New Jersey Institute of Technology

Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

Fall 1-31-2003

Functional annotation and dendrogram representation of gene
expression clustering results

Antoneta Petkova Vladimirova
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

b Part of the Computer Sciences Commons

Recommended Citation

Vladimirova, Antoneta Petkova, "Functional annotation and dendrogram representation of gene
expression clustering results" (2003). Theses. 608.
https://digitalcommons.njit.edu/theses/608

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@nijit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F608&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Ftheses%2F608&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/608?utm_source=digitalcommons.njit.edu%2Ftheses%2F608&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other
reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other
reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any
purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user
may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order
would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to
distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

Mew |ersey’s Science &
Technology University

The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.

ABSTRACT

FUNCTIONAL ANNOTATION AND DENDROGRAM REPRESENTATION OF
GENE EXPRESSION CLUSTERING RESULTS

by
Antoaneta Vladimirova

The advances in genomic sciences have created vast amounts of gene expression data. To
make sense of the expression information, various techniques have been applied.
Clustering is among the unsupervised methods used to group the results according to
gene expression level. Dendrogram visualization allows graphical representation of the
clustering. The aim of this thesis is to enhance these techniques by adding another layer
of functionality, namely, annotating the dendrogram with gene functional information.
Presented is an application which visualizes yeast clustering results as a dendrogram
along with color-coded gene keyword annotations. Gene keyword information was
extracted from a major biological database and was used to create a database which was
queried by the program according to the user preferences. Functional annotation with
keyword information will help the biologists to integrate the different type of visual
information quickly and provide an intuitive way of correlating the gene expression

results with gene function.

FUNCTIONAL ANNOTATION AND DENDROGRAM REPRESENTATION OF
GENE EXPRESSION CLUSTERING RESULTS

by
Antoaneta Petkova Vladimirova

A Thesis
Submitted to the Faculty of
New Jersey Institute of Technology
In Partial Fulfillment of the Requirements for the Degree of
Master of Science in Computer Science

Department of Computer Science

January 2003

Copyright © 2003 by Antoaneta Petkova Vladimirova

ALL RIGHTS RESERVED

APPROVAL PAGE

FUNCTIONAL ANNOTATION AND DENDROGRAM REPRESENTATION OF
GENE EXPRESSION CLUSTERING RESULTS

Antoaneta Petkova Vladimirova

Dr. Michael Recce, Thesis Advisor '/ Date
Associate Professor, Department of Biomedical Engineering, NJIT

Dr. Barry Coheh, Committee Member ' Date
Assistant Professor, Department of Computer Science, NJIT

Dr. Peter Tolias, Committee Member Date
Associate Professor, Department of Microbiology and Molecular Genetics
UNDNIJ-New Jersey Medical School

BIOGRAPHICAL SKETCH

Author: Antoaneta Petkova Vladimirova
Degree: Master of Science in Computer Science
Date: January 2003

Undergraduate and Graduate Education:

e Master of Science in Computer Science
New Jersey Institute of Technology, Newark, NJ, 2003

¢ Doctor of Philosophy in Cell Biology
New York University, NY, 2000

e Master of Science in Cell Biology
New York University, NY, 1995

e Master of Science in Genetic Engineering
Sofia University, Sofia, Bulgaria, 1992

Major: Computer Science
Publications:

Vladimirova A.,
“Mechanisms of E47 transcriptional regulation,”
Ph.D. Dissertation, NYU, September 2000.

Prabhu S, Ignatova A., Park S.T. and Sun X.-H,,
“Regulation of the expression of cyclin-dependent kinase inhibitor p21 by E2A
and Id proteins”, MCB 17(10), pp. 5888-5896, October 1997.

Ignatova A., Xu M., Sun X.-H.,
“The role of E2A transcription factor as a master regulator of B-cell development,
”The FASEB Journal, 10(6), pp. 923-923, April 1996.

Ignatova A,
“Studies on genetic transformation of tobacco via Agrobacterium tumefaciens
with vector carrying the gene of capsid protein of PPV (Plum Pox Virus),”
M.S. Thesis, Sofia University, May 1992.

Note: Family name Vladimirova corresponds to maiden name Ignatova.

ACKNOWLEDGMENT

I would like to thank Dr. Michael Recce for being my thesis advisor and his suggestions.
I am very thankful to Dr. Barry Cohen and Dr. Peter Tolias for their participation in my
review committee and their valuable recommendations. I really appreciate the support
and advice that Georgy Vladimirov, Diego Sandoval and Vanio Ivanov have given me

when I really needed it.

TABLE OF CONTENTS

Chapter Page
1 INTRODUCTION.....cuimiiiiiiiiiitieiii it ceer e rceen s e s se s saa s 1
1.1 ObJective....covnuieeieiniiiiiiiiciieierieeiteeccnrnensaenrnseeencassnnnnnns 1

1.2 Background Information..............c.cooiiiiiiiiiiiiiiiiiiiiieineae 2

1.2.1 Gene Expression and Microarrays.cccccceeveecerncnccnnnens 2

1.2.2 Clustering Methods...........cccccvviiiiiiiiiiiiiiiiiiiiieiieieeneans 5

1.2.3 Visualization Techniques.........cc.ccoorueereiireriirinenrcecrecennn 10

1.2.4 Gene ANNOtAtioN.cciuieiiiiiiuiaiiiiniiiiiieainiatiicenianne 11

1.2.5 Examples of Available Resources...........cccceovvuruieninininnnnn. 13

2 SPECIFIC DESIGN OF THE SOFTWARE APPLICATION................. 16
2.1 YeastasaModel Organism...........ccceerevnienineernrneaceceecncoccnnnee 17

2.2 Extraction of Keywords Informationccccoiiiiiiiiiiinanann. 19

2.3 Relational Database Design and Development................c............ 22

2.4 Java Application for Graphical Functional Annotation.............ccece... 26

3 RESULTS.ottt e e e s ee s s s s s s s e nas 30
3.1 Implementation Highlights................ ... 30
3.2 Annotation Process Example..........ccccoeviiniiiinieiiiiiiiienennienane. 36
3 CONCLUSIONS.... .ottt sssacis s sisassssasnsassneans 40
4.1 Goals Achieved..........cccoininiiiiiiiiiiic e 40
4.2 Future Recommendations..............ccceuiiuiniiiniiinininiininienenennnnn. 41
APPENDIX A JAVA CODE.......coiiiiiiiiiiiiiiiiiiicirecr ettt cen e aaa e 45

TABLE OF CONTENTS

(Continued)
Chapter Page
APPENDIX B PERL SCRIPT AND SUPPORTING FILES.........cccccveninninn 74
B.l Perl Script......oceiminieiiiiiiiiiiiiieerererecrrnctcerracnsaae 75
B.2 Excerpt of a Perl Script Output File..............c.oooooeiiiiiain 81
B.3 The FillTables.bat file..........c.cccooeviiiiiiiiiiiiiiiiiiiinin 82
B.4 Extracted Keywords List..........cccccocoiiiiiiiiiiiiiiinininnn 83
APPENDIX C DATABASE TABLES........ccoiiiiiiiiiiiiniiiniinnicceinenes 90
REFERENCES... ... ittt ceer e e e cee s e s e e ans 92

LIST OF FIGURES

Figure Page
2.1 System diagram detailing the domain of the described application................ 18
2.2 ER Diagram of the yeast keywords database.............cccccevveeeneenenenrnnnnnn. 25
2.3 Flow diagram of the steps in a graphical keywords annotation process 29

3.1 The main frame of the java application with a cluster of sample data displayed. 32
3.2 The keywords selection frameco.iiuieiiniiiinnininiiieeieeeneneeaeneans 33
3.3 The process of keyword and color selection..............ccceevveeniencencrncannnnnnn. 35
3.4 Color-coded keyword annotation of the down-regulated genes in the cluster.... 37

3.5 Color-coded keyword annotation of the up-regulated genes in the sample data.. 38

viii

LIST OF ABBREVIATIONS

EBI European Bioinformatics Institute

ER Entity-Relationship

CDS Coding Sequence

DNA Deoxyribonucleic Acid

GEO Gene Expression Omnibus

GO Gene Ontology

GUI Graphical User Interface

JDBC Java Database Connectivity

KEGG Kyoto Encyclopedia of Genes and Genomes
mRNA messenger Ribonucleic Acid

ORF Open Reading Frame B
PCA Principal Component Analysis

SIB Swiss Institute for Bioinformatics

SGD Saccharomyces Genome Database

SMD Stanford Microarray Database

SOM Self-Organizing Maps

SQL Structured Query Language

UPGMA Un-weighted Pair Group Method Using Arithmetic Averages

CHAPTER 1

INTRODUCTION

1.1 .Objective

The objective of this thesis is to build a tool to assist in the interpretation of the
microarray gene expression experiments. It aims to add more functionality to
visualization of gene expression clustering results by graphically annotating the genes.
Clustering techniques and dendrogram visualization are widely used to analyze gene
expression data. In this work another layer of functionality was added to the expression
analysis tools by providing color-coded functional annotations of the genes in the
dendrogram.

