; 100%[before] vs. 0%: p < 0.001;
100%[after] vs. 20 ∼ 80%: p < 0.05; 100%[after] vs. 0%:
p < 0.001; 20 ∼ 80% vs. 0%: p < 0.05), which indicates a
relatively higher possibility for a sudden state transition back
to unconsciousness. The results for all individual subjects are
presented in Figure S8.

Two Representations of Gradual and
Abrupt Transitions with Suppression
Strength and Synchronization
Even though the four network conditions indicate a higher
possibility of ES during the lightly anesthetized state, the design
of current study was limited because we did not attempt to

arouse the volunteers to assess whether ES indeed occurs when
the conditions are met and a network perturbation occurs.
However, as one method to support our hypothesis, we present
two volunteers whose recovery trajectories represent gradual
and abrupt state transitions to responsiveness. One volunteer in
Figure 7A shows slow loss and recovery of responsiveness. In
order to show a trend of temporal change, the responsiveness was
smoothed by averaging 5min long time window and moving it
30 s. It took about 40min for the subject in Figure 7A to reach
the point of 0% responsiveness (from 20 to 60min in Figure 7A,
black line), and 25min to recover back to 100% responsiveness
(from 65 to 90min). In contrast, the other subject in Figure 7B

showed fast loss and recovery of responsiveness. The participant
first lost responsiveness around 10min in Figure 7B; the time
taken for loss and recovery of 100% responsiveness were about
5min. Correlating this with a change of network properties,
the two subjects demonstrated dramatically distinct patterns
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FIGURE 5 | The relationship of disassortativity and frequency difference to state, anesthetic concentration and responsiveness. The disassortativity has

strong correlations with (A) states (baseline, transition to unconsciousness (TransUN ), unconscious state (UCS), transition to recovery (TransCON ), and recovery),

(B) anesthetic concentration (0, 0.4, 0.6, and 0.8%), and (C) responsiveness (100% (before), 100% (after), 20–80% and 0%). The frequency difference also showed

significant correlations with (D) states, (E) anesthetic concentration, and (F) responsiveness. Disassortativity is reduced along with increased anesthetic concentration

and decreased responsiveness. On the other hand, the frequency difference increases along with increased anesthetic concentration and decreased responsiveness.

The responsiveness of 100% was separated into two states before induction of unconsciousness and after recovery of consciousness (before and after). Error bar

denotes standard deviation. Significance level using ANOVA: p < 0.05 “*”; p < 0.01 “**”; p < 0.001 “***.”

of suppression strength S and global WPLI (Figures 7C,D).
Here we considered the global WPLI between connected node
pairs as a measure of reliable phase synchronization in EEG
data. For the subject who showed a gradual state transition,
the suppression strength S also increased gradually with a
relatively low overall S, and the change of synchronization
was small and not much different from that of baseline. The
corresponding synchronization of the brain network was also
relatively small and demonstrated gradual changes. On the
contrary, the subject who showed an abrupt state transition
had higher suppression strength S before the first large drop
of responsiveness (around 10min in Figure 7B), maintaining
large S during the anesthetized state and with another episode
of fast loss and recovery of responsiveness at 50min. For
this subject, the synchronization in baseline was precipitously
decreased along with a steep decrease of S. The other subjects
showed combined patterns of gradual and abrupt transitions.
The results for all individual subjects are presented in the
Figure S9.

DISCUSSION

General anesthesia is administered clinically tens of millions a
time each year and is also a powerful tool to modulate the

transition between conscious and unconscious states. During
anesthesia, the ability of the brain to process information is
disrupted with characteristic alterations of its functional network
structure and dynamics (Alkire et al., 2008; Boveroux et al., 2010;
Ferrarelli et al., 2010; Ku et al., 2011; Monti et al., 2013; Lee
et al., 2013a,b; Barttfeld et al., 2015). How brain networks are
able to rapidly recover to normal conscious functioning after
the discontinuation of the anesthetic has not been elucidated.
This clinically and neuroscientifically important question has
broad implications for the assessment and potential recovery
of consciousness in pathological states of unresponsiveness and
coma.

Anesthetic state transitions associated with the loss
and recovery of consciousness have been investigated with
various approaches, including mathematical models, genetic
manipulation, advanced signal processing, and graph-theoretical
network analysis (Steyn-Ross et al., 1999, 2001a,b, 2003, 2004;
Friedman et al., 2010; Lee et al., 2011; Purdon et al., 2013;
Chander et al., 2014; Hudson et al., 2014). Steyn-Ross et al.
(1999) developed the first model for the anesthetic effect on
neural activity at the macro-column scale, which is an assembly
of inhibitory and excitatory neurons in a volume of diameter
of about 1mm and depth of 3mm, containing about 100,000
neurons. In this model study, they reported that a critical
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FIGURE 6 | Regional and temporal variability of suppression strength. (A) Channel pairs satisfying the local suppressive rule for a subject as an example. The

pairs of EEG channels that satisfy the local suppressive rule are denoted with white dots (suppressed), whereas the pairs not satisfying the suppressive rule are

denoted with black dots (synchronizable). Most pairs of EEG channels satisfy the local suppressive rule after induction, indicating that the synchronization was strongly

suppressed in the anesthetized state. For the same subject, (B) the global suppression strength S with the brain region that has largest regional suppression strength

at each time window is presented over the experimental period. The color and size of circle indicates the brain region and the strength of the largest Sr , respectively.