With the advance of modern genomic sciences, a wealth of gene expression
information is generated which needs careful analysis to extract knowledge from the raw
biological data. Gene expression of thousands of genes is representative of the state of the
cells, cellular processes and gene product inter-relations. However, human beings cannot
process effectively numeric information in such quantities. Various analysis and
visualization tools are needed to simplify the process of data interpretation. Gene
clustering methods have been widely applied to effectively group genes according to their
expression level. The assumption being made is that genes with similar expression level
that are grouped together could be involved in the same cellular processes, could be co-
regulated or other functional relationships could exist among them. To facilitate the

researcher looking at the clustered data in a form of a dendrogram, an application was

designed which enhances the visualization of the clustering results with functional
biological information. Along with the dendrogram keyword gene annotations are
displayed in a color-coded scheme according to the user preferences. This can provide the
biologist with fast and intuitive means of quickly evaluating the functional information. It
can save the researcher a long and tedious process of manually looking up the entries of
each gene in which he is interested in and can serve as a first line of reference and

selection of interesting genes to focus on.

1.2 Background Information
Presented is a bioinformatics tool for analysis of gene expression data. To understand the
specific approach taken, some background information concerning the microarray
technique, clustering and visualization methods and gene annotation tools will be
discussed. Biological and data mining concepts and techniques are presented to set the

conceptual frame in which the application tool is developed.

1.2.1 Gene Expression and Microarrays

With the advent of DNA microarray technologies, large-scale gene expression
experiments have been widely performed in the recent years. The development of the
microarray techniques allows the researchers to obtain vast amounts of gene expression
data, which needs to be stored, maintained and analyzed automatically. Hundreds or
thousands of genes are studied simultaneously, providing information about gene
expression patterns in cells in various physiological conditions such as normal versus
diseased state. Cells representing different stages of development as well as cells treated

with drugs or maintained in different media could yield enormous amount of information

which has to be mined to extract deeper knowledge about the undergoing processes and
molecules that control them. Understanding patterns of expressed genes will improve our
comprehension of the complex networks in the b;ological systems (Brazma and Vilo,
2000).

One of the most popular platforms allows the comparison of the abundance of
mRNA in two samples, one of which is used as a control. Briefly, RNA from the sample
and control is extracted and labeled with different fluorescent labels. The cellular extracts
are placed over the microarray plate which contains complementary DNA fragments and
are allowed to competitively hybridize. When excited by a laser, the fluorescence
intensities reflect the relative expression level of the genes in the sample and control. The
ratio of the fluorescent intensities read is used for further analysis.

Another platform utilized by Affymetrix measures the mRNA level from two
samples separately. Each sample’s mRNA labeled molecules are placed on separate
microarray plates, allowed to hybridize and their signals read and then compared. Again,
the ration between the two signals is used for further studies.

The gene expression data from various experimental conditions may be
represented as a so-called “gene expression matrix” (Brazma and Vilo, 2000). The matrix
can be imagined as a table. In the table the rows represent different genes and the
columns correspond to the conditions under which the cell was studied, e.g. from various
developmental stages, from different tissues or treated in a particular manner. Each cell in
this table contains a number that characterizes the expression level of the gene
corresponding to the given condition. Some universities, institutions or governmental

organizations currently maintain huge databases of such tables for use by the scientific

community. To transform the raw images into table entries, a variety of techniques is
employed to identify the spots corresponding to genes on the microarray, to determine
their boundaries, to measure the fluorescence intensities from each spot and the
background. The pre-processing of the data is a non-trivial task and the outcome of the
analysis may depend to a great extend on the initial preparation of data (Quackenbush,
2001). The expression matrix is further used for dustering and can be visualized for
better understanding of the values in a color-coded scheme. Traditionally, the up-
regulated gene expression is denoted in red, the down-regulated expression — in green,
and gene expression with no changes — in black.

A very important fact should be emphasized when studying gene expression. A
researcher is ultimately interested in the function and interactions of proteins which carry
out the gene function. Gene expression experiments, although much easier and cheaper to
perform, might not be completely representative of their products (Brazma and Vilo,
2000). The rate of mRNA synthesis might not reflect the protein amount. In addition,
post-translational modifications of the proteins, which are independent of transcription
level, are extremely important for the function of the gene product. It should also be
noted, that the microarray-generated data is still not quantitative in terms of mRNA
molecules, but reflects relative expression of genes. Thus, the outcome of applying
quantitative methods might not be completely accurate.

Since these experiments reflect the international efforts to decipher gene
expression implications, there is an urgent need for standardization of experimental

settings as well as annotation and submission procedures. MIAME or Minimal

Information about a Microarray Experiment is recently described by Brazma and
colleagues (Brazma et al., 2001).

Gene expression data should not be studied independently, but viewed in the light
of the rest of experimental data available. In order to make valid conclusions, gene
expression analysis must be combined with other existing biological information obtained
by other independent methods. In the presented application, keywords information
extracted from a major biological database was used to complement the results obtained

by clustering the expression data.

12.2 Clustering Methods
Clustering of the data according to some measure of similarity is one of the data mining
techniques currently used for analysis of microarray expression data (Celis et al., 2000).
The output is clusters of genes with similar patterns of expression. The grouping of genes
with known and unknown functions according to their expression level might indicate a
functional role for the unknown genes thus potentially leading to targets for further
biological research. The underlying assumption made is that genes that are co-regulated
show similar patterns of expression and participate in the same pathway or respond to the
same environmental signals. Clustering may lead to better understanding of gene
regulation in norm and disease, to deciphering of metabolic and signaling pathways, to
reverse-engineering of gene networks and better drug treatments design.

There are different approaches of clustering the gene expression data,
unsupervised and supervised. Another categorization divides them into agglomerative

and divisive depending on whether the algorithm starts with individual members and

fuses them together in one big cluster, or, respectively, starts with all data and gradually
divides it in groups. |

In the unsupervised methods, just the gene expression levels are taken into
account when performing the clustering. In the supervised techniques, some previous
biological knowledge is also incorporated, e.g. which genes should cluster together
(Brazma et al., 2000 and Quackenbush, 2001). The supervised methods act as classifiers
of a data set based typically on positive and negative training sets to teach the classifier
initially. For example, Califano et al. designed a classifier to predict cell phenotype and
drug sensitivity. Support Vector Machines (SVM) is another approach (Brown et al.,
2000) to predict functional roles for uncharacterized yeast open reading frames (ORFs).
The goal is to construct classifiers which assign a given expression profile to a predefined
class. This can be very useful for diagnostics when classifying tumor versus normal
samples and in patient prognosis determination.

Many different unsupervised clustering algorithms exist such as hierarchical
clustering, agglomerative clustering, K-means clustering, self-organizing maps, principal
component analysis and others, but there is no consensus as to which one is the best. It
seems that different algorithms are better- or worse-suited depending on the type of data
analyzed.

The unsupervised clustering algorithms, in particular the hierarchical clustering
methods are of most interest for this project. However, a brief introduction to some other
unsupervised and supervised methods will be given for completeness.

The data points are typically represented by the log; (ratio), where ratio is the

normalized value of the expression level for a particular gene in the query sample divided

by its normalized value for the control sample (Quackenbush, 2001). Each gene is
represented as an expression vector and the dimensionality of the expression space is
specified as the number of separate genes per experiment. Genes with similar expressions
throughout the same set of experiments will be positioned close in the expression space.
Alternatively, each data vector might represent the values of the different genes during
one experimental condition and the dimensionality in this case is modeled by the number
of genes examined. In this case, gene expression profiles similar for different
experimental conditions will be clustered together.

The idea of the K-means algorithm is as follows: initially all the data is arbitrarily
divided into n clusters, where n is specified a priori. Then the center of each cluster is
computed and the distances between the data points to the cluster centers are calculated.
The data points are assigned to the closest cluster according to a minimum distance to the
cluster center. Distance metric, usually Euclidean distance or correlation coefficient, is
used for calculation of distances between the points. Then the cluster centers are re-
calculated. The process is repeated until no further cluster re-assignments are made or
until a predefined number of iterations have been reached.

As an alternative or in addition to the K-means clustering, a hierarchical grouping
can be performed. Hierarchical clustering or UPGMA (un-weighted pair group method
using arithmetic averages) joins single gene expression profiles to form a hierarchical tree
based on a similarity measure. First, the pair-wise distance matrix is calculated for all of
the genes in the same cluster. Second, the distance matrix is searched for the two most
similar clusters (initially a cluster consists of just one gene). Third, two selected clusters

are merged into a new cluster. The procedure is repeated iteratively until only a single

cluster is left. The joined genes can be represented as leaves of a hierarchical tree
(dendrogram), and after the join a new node is created thus assembling the tree from the
leaves towards the root. The heights of edges of the tree reflect the distance between the
genes that formed that node. This technique produces a hierarchical tree to visualize the
results (Jagota, 2001).

Self-organizing maps (SOM) is a neural network-based divisive clustering
method and Principal Component Analysis (PCA) is a mathematical technique that
allows visual representation of data and effectively reduces the dimensionality of gene-
expression space without significant loss of information (Quackenbush, 2001).

In any clustering method, the calculation of the distance between the gene or
experiment vectors is one of the most important criteria according to which different
genes or experiments are grouped together. Different distance measures, or distance
metrics may produce dissimilar clustering (Quackenbush, 2001). In the single-linkage
clustering, the distance between two clusters is the minimum distance between two
members of two clusters. This technique is, therefore, referred to as nearest-neighbor
method. Among the other techniques is the average linkage clustering, or UPGMA,
where the average distance is calculated from the distance between each point in a cluster
and all other points in another cluster (Durbin et al., 1998). Measuring similarity or
dissimilarity is reviewed in Jagota, 2001.

Unsupervised methods are the most widely used clustering methods. They do not
take into account any additional biological information into account when computing the
similarities among genes. The researchers are usually doing further research on the

interesting features of the clustering output manually, which is very time-consuming and

tedious. This may involve going through multiple databases maintained in different
formats and containing different data. One can be easily lost in the process. Automation
of the process of annotation of the clustered data is necessary to highlight the biological
characteristics of the studied genes. Information extracted from the existing biological
databases and applied to the clustering method can augment the knowledge obtained from
the analysis of the expression profiles.

Clustering methods for analysis of microarray data are implemented and available
for download or are web-accessible. Michael Eisen’s Cluster software implements
different clustering algorithms (Eisen et al., 1998). The software is freely available and
can be downloaded at http://rana.Ibl.gov/EisenSoftware.htm. For a set of genes, an upper
diagonal similarity matrix is computed according to a user-specified metric. The matrix
contains similarity scores for all pairs of genes. The matrix is scanned to find the highest
value reflecting the most similar genes and a parent node is created that joins them. This
procedure is repeated until only one node remains. The output of the program is a .cdt file
with the clustering information calculated. The file can be used by TreeView software
(Eisen et al., 1998) to visualize the clustering results. FreeView, a Java implementation of
TreeView can be found at http://magix.fri.uni-lj.si/freeview/ and was developed by
Marko Kavcic and Blaz Zupan. The source code is freely available and was used and
modified for the purposes of the presented project to accommodate the annotation
functionality. Our program adds value by supplying graphical keyword annotation

information for the clustered genes to facilitate the researcher.

10

1.2.3 Visualization Techniques

The microarray-based technology and other high-throughput techniques produce vast
amounts of numeric data which are not easy assimilated by humans. More natural and
intuitive methods are needed so that the complexity of the information is preserved but it
is easy for the investigator to interpret the important features.

As an initial step, Eisen et al., 1998, present the raw microarray data graphically
by coloring each cell on the basis of the fluorescence measured. Cells with logarithm
ratios of zero are colored black, the positive and negative ratios are colored red and
green, respectively (Eisen at al., 1998). This approach has been adopted and used widely
nowadays.

The visualization of the clustering results is an important step of the process since
it allows researchers to grasp features or patterns that are difficult to impossible to
comprehend just by looking at the data in that is in the form of numbers or even colors.
The hierarchical tree/dendrogram representation of the results allows visualization of the
gene relationships based on the similarity in their expression. The length of the branches
corresponds to the level of similarity between the different genes.

Scatter plots and principal component analysis are other visualization techniques
reviewed in Jagota, 2001.

This thesis attempts to add another level of graphical representation that is easy to
grasp. The keywords functional information is color-coded according to the user
preferences and displayed in the form of colored squares so that the investigator can
simultaneously view the colored matrix of gene expression, the cluster and the annotation

information.

11

1.2.4 Gene Annotation

The exponential growth of gene expression data in the recent years creates a need to sift
through the sea of information to search for biological meaning. Therefore, simply
applying computational tools to group of the expression patterns does not answer the
question of how to interpret, make use of this information or address the complexity of
biological processes. Although the assumption made is that genes with similar expression
patterns share similar functions, the clustering methods do not automatically provide us
with the knowledge of functional organization of genes, gene networks, co-regulation or
structure of biochemical pathways.

On the other hand, supervised methods, which take into account some existing
biological knowledge to classify genes with unknown functions, may lead to some
misleading predictions. As it was noted above, mRNA levels may not always be
representative of the level of protein which carries out the function. It does not reflect its
the post-transcriptional modifications. In addition, supervised methods classify data
according to some criteria chosen for the analysis and do not reveal other functional
dependencies that might be interesting for the researcher. Therefore, they are very useful,
for example, for classifying samples for diagnostic purposes, but are limiting in a way
that it does not allow discovery of novel patterns among all the genes.

Therefore, a suitable approach would combine the two strategies of unsupervised
and supervised methods in such a way that it would not be biased just as the unsupervised
methods, but it will incorporate pre-existing biological knowledge to facilitate the
interpretation of the results. This could be achieved by presenting at the same time

clustering results along with gene annotation information and let the investigator with his

12

expert knowledge and insight to decide how to use the available information from
clustering and biological gene characteristics.

Presenting the biological properties of the gene could be done in many ways. For
this project, keyword information from SWISS-PROT biological database was chosen
(http://us.expasy.org/sprot/). This publicly available database has a reputation of being
the most precise and accurately curated and it maintains information related to gene
function such as keyword and function description. It has a vocabulary of 333 keywords
related to yeast genes (Appendix B.4). Although it is impossible to incorporate the
information of all the keywords along with the clustering visualization and maintain the
clarity and simplicity, a small number of keywords selected by the user can be presented
easily to provide helpful information and insight to the investigator. For easier
visualization, the keywords can be color-coded and represented as symbols such as
squares or other icons, to make it easy for the user to grasp the information.

A very systematic and large-scale method of annotating genes in different
organisms is under way. The Gene Ontology project (GO) and Gene Ontology
Consortium was formed to develop shared, structured vocabularies to annotate molecular
characteristics of genes across organisms (http://www.geneontology.org/#ontologies).
The Consortium seeks to provide a set of controlled vocabulary for specific biological
domains that can be used to describe gene products in any organism. The work includes
building three extensive molecular ontologies to describe molecular function, biological
process and cellular component. Gene ontology may be seen as a tree, where parent
nodes give a more general description of a gene than their children (Hvisdten et al.,

2001). The leaf nodes give an accurate description of each gene. For each gene ina

13

microarray experiment one or more nodes in the ontology tree may be found to represent
the existing knowledge about its functions. Functional groups or classes can be retrieved
from the gene ontology by traversing the tree bottom-up, starting from the leaf nodes and
stopping when reaching nodes that within their sub-trees contain a group of genes labeled
with the same annotation. The consortium was initiated by scientists researching yeast,
the fruit fly and the mouse, but additional model organism groups are joining the project.
Members of the Consortium can contribute to the updates and revisions of GO. The use
of ontology methods to organize the available biological knowledge is an area of active
research. The ontologies are structured vocabularies in the form of directed acyclic
graphs that represent a network in which each term may be a “child” of one or more than
one “parent”. Relationships of child to parent can be of the “is a” or the “part of” type to
represent an instance of the parent or component of the parent, respectively. Definitions
of the GO terms are obtained partially from other databases such as SWISS-PROT.
Keywords used in this application have been incorporated as GO terms. The mapping
between the keywords and the GO terms can be found at
http://www.geneontology.org/external2go/spkw2go. When GO becomes available for
more organisms and becomes widely used it will be a much better alternative than
keywords to incorporate into an application as the one described. It will give a much

broader and comprehensive perspective that the currently used keywords.

1.2.5 Examples of Available Resources
There have been many attempts for integration of different biological analysis tools
and/or information from multiple databases. One such application is the Database

Referencing of Array Genes Online (DRAGON) (http://pc190-

14

10 kennedykrieger.org/dragon. htm). DRAGON is a web-accessible database that aids in
the analysis of differential gene expression data as a biological annotation tool. This web-
accessible database currently extracts or is in the process of collecting information related
to the biological characteristics of individual genes from a variety of publicly available
sources such as SWISS-PROT, Pfam, UniGene, Kyoto Encyclopedia of Genes and
Genomes (KEGG), Online Mendelian Inheritance in Man (OMIM), Transfac, Interpro,
Biochemical Image Database (BBID) and multiple yeast databases. The user submits his
list of genes with or without gene expression data and request that list to be annotated
with specific type of information relevant to the experimental system being studied. It
returns the same text file that was submitted with additional columns containing gene
annotation information. View tools are being developed to integrate the expression data
and the type of annotation information requested by the user.

Other web-based services related to microarray analysis include ArrayExpress
(http://www.ebi.ac.uk/microarray/ArrayExpress/arrayexpress.html), Gene Expression
Omnibus (GEO) (http://www3.oup.co.uk/nar/database/summary/319), ArrayDB
(http://www.niehs.nih.gov/Connections/2000/oct-nov/nov00-4a.htm) and ExpressDB
(http://arep.med.harvard.edu/ExpressDB/ExpressDB.v102.help.htm). These databases are
mostly repositories for microarray data that allow storage and retrieval of raw data. In
addition, ArrayDB is a laboratory information management system. Stanford Microarray
Database (SMD) (hitp://www.dnachip.org/) stores raw and normalized data and their
images. It also provides interfaces for data retrieval, analysis and visualization.

GeneCards project (http://bioinformatics.btk.utu.fi/genecards/), initiated at the

Weitzman Institute of Science, aims to integrate all biomedical information related to

15

human genes and their products into one web-accessible knowledge base. It collects and
organizes the information retrieved from more than thirty five databases.

Kyoto Encyclopedia of Genes and Genomes (KEGG)
(http://www.genome.ad.jp/kegg/) is an effort to computerize current knowledge of
molecular and cellular biology in terms of the information pathways that consist of
interacting molecules or genes and to provide links from the gene catalogs produced by
genome sequencing projects. The KEGG project is undertaken by the Bioinformatics
Center, Institute for Chemical Research, Kyoto University. It provides graphical and
textual information on biochemical pathways as well as analysis tools.

There are currently more than 335 biological databases presented by Baxevanis,
2002. Although the international scientific community actively works on integrating all
available biological information, it is not an easy task. Developing analysis tools and
visualization techniques is another area of active research. In addition to the efforts of
standardization of data formats, there is still the need to bring all these aspects of gene
studies together in applications encompassing various gene data, analysis tools and
visualization that can make interpretation of the results intuitive and easy to grasp. The
application shown in this thesis is a small step towards facilitating the researcher in

getting better insight from the data.