The graph shows a large regional and temporal variability of local suppression strength. The shaded areas correspond to the five epochs from which the data in (A)

were obtained. The size and color of each circle indicate the local suppression strength and the six regions (PF, prefrontal; F, frontal; C, central; T, temporal; P, parietal;

and O, occipital), respectively. The responsiveness is indicated by the black line. The average local suppression strength across all subjects showed a strong

correlation with (C) anesthetic concentration and (D) unresponsiveness. Significance level using ANOVA: ***p < 0.001.

anesthetic concentration (the primarily GABAergic anesthetics
propofol and sevoflurane) causes a sudden state transition,
reminiscent of a first-order phase transition of thermodynamics,
which is characterized by a hysteresis between the induction of
and emergence from anesthesia. Recently, Hudson et al. (2014)
used advanced signal processing of electrophysiological data
from rats to show that when the anesthetic is discontinued, the
brain recovers through an ordered series of state transitions
and distinct spatiotemporal activity patterns. Some transition
paths are highly probable, whereas others are less probable. Lee
et al. (2011) applied a novel graph-theoretic network analysis
to human EEG during and after anesthesia, dissociating the
effects of network structure and connection strength on global

efficiency across states. They identified two types of state
transitions at loss and recovery of consciousness: “slow decay
and sudden return” (8 out of 20 subjects) and “sudden decay
and slow return” (12 out of 20 subjects), suggesting elements of
both discrete and continuous state transitions possible. Purdon
et al. (2013) focused on the characteristics of EEG during
state transition induced by propofol. They noted an increase
in median frequency of the alpha band during emergence,
and observed distinct patterns of cross-frequency coupling
between the phase of slow-wave oscillations (0.1–1Hz) and
the amplitude of the alpha (8–13Hz) band in deep anesthesia
and during the return of consciousness. Blain-Moraes et al.
suggested that the typical pattern of amplitude-phase coupling
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FIGURE 7 | Two representative subjects for gradual and abrupt state transitions. The responsiveness (black line) and suppression strength S (blue line) of (A)

the gradual (subject #4) and (B) abrupt state transition (subject #10) are presented. The responsiveness was averaged by 5min time period with shifting 30 s to show

the trend of temporal change. In comparing the two subjects, the gradual state transition has a lower S, whereas the abrupt state transition has a relatively higher S.

(C,D) present the global WPLIs (orange line), averaged over all connected pairs of EEG channels for each subject, to see the association of suppression strength with

the change of network state (synchronization) as well as behavioral state (responsiveness). The global WPLI in the gradual state transition showed a smaller change,

while the abrupt state transition showed precipitous changes during the experimental period.

is drug-specific rather than state-specific, by comparing the
results of propofol to those of ketamine and sevoflurane (Blain-
Moraes et al., 2014, 2015). Hight et al. (2014) used a Bayesian
method to estimate the likelihood of EEG patterns that map
the patient’s state to 2-dimensional manifolds in a state space
of excitatory connection strength vs. the change in intrinsic
resting neuronal membrane conductivity. They observed two
types of state transition in the state space: archetypal emergence
showed a progressive decrease in alpha power and increase
peak alpha frequency before return of responsiveness, whereas
non-archetypal emergence demonstrated no spectral EEG
change and an abrupt return of responsiveness. A similar study
was also carried out by Chander et al. (2014) classifying the
emergence patterns of 100 surgical patients into two types
of emergence (progressive and abrupt) based on the power
spectrums of delta (0.5–4Hz) and alpha/spindle(8–14Hz) of
frontal EEG. Friedman et al. (2010) and Joiner et al. (2013)
suggested that the central nervous system has a tendency to resist
behavioral transitions between the conscious and unconscious
states, which they term “neural inertia.” Neural inertia has
been proposed to account for the hysteresis between entering
into and emerging from the anesthetized state. Furthermore,
they demonstrated that genetic mutations affecting sleep-wake

circuitry modulate the hysteresis with multiple anesthetics in
both flies and mice.

The current study investigated brain network conditions
including network topology, local dynamics, and a threshold
for ES determined by the interaction of global topology and
local dynamics. The significance of these properties in predicting
the relative probability of the two types of state transitions has
recently been studied in generic, non-biological networks. Using
quantitative and empirical evidence, this study demonstrates, for
the first time, that the network conditions for ES are also present
in brain networks during pharmacological perturbation. This
suggests that mechanistic explanations for abrupt and gradual
state transitions in general complex networks might also be
applicable to the brain.