CHAPTER 2

SPECIFIC DESIGN OF THE SOFTWARE APPLICATION

As detailed in the introduction, currently a widely used approach in addressing biological
questions is the microarray experiment. A microarray experiment is performed to study
gene expression levels in different cells and tissues, at different stages of development. It
could facilitate drug target discovery, to highlight differences between control and
diseased cells and assist in patient diagnostics. Microarray data are being increasingly
stored in public databases for easy access to any investigator and were reviewed in
Chapter 2. A multitude of analysis techniques including data mining, statistical and
artificial intelligence methods are applied to extract knowledge from the data. Some of
these techniques that are appropriate for the current project, such as the clustering
techniques, are outlined in the introduction section. Since the analysis includes dealing
with vast amounts of numerical data, it is difficult for humans to comprehend them
easily. Therefore, efficient graphical representations are needed for a fast and intuitive
captioning of the data by the researchers. A dendrogram is one efficient way to visualize
microarray data that have been grouped according to the similarity of their gene
expression levels. Proposed and implemented is an application which adds functional
graphical information to the results of a clustering analysis of microarray data. The aim
of the application is to annotate with keyword information the genes as they are presented
in the dendrogram after the hierarchical clustering has been performed. Upon selection of
a keyword from the menu, the program attaches a color-coded icon to the genes in the

dendrogram which contain that keyword in their biological database record. A general

16

17

view which outlines the place of the current project among the available biological
databases and analysis tools is presented in Figure 2.1

The more general problem can be disintegrated into several smaller problems.
First, an organism or organisms which genes will be studied must be chosen. Then a
biological database to be used for the extraction of the annotation information must be
selected. One must decide whether the extraction is going to be dynamic at the time of
the gene annotation or a local database with the pertinent information is to be designed
and kept. If a local database is maintained, a DBMS has to be chosen. The method for by
which the information pertaining to keywords and, possibly other information to be kept
in the local database, is going to be extracted, parsed and used, must be selected. If a
local database is used, it has to be connected to the application using the keyword

information in the dendrogram.

2.1 Yeast as a Model Organism
Saccharomyces cerevisiae model organism was used for several reasons. Saccharomyces
cerevisiae (Baker’s yeast or yeast) is a simple eukaryotic organism. Its genome consists
of only 6881 genes. It is widely used as a eukaryotic microorganism model for biological
studies. The complete sequence of its genome was elucidated in 1996. Ever since, it was
being used as a reference towards the sequences of human and other higher eukaryotic
genes. Furthermore, since many genes are functioning in such fundamental and
conserved processes such as cell cycle and growth, the yeast organism is used in
complementarity assays where the yeast genes are replaced with their highly homologous

sequences from human as well as other higher eukaryotes to provide insight into their

18

ﬂ Public Biological Web Databases B
Microarray Databases DNA and RNA Databases Other Databases Protein Databases

EHICIICEEY)

Pre-processing of gt Web-based System o

J/

1
g
g
!
:

N

;%

R T
T

7}
/

T e o o

Figure 2.1 The diagram illustrates where the developed database and the application
stand in relevance to the other available resources. The shaded areas and the shaded
arrows in the lower right corner indicate the steps performed in this project. The dashed
line outlines the system that could be developed in the future to include the analysis of
microarray data, connectivity to the major microarray depositories, data from more
biological databases and web-accessibility.

19

functions. Moreover, in the last few years microarray studies have become very popular
and the team of P.O. Brown at Stanford University devised a protocol to make the
appropriate tools low cost and, consequently, to accommodate the entire set of yeast
genes to one chip. Thus, the whole network of yeast genes can be monitored for changes
in expression profiles in varying biological conditions and analyze the gene functions and

their inter-dependence.

2.2 Extraction of Keywords Information
Many publicly available biological databases exist that contain a wealth of information
usefil to the research community. GenBank was among the earliest to be established and
it contains the most complete collection of gene sequence and sequence related
information as well as access to protein sequence and protein structure data. GenBank
provides links to other public resources too. The National Center for Biotechnology
Information (NCBI) in cooperation with the European Molecular Biology Laboratory
(EMBL) and the DNA Database of Japan (DDBJ) maintain sequence data from every
organism, source and type of DNA. On the other hand, SWISS-PROT, PIR, and PRF are
examples of protein databases. More specialized databases containing 3D protein
structure information (Protein Data Bank), post-translational modifications (RESID),
biochemical pathway data (KEGG, WIT), gene expression data and databases dedicated
to a specific organisms are also available. For the current application, functional
annotation information about yeast genes was extracted from a publicly available

database.

20

The biological database of choice for this project was SWISS-PROT Protein
Knowledgebase (http://www.ebi.ac.uk/swissprot/Information/information.html). It is
maintained collaboratively by the Swiss Institute for Bioinformatics (SIB) and the
European Bioinformatics Institute (EBI). The SWISS-PROT Protein Knowledgebase is
an annotated protein sequence database established in 1986 and has been denoted as the
most accurate and timely updated protein database. It provides annotations such as the
description of protein function, domains structure, post-translational modifications,
keywords, variants, etc. Cross-references are made in SWISS-PROT to multiple other
databases among which is the Saccharomyces Genome Database (SGD) at Stanford
University (http:/genome-www.stanford.edu/Saccharomyces/). The SWISS-PROT
Protein Knowledgebase was chosen for the extraction of the keyword information
because it is a curated protein sequence database that provides a high level of annotation,
a minimal level of redundancy and high level of integration with other databases. The
SWISS-PROT is accompanied by TrEMBL, a computer-annotated supplement to
SWISS-PROT. The TrEMBL database contains the translations of all coding sequences
(CDS) present in the DDBJ/EMBL/GenBank Nucleotide Sequence Database and also
protein sequences extracted from the literature or submitted to SWISS-PROT, which are
not yet integrated into SWISS-PROT. The TrEMBL records for the yeast CDS were also
used in the annotation in the tool presented. The number of SWISS-PROT yeast entries is
4880 and the number of TTEMBL yeast entries at the time of this thesis preparation was
2004.

In order to extract the useful functional information, the data from the public

databases had to be parsed and Perl language was chosen. This task could be performed

21

by a program written in other computer languages. However, Perl is a platform-
independent language especially suitable for work with strings (Schwartz and
Christiansen, 1997). If C++ were used, it had to be written for a particular platform and
either be rewritten to be used for another platform, or restricted to the current one. Perl
was chosen to parse the original data files from SWISS-PROT because of its ease of use,
flexibility and efficiency. Perl has flexible syntax, takes care of common tasks, such as
memory allocation, and it has powerful constructs. A program in C++, for example,
would require more error checking, although it may be optimized to be faster. However,
since the parsing is not a process done frequently, the speed is not the biggest concem. In
order to sort through and analyze the available yeast data at SWISS-PROT, a Perl script
was written because of Perl’s strong pattern finding capacity, especially strings in text. In
contrast, C++ does not have the pattern matching or regular expression usage to the
extent that Perl offers, and that is particularly important when working with strings. Thus,
programming problems that would require many lines of code in C++ or Java could be
solved in a few statements in Perl (Gibas and Jambeck, 2001). The next candidate of
choice would be Python. Although Python is less known than Perl, however, it is a fully
object-oriented language which has many useful contributed code and libraries related to
biological data. Perl is highly portable and free for everybody. In addition, many useful
modules relevant to molecular biology problems have been developed and are freely
available through the BioPerl project (http://bio.perl.org/). These modules could be
integrated easily into the existing code as needed.

Therefore, a Perl script was written which parsed the available yeast data

from the SWISS-PROT downloaded file and was used to create the specific files needed

22

to populate the MySQL database tables. It extracted the information about primary and
secondary account numbers of the genes, the gene name, description and keyword
information to be used for the annotations in the dendrogram of gene expression

clustering.

2.3 Relational Database Design and Development
Instead of a dynamic retrieval of the yeast annotation information from the Web, an
approach to build a local database was preferred in favor of the speed that can be
achieved with a local database solution. As means of storing and retrieving the yeast gene
information, a relational database was designed and built and later queried according to
the user specifications.

A database management system (DBMS) was chosen versus a flat file system. It
provides data independence from data representation and storage, and efficient data
storage and retrieval. In addition, DBMS also ensures data integrity and security as well
as concurrent access and crash recovery, although these features are not needed for the
current project. It also reduces the application development time (Ramakrishnan and
Gehrke, 2000). A database management system is a complex software optimized for
certain kinds of workloads, of which answering a complex query is especially valuable
for the currently described application system. Most DBMS today use the relational
model where the high-level data description construct is a relation, or a set of records.
While many databases that use hierarchical, network, object-oriented or object-relational
models, the dominant one is the relational data model, used in systems such as DB2,

Informix, Oracle, Sybase, Access, MySQL and other. The Structured Query Language

23

(SQL) is a subset of the Data Manipulation Language (DML) and provides constructs to
insert, delete and modify data in the database. The ease of expressing queries in SQL has
played a major role in the success of the relational database systems.

The choice of relational database used was based on the cost, availability,
usability and performance. Oracle, Sybase and DB2 are heavily used in industry settings.
However, they are prohibitively expensive. In contrast, anyone can download the MySQL
software from the Internet and use it without paying anything. For the current project
only a relatively small number of records and tables were needed. Therefore, the
industrial strength of Oracle or Sybase that could maintain a lot of data in exchange for a
high cost was not a priority.

It is hard to find solid performance data to choose among competing technology
in the database space, especially since the database vendors use no-benchmarking clauses
in their license agreements to block publication of benchmarks that they disapprove. A
recent article in eWeek online magazine (Dyck, 2002,
http://www.eweek.com/print_article/0,3668,a=23115,00.asp) reports on a benchmark test
carried out by eWeek and PC Magazine. Performance data for the latest versions of five
major server databases was compared. IBM’s DB2, MS SQL Server 2000, MySQL 4.0.1
Max, Oracle Corporation’s Oracle9i and Sybase were compared on the same hardware
platform. Drivers, memory tuning and database design issues were the three factors that
had the most impact on performance. The Oracle and MySQL drivers had the best
combination of a complete Java Database Connectivity (JDBC) feature set and stability.
MySQL 4.0.1 Max had a great performance mostly due to a new, extremely fast in-

memory query results cache, not available with any of the other databases. If the text of

24

an incoming query has a byte-for-byte match with a cached query, MySQL can retrieve
the results directly from the cache without compiling the query, getting locks or doing
index accesses. This feature could be especially useful in the presented project, where
tables are loaded once and queried, and don’t have transactions with updates, which clear
the cache. The MySQL Database Server is very fast, reliable, and easy to use. The
MySQL Database Software is a client/ server system that consists of a multi-threaded
SQL server that supports different backends, several different client programs and
libraries, administrative tools etc. There is a large amount of contributed MySQL
software available. Other advantages of MySQL are that it works on different platforms,
it has a wide range of programming interfaces (APIs) such as C++, Java, and Perl, and it
handles large databases (DuBois, 2000). So, because of its high performance and free
availability to the user, MySQL was the DBMS of choice. Server version 4.0.4-beta-max-
nt was used. Since the company does not have its own driver, Mark Matthew’s MySQL
JDBC driver version 1.3, the same driver tested in the benchmark study done by eWeek
and PC Magazine, was used.

An Entity-Relationship (ER) Diagram in Figure 2.2 displays the local yeast ER
database schema and shows the data graphically in the form of entities, relationships and
attributes. For the local MySQL database, the accession number of the yeast gene from
SWISS-PROT or TTEMBL was used as a unique identifier of the gene entity. Numerical
keyword ID was the key for the Keyword Information entity. The rest of the entities had
only one, and therefore, key attribute.

The yeast database consists of five tables. Table ac_descr contains all the

accession numbers and the relevant description of the gene with that accession number.

account keyword

number ID

Yeast Gene 0 Keyword
information

Gene
Gene Name Gene Description Secondary
Account
number

Came > p——
number

Figure 2.2 The figure represents an ER diagram of the yeast keywords database used to
annotate the genes in the dendrogram. The entities are shown as boxes, attributes as ovals
and relationships as diamonds. The key attributes are underlined. The four relationships
and the “Keyword Information” entity were developed into database tables.

26

Some genes have a secondary number in addition to the primary, so the second_ac table
was created. The second_ac table contains all primary accession numbers and their
corresponding secondary accession numbers for a fraction of the genes that have both
primary and secondary accession numbers. The ac_name table contains all the possible
names for a gene with a particular accession number. The keywords associated with the
genes were extracted while reading the annotations for each gene from the SWISS-PROT
file. A keyword identification number (id) was assigned to each newly encountered
keyword that was inserted in the database and so an index was created. It is important to
note that the order of keywords is not alphabetical but in order of their appearance in the
original data file. The table kw_id stores all the ids and their corresponding keywords.
After each keyword was assigned an id, it was possible to associate each accession
number with a keyword id(s) that are encountered for that accession number. This
information is stored in the ac_kw table. With this design, just one read of the original
data file is necessary to create all the necessary output files used to populate the database

tables. The tables in the database are described in Appendix C.

2.4 Java Application for Graphical Functional Annotation
Java programming language was chosen mostly because of its platform independence,
object-oriented design and ease of development when constructing a graphical user
interface (GUI). As an alternative, C++ could be used. For example, Eisen’s Cluster
software was written in C++. However, C++ is platform-dependent and the program
either had to have separate versions for the different platforms, or it had to be restricted to

a particular one. The graphical nature of the application implies complicated components.

27

Since Java has a rich library of pre-defined classes, it makes it easy for the programmer
to derive custom solutions based on the existing classes. Libraries are also available for
C++, but these might not be incorporated in the language and may not be free. In
addition, C++ could be more efficient, but is not so friendly to the developer. It could
take a longer time for development, and require more error checking and more care when
working with memory addressing. Java, in contrast, does not have pointer arithmetic.
Most likely more code would be generated by using C++ and, therefore, make it more
difficult for future changes to be incorporated. In addition, the built-in data structures as
ArrayList, HashMap, TreeMap and Strings are very useful for the current application and
for a shorter development time. Currently, Java is a more popular choice for GUI
development, and if in the future someone would like to modify the code, programmers
would likely have more experience developing GUI in Java. Based on the above
considerations, Java was a natural choice.

The application takes as an input a .cdt file produced by the Cluster application
written by M. Eisen (Eisen et al., 1998) at Stanford University, available at no cost for
download on the web (http://rana.lbl.gov/EisenSoftware.htm).

A freely available code for an application performing tree visualization of
clustering results, based on Eisen’s Treevlew software, was adopted and modified to
support the current project (Kavcic & Zupan, 2001). Annotation functionality code is
developed and incorporated in the application. This way, a user starts with a .cdt file of
numerical clustering results, displays the dendrogram according to his preferences either
as a whole image, or as an enhanced part of the image showing the gene names. An

Annotate Menu opens up a GUI that incorporates all the keywords in an alphabetical

28

order and the available colors. It allows the user to select the desired keywords and colors
in which he wants the annotations to be displayed. When the user specifies his
requirements for the gene annotation, the program connects to the local MySQL database
and performs the specific query, and returns the results. The information is then
converted into a color-coded icon displayed next to the gene name in the dendrogram.

A flow diagram detailing the specific stages followed to design the application
and the steps the user has to follow to generate the input file for the presented application

is shown in Figure 2.3.

ANsEsunEane,

Define Biological Problem

¢

Perform Biological Experiment

}

Obtain Microarray Data

Pre-process Microarray Data

v

Analyze with Cluster Software

Output Files Contain

Clustering Information

GPRSAURNRANANRURENSERENRNARSRD

Java application

Dendrogram Visualization

and Keywords Annotation

29

SWISS-PROT Biological Database

Yeast File Download

|

Yeast Information Parsing

Perl Script

Create Local Database

MySQL Yeast Keywords Database

v

Populate the Local Database

with Extracted Keywords Information

Figure 2.3 A flow diagram illustrating the process of graphical annotation of the
microarray gene expression data. The dashed area shows steps to be performed before
using the program and the tasks in bold illustrate the design and implementation of the

application.

CHAPTER 3

RESULTS

Java application tool was developed to graphically annotate and visualize the gene
expression clustering results of microarray experiments. The work was divided among
three main tasks: writing a Perl script to parse the SWISS-PROT keyword and related
information, designing and implementing a local relational database in MySQL and
building a graphical user interface with its supporting logic for the annotate menu of the
application which queries the database and displays the keyword annotations for the gene

graphically in a color-coded scheme.

1.1 Implementation Highlights
The data necessary for the annotation of the yeast genes was obtained from SWISS-
PROT knowledgebase. A text file containing yeast accession number, description, gene
names and the associated keywords for all the S. cerevisiae (Taxonomy ID 4932) genes
was downloaded from SWISS-PROT (http://genome-
www_stanford.edu/Saccharomyces/lists_tables.html).

A Perl script was written that parses all the information from the SWISS-PROT
original file (Perl Kit, Version 5.6.1). The script reads the input file just once, parses it
and creates five output files which consist of insert SQL statements to fill the records in
the five tables of MySQL yeast_kw_db local database that holds information to be used
for the annotation of the genes in the dendrogram. A bat file (Appendix B.3) was created

which, upon execution, connects to the MySQL Server and loads the output files from the

30

31

Perl script into the appropriate tables of the database. The Perl script Generic.pl is
accompanied with by comments and is attached in Appendix B.1 along with the list of the
333 extracted unique keywords used for the yeast genes annotation (Appendix B.4).

A simple database consisting of five tables was created using MySQL DBMS to
hold the information of gene primary and secondary accession numbers, gene
descriptions, gene names and keywords needed for the annotations. The database table’s
specifics can be found in Appendix C.

The annotation functionality was implemented using Java JDK 1.3 and JBuilder
7.0 Personal Edition. The FreeView program (http://magix.fri.uni-lj.si), which is a Java
implementation of Michael Eisen’s TreeView software
(http://rana.lbl.gov/EisenSoftware. htm), was used as a skeleton for building additional
functionality by the described application. The code was adopted and modified to
accommodate the annotation process by adding an extra menu “Annotate”. The
application makes a JDBC connection to the local MySQL database to query it according
to the user’s specifications. The returned results are displayed in a graphical color-coded
mode next to the genes containing the chosen keywords. A specific example of using the
program and the specifics of the followed steps are detailed in section 1.2 of this chapter.

Loading of a file with the appropriate extension .cdt activates the “Annotate”
menu (Figure 3.1). To demonstrate the graphical user interface of the “ tate” menu, a
screenshot is shown (Figure 3.2). The user is presented with alphabetically arranged tabs
for 26 letters representing all the keywords. A tab “Other” is included to accommodate

the keywords starting with numbers. Upon clicking on a tab with a particular letter, the

32

hing selected EpyDocs NJAT Thesis WBuilder Combinedt riarsamme.EEl

Figure 3.1 This figure represents the main frame of the java application. Upon loading
the file, the dendrogram is displayed and the Annotate menu activated. The Annotate
menu contains a Select Keywords menu item which will allow the user to select the
desired keywords for the graphical annotation of the yeast genes in the dendrogram.