We found that light sevoflurane anesthesia reconfigured
network topology (BC, GE, modularity, and disassortativity)
and dynamics (peak frequencies and differences between them
in coupled nodes), as well as the correlation between network
topology and dynamics (node degree vs. peak frequency) in
the transitional and unconscious states. We observed that the
high degree of disassortativity and strong hub structures in the
resting state of baseline consciousness is diminished significantly
after induction of anesthesia. Our interpretation is that the
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disruption of hub structures after induction prevents the hub
regions from functioning as “seeds” of gradual synchronization.
At the same time, the frequency difference of coupled nodes
gradually increased after induction and reached a maximal
value in the unconscious state. The increase in frequency
difference of coupled nodes hinders their synchronization
and thus also delays global synchronization. Regarding the
correlation between node degree and frequency, a salient
positive correlation appeared in the unconscious state, whereas
no correlation was present in baseline and recovery states.
After induction, the broad range of node degree contracted
to a homogeneous network with disrupted hubs and the
peak frequency of alpha band increased from about 9.5 to
11.0Hz.

Surprisingly, the broadly distributed peak frequencies were
positively correlated with the node degrees in the unconscious
state. This frequency-degree relationship in complex networks
was first introduced as a condition for ES and opened active
discussions in the network science community, followed by
discoveries of other such conditions. Furthermore, applying
the modified suppressive rule to the unconscious state, the
increased frequency difference of coupled nodes deviated from
the significantly reduced threshold (i.e., the product of reduced
coupling strength and reduced phase synchronization). Since
the suppressive rule was derived as a necessary condition for
synchronization in coupled nodes, the pervasive violations of
this rule indicated that synchronization is strongly suppressed
in the unconscious state. In practice, the suppression strength
outperformed the conventional network properties in the
differentiation of states (10-fold difference vs. 3-fold difference),
suggesting it as a possible index for level of consciousness.
As a result, all four network conditions for ES investigated
here provide support for the hypothesis that the anesthetic
sevoflurane suppresses global synchronization by reconfiguring
the network topology and dynamics in the brain. The inability
to achieve temporal coordination across the network is
consistent with the observed increase in modularity during
unconsciousness.

The four network conditions (increased frequency difference,
reduced disassortativity, positive correlation between node
degree and frequency, and pervasively held suppressive rule)
and their correlations with anesthetic concentration and
responsiveness suggest that brain networks just past the loss
of consciousness are primed for recovery. Consistent with
clinical experience, a small perturbation—such as enhanced
connectivity from an external stimulus or small change of
anesthetic concentration—could give rise to an abrupt state
transition back to the normal network. Further work is required
to assess the conditions for ES during deeper anesthetic
states (as achieved during surgery). Assessing the conditions
for ES in pathological states such as coma or unresponsive
wakefulness syndrome might provide prognostic insight into
the likelihood of recovery. Finally, the physiological state of
sleep-induced unconsciousness must also be investigated, since
this state would potentially have an even higher propensity to
ES than the light state of anesthesia analyzed in the current
investigation.

Limitations
This investigation has a number of limitations. First, we only
studied a lightly anesthetized state using relatively low doses
of sevoflurane. Further study on deep anesthesia is needed to
better understand this phenomenon and its relevance to states
of consciousness. Second, there is a possibility that different
anesthetic drugs could induce different types of transition.
Therefore, drug-specific effects on the ES conditions need to
be elucidated. Third, we assumed that the coupling strength
of the brain network was inversely related to the anesthetic
concentration, but the actual relationship in large-scale brain
networks must be determined empirically in further studies.
Fourth, it is still not clear why the alpha band of the EEG was the
only one that demonstrated significant network changes across
the states. This could reflect the relationship of alpha rhythms
to cognitive functions. Furthermore, because the alpha rhythm is
the only consistent narrow-band oscillation in the EEG, it may
be more amenable to the coupled Kuramoto model compared
to other bands and the 1/f characteristic of the broad band
that make it difficult to define a representative frequency. Fifth,
despite the robustness of WPLI against potentially confounding
volume conduction, WPLI is relatively insensitive to phase
differences at high frequency. Therefore, we only performed the
analysis within the lower frequency bands (delta, theta, alpha,
and beta). Sixth, the question of whether the four conditions
are sufficient or necessary and whether or not they come from
one condition is beyond the scope of this study. With further
study in model networks, one could find the minimal (sufficient
or necessary) condition for ES, and its relationship with human
brain network connectivity. Seventh, we did not demonstrate a
causal relationship between the conditions for ES and the actual
occurrence of ES. However, it is known that relatively innocuous
stimuli can reverse behavioral state during light anesthesia and
we suggest that conditions of ES explain this easy reversibility.
The next step will be a demonstration of the causality of the
conditions to produce actual ES, perhaps by implementing a form
of stochastic perturbation in a large-scale brain network model.

CONCLUSION

Sevoflurane disrupts efficient network topology and dynamics
of the human brain. At an anesthetic concentration just past
the threshold of unconsciousness, we identified the development
of four different network conditions for ES in human brain
networks that have only been reported in network model studies.
This quantitative evidence provides a possible explanation for
how disrupted brain networks during anesthesia can rapidly
recover as the suppressive force of the anesthetic vanishes. The
present investigation explores for the first time the presence
of network conditions for ES in an empirically derived human
brain network as a potential mechanism of recovery from
pharmacologically-induced unconsciousness.
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