33

] ANK repeat

[} &ATP synthesis , Red v

" ATP binding Ret |

[Acetytation i_ReT__ _:::i

1 Actin.binding Red +|

[Actwvator e —
i o
| Alitation (Red |

[Atiosteric enzyme _ |ped TR

Selected keywords and associated co!ors : 4

i _A-yu‘:;nate ié---(fancel | [_ CIose_J

Figure 3.2 This figure shows the Keyword Selection frame. The keywords are presented
in alphabetical order, where each letter tab represents all the keywords starting with that
letter. The “Other” tab represents keywords starting with numbers. The scroll bar allows
the users to see all the keywords starting with a particular letter. The text box area records
and displays the user’s choice of keywords and colors.

34

keywords starting with that letter are displayed as a vertical list checkboxes. A scroll bar
is provided, in case all of the keywords cannot be viewed simultaneously. Next to each
checkbox is a combo- box that holds the available colors for annotations. The combo-box
becomes active after the user has selected its corresponding keyword checkbox (Figure
3.3). After a keyword and the color in which the user wants it displayed are selected, the
textbox below the list of keywords records the current selections. Up to ten keywords can
be selected at a time to fit into the limited space next to the clustered genes and to avoid
cluttering the image.

Each keyword is presented as a color-coded square icon next to the gene name in
the enhanced part of the dendrogram. For clarity, a legend showing the correspondence
between a keyword and its colored icon is drawn next to the tree image. To create the
GUI of the Preferences of the Annotate menu, GridBagLayout was used extensively
because of the multiple components that had to be accommodated. After the user has
clicked on the Annotate button, he has to select a part of the dendrogram he wants to see
annotated. Upon clicking on a branch, the genes included in that branch are displayed in
the right-hand side with the gene names added. Next to the gene names are displayed
colored squares. Each colored icon corresponds to a keyword according to the selection
the user has made. Each gene can potentially have all ten keywords, so a spot for each
colored square is reserved. If a keyword does not describe a particular gene, its spot is left

blank.

35

] Amino-acid biosynthesis {Red -

[_] Amino-acid transport _RE"__:?
7] Aminoacyl-tRNA synthetase \Red -
[_] aminopeptidase e
I”] Amingtransferase

[_] Anien exchange

v Antibiotic resistance
_| Antioxidant

Selected keywords ar{& associated colors

1 Hypothetical protein Red
2 Inasitol biosynthesis Pink
3 Multigene family Blue
4 Nuclear proten Green
5. Protein biosynthesis Wihite
Antibiotic resistance

Annotate || Cancel || close |

Figure 3.3 This figure illustrates the process of keyword and color selection. It allows
the user to choose a keyword by clicking on a check box. Upon selection of a keyword,
the corresponding color menu is activated and the user can choose a color in which the
keyword is to be represented graphically. Up to ten keywords could be selected. The text
box displays the keywords sorted in alphabetical order.

1.2 Annotation Process Example
To demonstrate the application, a demo file sample.txt was clustered with the Cluster
program. The output files sample.cdt and its companion sample.gtr, created by the
Cluster software, were used as an input for the dendrogram visualization and the
graphical keyword annotation. The files contain clustering information about 99 yeast
genes tested in seven different conditions. The sample.cdt file was loaded into the java
application and its dendrogram displayed (Figure 3.1). Upon clicking on the Annotate
menu, the user is presented with a keyword selection frame (Figure 3.2). The process of
selection of keywords is illustrated on Figure 3.3. The user first selects a keyword by
clicking on a check box. That activates the combo box and allows the user to choose a
color in which he wants to denote the particular keyword. In a similar way, ten keywords
with the appropriate colors were selected for the genes in the demo file. Two sub-clusters
of the dendrogram, corresponding to down- and up-regulated genes with similar
expression were selected by clicking on a branch of the dendrogram and the clustered
genes annotated. The selected sub-clusters are colored in pink and shown on the left pane
(Figure 3.4 and Figure 3.5). The resulting image with enhanced gene expressions, gene
names and the color-coded annotations is shown in the right panes of the Figures 3.4 and
3.5. In the particular example, the user could instantly see which genes have their 3D-
structure solved or which genes are described as hypothetical proteins. As it could be
expected, different patterns of keyword annotation are present for the two selected
clusters in Figure 3.4 and in Figure 3.5. For example, certain keyword icons can be seen
only for some of the down-regulated genes and not for the up-regulated ones. This can

point out to some of the common characteristics of the genes clustered together and

37

anipulates files | b = Legend:
S | - ® 3D-structure
| - » Acetylation :
1 ® Glyeolysis |
{ - = Hypothetical protein |
i = Ligase !
Mitechondrien i
| - Multigene family !
i [] & Nuclear protein |
{ - © Ribosamal protein |
| = Transmembrane i
¥ - |
L] - |
{
i
H
‘]
[]
-
-
- "
|
';
| .
“
i .
L L]]
i i
|
|
E -
| -
B
|4
{ =m |
| =n ‘
] |
. |
] |
.
|
- |
= |
= |
{
RN IX - Cagrelation: 0.3 HISHE40609375 EpDocs AT Thesis Jiuhing omibined rial sample.cdt

Figure 3.4 This figure represents the color-coded functional annotation of the down-
regulated genes selected by the user. The legend shows the correspondence between
keywords and colors. The colored squares in a row indicate that the particular gene can
be described with keywords denoted by the colored squares.

38

= P | e SURIPRRECE PV S SRR T | T

==y

EMCocs NI ThesisiBmider Combined T s wmtejérn-l

Figure 3.5 This figure represents the graphical color-coded functional annotation of the
up-regulated genes in the experiment. After the user has selected up to ten keywords and
their corresponding colors, he could click on the part of the dendrogram containing the
yeast genes he wants to see annotated. The right part of the figure shows an enlarged
view of the selected branch with additional gene name information and color-coded
keyword annotation. The legend provides the correspondence between the keywords and
their colors.

39

absent in the other clusters. It could save the researcher a manual look up that could be a
tedious and time-consuming procedure. It could also lead to an insight about the
particular question being studied.

The presented application is a tool that adds a layer of biological knowledge in a
graphical way that is easy to grasp. The usefulness of the annotations will ultimately
depend on the particular experimental set up, clustering conditions and the interests and

expertise of the researcher as well as the biological problems addressed.

CHAPTER 4

CONCLUSIONS

4.1 Goals Achieved
A Java bioinformatics graphical gene annotation tool was built which allows the display
of yeast gene expression clustering results along with gene keyword information in a
color-coded scheme. The display and annotation tool developed helps to bridge the gap
between the raw data gathered from microarray gene expression experiments and their
interpretation by the researchers interested in gene function, gene interaction and co-
regulation, in cellular response to drugs etc. Although many useful tools exist, most of
the time it is through manual look-up that the scientist establishes the usefulness of the
gene clustering results. He has to spend a lot of time researching the functional
information available on the web in separate databases for each individual gene and
integrate the useful information in the process. It is a tedious and time-consuming process
that can be emotionally drowning and not very efficient. A tool which allows the
integration of the available functional data and the results from experimental data
analysis techniques, and allows intuitive representation, will potentially speed up the
process of hypothesis testing and generation in biological research.

Keywords describing gene function and biological processes involved were
chosen to graphically enhance the microarray clustering results with functional
information. Perl script was written to extract the keywords and other pertinent
information from SWISS-PROT. It can be easily adapted for other uses concerning other

organisms or other available information. In the same line of thinking, the database that

41

wascreatedcanbetakenasaseparatemoduléandcanbeeasilymodiﬁedto
accommodate more gene features, to include more organisms, or be adapted for use in

another bioinformatics application.

4.2 Future Recommendations

Although useful, the described application can be further developed to enhance its
functionality, usability or to address other needs a researcher might have.

A useful way to further enrich the program could be to automatically show the
most common keywords for a selected branch of the dendrogram. This will point out the
common characteristics of the genes in the selected branch and help get an insight of their
relationships. The implementation would use the same database with a different pattern
matching logic. The annotation would be automatic and would not require input from the
user. In addition, it would be useful if a gene name is made as a hyperlink to different
databases of choice, so the user can look up any information he needs from them right
away.

Alternatively, the application could be further developed to also show only the
keywords that describe a particular branch of the dendrogram and not other branches.
This will also give an idea to the investigator about the specific functions or processes
that characterize only a particular set of genes. It could be added as an additional option
for annotation.

The current application is a limited—scope effort and could only work with the
yeast model organism. Since the integration of biological information from different

organisms greatly increases quantitatively and qualitatively our understanding of how we

42

function, it would be necessary to include available information about other organisms
too, and, especially, human data. This would mean that other databases would have to be
accessed, information extracted and included in the local database. As the complexity
increases, the design choices for the application could also change. In addition, a key
improvement of the program could be make the application Web-accessible to allow
many researchers use its functionality simultaneously. Regular updates of the local
database would be necessary to provide reliable information to the scientific community.

As mentioned earlier, a large-scale systematic effort to annotate many organisms
is under way. The Gene Ontology Consortium and GO project will provide a systematic
way to describe molecular function, biological processes and cellular components. The
gene ontology represents the information in a tree-like structure where the parent nodes
provide a general description and the leaf nodes contain the specific terms. Since the GO
knowledge is a more systematic and organized method to represent the gene information,
a GO similar color-coded annotation could be a better alternative to the keywords
annotation. It could provide different levels of generalization or specificity of the gene
knowledge that could be controlled by the user.

One way of enriching the application could be to add graphical information
displaying the different biochemical pathways in which a gene or a group of genes are
participating. This is a natural way to represent gene-gene interactions or gene regulation.
Although such maps were developed to some extent, the systematical representation of
gene function is under way. Kyoto Encyclopedia of Genes and Genomes designed and
maintained by Dr. Kanehisa and colleagues contains a large collection of graphical maps

(http://www.genome.ad.jp/kegg/kegg3.html). The gene relationships represented are

partially extracted from the biological literature by experts and partially deduced or
computed from previously stored knowledge by using so called binary relationships
(Kanehisa et al., 2002). KEGG makes the effort to incorporate all the available biological
information in a graphical way in the form of maps. If included along with the
dendrogram, this type of representation can greatly increase the efficiency with which a
researcher can interpret the expression results. This would also be a step towards systems
versus the reductionistic approach in biological research.

Since it is often thought that genes that share similar expression patterns are co-
regulated, it could be really fruitful to look at the non-coding regions of the gene. These
regulatory regions contain transcription factor binding sites, consisting of stretches of
several nucleotides which mediate up- or down-regulation of the gene expression. It has
been observed that genes with similar expression share these protein binding sites
responsible for their regulation. Howe{rer, the common appearance does not
automatically mean common regulation, since different binding sites might act
synergistically to produce a different response. Although comparing control region
sequences and functional information is by itself a topic of a study, the available
promoter information could be used to add another layer of functional information to
researchers studying the gene expression profiling. Several studies coupling promoter
analysis with expression patterns have been performed (reviewed by Dutilh and
Hogeweg, 1999). It could be especially helpful if the information is presented in a
graphical way. Flexibility could be achieved if the user is given the choice of matching a
particular sequence pattern or choosing a transcription factor, or particular pathway and

relating the results to the clustering patterns.

4

Although the starting point for this application was gene expression results, gene
expression is just one approach from the multitude possible to study a cell or an
organism. Thus, it should be viewed as a part of a big picture and not taken in isolation.
In this line of thought, it should be mentioned that a platform for the integration of
functional genomics with the scientific literature, named The BioKnowledge ™ Library
(http://proteome .nih.gov:8000/may2001/garrels html) has been established. Its idea is to
summarize information on yeast functional genomics, such as genome-wide gene
knockout, transcript profiling, microarray datasets, results from systematic two-hybrid
screens, drug target discovery, and yeast proteomics together with yeast research found in
the scientific literature. This database was designed to also incorporate similar data sets
from other genomes in addition to the yeast data so to allow global interpretation, to
analyze common protein functions, to explain common modes of regulation, and
functioning of cellular pathways.

In summary, existing biological data must be integrated together and represented
in an intuitive graphical way so that knowledge rather that information is extracted,
hypotheses are generated or tested more efficiently and in less time. The tool presented is
just a minute step in the process of integration and representation of biological data to
achieve greater understanding and apply it in the quest of improving human health and

quality of life.

APPENDIX A

JAVA FILES

This appendix contains the source code written in Java and used in combination with
code adopted from another application to visualize and annotate yeast gene expression
clustering. Statements used for debugging purposes are left in the file in case needed in
the future and are commented. The triple dots in the files mean adopted code in the

application.

45

package combinedtrial;

import java.awt.*;

import java.awt.event.*;

import java.awt.image.*;

import java.awt.image.renderable.*;
import java.io.*;

import java.net.*;

import javax.swing.*;

import javax.swing.border.*;
import javax.swing.JFrame;
import java.awt.Rectangle;
import java.lang.String;

import javax.swing.event.*;
import java.util.*;

import javax.swing.JMenu;
import javax.swing.JTabbedPane;
import javax.swing.JLabel;
import javax.swing.JPanel;
import java.sql.*;

public class MainFrame extends JFrame
/**The frame for selection of the keywords and colors.*/
class KeywordsFrameOptimized extends JFrame {
/**Create frame for selection of the keywords and colors.*/
public KeywordsFrameOptimized::

//set the properties of the frame
setSize WIDTH, HEIGHT;;
setTitle "Keywords Selection"};

//get the screen dimensions

Toolkit kit = Toolkit.getDefaultToolkit::;
Dimension screenSize = kit.getScreenSize(:;
int ScreenWidth = screenSize.width;

int screenHeight = screenSize.height;

//open the frame at this location on the screen
setLocation ScreenWidth/4, screenHeight/4);

Container contentPane = getContentPane!:;
BorderLayout layout = new BorderLayout:!;
contentPane.setLayout {layout:;

buttonPanel = new JPanel:;;
buttonPanel.setVisible (true’;

//add a button to annotate with the chosen words
annotateButton = new JButton ("Annotate"; ;
buttonPanel.add annotateButton:;
annotateButton.addActionListener new
ActionListener:

public void actionPerformed(ActionEvent annotateEvent;

annotateSession = new Connect(:;
annotateSession.fillColorArray::;

//close the annotation frame now

47

dispose :;
o

//add a button for the user to cancel the annotation and empty the

tree and hash tables
cancelButton = new JButton "Cancel”;;
buttonPanel.add cancelButton’ ;

cancelButton.addActionListener ‘new
ActionListener

public void actionPerformed ActionEvent cancelEvent;

textArea.setText ("Selected keywords and associated colors :" +
"\n";
totalSelectedKeywords = 0;

for keywordId = 1; keywordId < KwNumber; keywordId++)

//iterate through all the remaining entries of the hash map
Set entries = selectedKeywordsAndColors.entrySet (;;
Iterator iter = entries.iterator!(;;

while iter.hasNext '

Map.Entry entry = Map.Entry;iter.next(::;
Object key = entry.getKey(:;

if StringicheckBoxes keywordIdi.getText (i == key:

//deselect all of the selected keywords

checkBoxes [keywordId! .setSelected false;;
//System.out.println("Keyword" + keywordId + " is
deleted.");

break;

//empty the tree and hash tables
selectedKeywordsAndColors.clear!;;
chosenColors.clear{;;
totalSelectedKeywords = 0;

-
r

//add a button for the user to close the window
closeButton = new JButton ("Close"!:;
buttonPanel.add (closeButton!;

closeButton.addActionListener (new
ActionListener i

public void actionPerformed (ActionEvent closeEvent)

//empty the hash table
selectedKeywordsAndColors.clear{;;

dispose ;
;

keywordsPanel = new JPanel’;;
lowerPanel = new JPanel(;

lowerPanel.getPreferredSize::;
upperPanel = new JPanel:;
upperPanel.getPreferredSize !} ;
middlePanel = new JPanel ' ;

textArea = new JTextAreai:
textArea = new JTextArea:
textArea.setEditable false:;

.
’
-
’

textArea.setText ("Selected keywords and associated colors :" +
"\n" ;

textArea.setBorder (BorderFactory.createEtchedBorder ; :;
Dimension sz = new Dimension (WIDTHTEXTAREA, HEIGHTTEXTAREA; ;
textArea.setPreferredSize sz ;

textArea.setVisibleitrue:;

middlePanel.add:textArea;;

contentPane.add imiddlePanel, BorderLayout.CENTER!;

//add the lower panel to the content pane
contentPane.add:lowerPanel, BorderLayout.SOUTH:;

//add text area and button panel to the lower panel
lowerPanel.add :buttonPanel, BorderLayout.SOUTH) ;

//contentPane.add (keywordsPanel, BorderLayout.CENTER) ;
contentPane.add { keywordsPanel, BorderLayout.NORTH);

tabbedPane = new JTabbedPane:;;

Dimension sizeTP = new Dimension (WIDTHTABBEDPANE, HEIGHTTABBEDPANE; ;
tabbedPane. setPreferredSize (sizeTP; ;

tabbedPane. setTabPlacement {JTabbedPane.TOP; ;

panels = new JPanel [panelNumber:;
tabPanels = new Component panelNumber:;
checkBoxes = new JCheckBox [KwNumber;;
colors = new JComboBox {KwNumber:;
keywordListener = new CheckBoxListeneri:;
colorListener = new ColorActioni:;

//make a TreeMap (sorted HashMap) to hold key-value pairs (Keyword
text-color pairs)

selectedKeywordsAndColors = new TreeMap(};

chosenColors = new HashMap::;

// A hash table to hold all the keywords

yeastKeywords = new HashMap/:;

//an array list to hold all the letters used by the keywords
allLetters = new ArrayList{:;

allLetters.ensureCapacity (MAXLETTERS) ;

try
//read the keywords from a file
FileInputStream fin = new FileInputStream!

"YeastKeywordsAlphab.dat":;

BufferedReader in = new BufferedReader!
new FileReader ("YeastKeywordsAlphab.dat":}

-

String line;
String kwrd;

49

int counter = 0;

String first = "";

String last = first;

int let = 0;

//number of letters in the array of letters
int totalLetters = 0;

while 1line= in.readLine ! :!= null)

//construct a StringTokenizer object that attaches to a string
delimited by new line character

StringTokenizer t = new StringTokenizer /line, "\n";;

kwrd = t.nextToken’;;

first = kwrd.substring:0, 1;;
//System.out.println("First letter is :" + first);

//if array size is less than two
if totalLetters == 0

//add the first letter letter
allletters.add(new String (first)):;

totalLetters++;
last = first;

else if -totalLetters < 2 && (! (first.equalsIgnoreCase: :String}
last

//if the next letter is not already in the array
allLetters.add new String (first):;
totalLetters++;

else if totalletters >= 2:

int flag = 0;

//if it is in the letters array list, ignore it; else add it
to the letters array list

for ‘let = 0; let < allletters.size(); let++;

String temp = "" + let;

//find the current letter's index and if it's not already in
the array list

if first.equalsIgnoreCase: (StringiallLetters.geti(let;; ||
first.equals (temp; :

flag = 1;

if ‘flag != 1;

//add it to the array list
allLetters.add(new String (first):;
totalletters++;

//retrieve the keywords into a hash table
yeastKeywords.put {"" + counter, kwrd);
//increment the counter

counter++;

catch IOException exception;

exception.printStackTracei:;

//for all the letters in the array list
for .int tabs = 0; tabs < allletters.sizei:; tabs++:

int kw = 0;

//create tab panels

tabPanels tabs! = makeTextPanel("" + allletters.geti{tabs: ;
panels tabs = new JPanel ;:;

setGrid panelsitabs!);

//for all the keywords
for kw = 0; kw < yeastKeywords.size(); kw++:

//get the first letter of the value
String startsWith = | String)yeastKeywords.get("" + kw) ;.
substring ‘0,1:;

//if keyword starts with that letter, add the row to the panel
if startsWith.equalsIgnoreCase{ String;allletters.get (tabs: :.

addRow panels tabs', :String:yeastKeywords.get("" + kw; ;
letterKws++;

scrollPane = new JScrollPane (panels{tabs],
JScrollPane.VERTICAL SCROLLBAR_AS NEEDED,
JScrollPane.HORIZONTAL SCROLLBAR AS _NEEDED) ;
tabbedPane.addTab: ("" + allletters. get Ttabs’ , null, scrollPane,
"Keywords startlng w1th this letter”:;
setVisible true:;

//add the keywords panel to the tabbed pane
keywordsPanel. add {tabbedPane: ;

//add the rest of the keywords starting with a number in a tab
"Others”

tabPanels allLetters.size::. = makeTextPanel: "Others" :;
panels allletters.size: | = new JPanel!:;
setGrid panels alllLetters.size: |:;

//iterate through the remaining entries in the hash map
for int rest = letterKws; rest < yeastKeywords.size!i; rest++)

addRow - panels allLetters.sizei(:, (String;yeastKeywords.get:"" +
rest H

JScrollPane scrollPane = new JScrollPane (panelsiallLetters.size:; |,
JScrollPane.VERTICAL SCROLLBAR_AS_ NEEDED,
JScrollPane. HORIZONTAL SCROLLBAR AS _NEEDED)

tabbedPane.addTab(("Other"), null, scrollPane,

"Keywords starting with a number":;

setVisible true;;

51

/**Create objects of type Constraints and GridBagLayout and set it to
be the layout manager for the panel

* @param panel - the panel to which the layout will be set

*/
public void setGrid(JPanel panel:

GridBagLayout layout = new GridBagLayout };
panel.setLayout (layout:;
//panel.setSize (200, 600);

constraints = new GridBagConstraints(;:;
row = 0;

/** Add keywords to the panel
@param panel the panel to which to add the components
@param keyword String - the keyword to be added
@param x int specifies the column position in the upper left corner of
the component to be added
@param y int specifies the row position in the upper left corner of
the component to be added
@param w int specifies how many columns the component occupies
@param h int specifies how many rows the component occupies

*

/
public void addKeyword (JPanel panel, String keyword,
GridBagConstraints constraints, int x, int y, int w, int h!

//first fill the the GridBagConstraints object for each component
//and then add the component with the the constraints to the grid
constraints.fill = GridBagConstraints.HORIZONTAL;
constraints.anchor = GridBagConstraints.NORTHWEST;
constraints.weightx = 0;

constraints.weighty = 0;

keywordId++;

checkBoxes : keywordId: = new JCheckBox(keyword ;:;
checkBoxes keywordId:.addItemListener (keywordListener;;

constraints.gridx = x;

constraints.gridy = y;

constraints.gridwidth = w;
constraints.gridheight = h;

panel.add checkBoxes keywordId:, constraints ;;

/** Add color JComboBox components to the panel with the corresponding
constraints

@param panel JPanel - the panel to which the components will be added
@param constr - the constraints to the component

@param x specifies the column position in the upper left corner of the
component to be added

@param y specifies the row position in the upper left corner of the
component to be added

@param w specifies how many columns the component occupies

@param h specifies how many rows the component occupies

*/

public void addColor (JPanel panel, GridBagConstraints constraints, int
X, int y, int w, int h;:

52

//set the constraints for the combo color box
constraints.fill = GridBagConstraints.NONE;
constraints.anchor = GridBagConstraints.NORTHWEST;
constraints.weightx = 0;

constraints.gridheight = 0;

//now add the color combo box to the keyword

colors keywordId! = new JComboBox (new Stringi!
"Red" '
"Green",
"Blue",
"White",
"Yellow",
"Orange",
"pink"” R
"Magenta",
“Cyan" ,
"Black"

“

colors [keywordId!.
addActionListener (colorListener:;

colorskeywordld;.setEnabled false
constraints.gridx = x;
constraints.gridy = y;
constraints.gridwidth = w;
constraints.gridheight = h;

panel.add: colorsikeywordid:,
constraints };

/** Add components to the panel
@param panel the panel to which to add the components
@param ¢ Component - the component to be added
@param x specifies the column position in the upper left corner of the
component to be added
@param y specifies the row position in the upper left corner of the
component to be added
@param w specifies how many columns the component occupies
@param h specifies how many rows the component occupies
*
/
public void add/JPanel panel, Component c, GridBagConstraints
constraints, int x, int y, int w, int h:

constraints.gridx = x;
constraints.gridy = y;
constraints.gridwidth = w;
constraints.gridheight = h;
panel.add: ¢, constraints ;;

/**A method to add a row containing keyword and color in the panel
@param panel the panel to which the row is added
@param keyword the keyword that is added to its panel
*/

private void addRow!{ JPanel panel, String keyword !

53

addKeyword panel, keyword, constraints, coll, row, width, height:;
addColor panel, constraints, col2, row, width, height;:
row++;

/** This class is an inner class which is covenient when writing
event-driven programs; it adds or removes a keyword the current
selection

and the text box; warns the user if the number of keywords exceed the
maximum

*/

public class CheckBoxListener implements ItemListener

/**the interface must implement this method to carry out the
functions of the class*/
public void itemStateChanged (ItemEvent e:

//in case the user deselects the checkbox
if e.getStateChange! == ItemEvent.DESELECTED;

//remove it from the text area
textArea.setText ("Selected keywords and associated colors :" +
ﬂ\n" '.

//decrement the count the number of selected keywords up to now
totalSelectedKeywords--—;

//find the keywordIld of the keyword deselected
for keywordId = 1; keywordlid < KwNumber; keywordId++)

Object source = e.getItemSelectable!;

//if proper keyword id
if 'source == checkBoxes keywordId!:

colors keywordId .setEnabled{false);

//if color in selectedKeywordsAndColors is different from
NONE (if color has been already selected when checkbox
deselected by user)

//remember the key v in selectedKeywordsAndColors = keyword
for that color

String v = (String:checkBoxes keywordId!.getText :;
//retrieve an object (value) that corresponds to that key
and compare it to null

//to check whether color has been entered in the
chosenColors tree map

//System.err.println{ " selectedKeywordsAndColors.get(v): "
+ selectedKeywordsAndColors.get (v));

if selectedKeywordsAndColors.get(v: != "None";

//System.err.println(" Color is different from null: " +
selectedKeywordsAndColors.get (v));

//delete that pair from the hash table (Holding colors and
keywordws) since checkbox is deselected
chosenColors.remove ((String;colors|keywordId].
getSelectedItem::;;

//then delete that pair from the tree table (Keywords and

colors) since checkbox is deselected
selectedKeywordsAndColors.remove { {String)checkBoxes|
keywordId].getText (::;

//iterate through all the remaining entries of the hash map
to print them in the text area

Set entries = selectedKeywordsAndColors.entrySet!;;
Iterator iter = entries.iterator{);

int number = 0;

while {iter.hasNext

number++;

Map.Entry entry = [Map.Entry)iter.next!();
Object key = entry.getKey!):;

Object value = entry.getValue{;;

//add the chosen keyword in the chosen color in the text
area below the tabbed pane

textArea.append{"\n" + number + ". " + key);
textArea.append ("\t" + value)};

textArea.append ("\n"};
break;

//check box is selected
else

'//increment the count (the number) of selected keywords up to now
totalSelectedKeywords++;

//keyword is selected by the user
for keywordld = 0; keywordId < KwNumber; keywordId++)

' Object source = e.getItemSelectable();

//find the keyword id
if 'source == checkBoxeskeywordId!:

//if the maximum keywords have been already selected
if :selectedKeywordsAndColors.size() ==
SelectedKeywordNumber;

//show a dialog box that no more than max number of
keywords can be selected

JOptionPane.showMessageDialog{ null,

"You can only select up to " + SelectedKeywordNumber +

" keywords!" :;

checkBoxes [keywordId].setSelected false;;

//decrement thecount the number of selected keywords up to
now

totalSelectedKeywords——;

//if the user has not chosen a color for the previous
checked keyword yet
else if (totalSelectedKeywords > (chosenColors.size(; + 1;:

//show a dialog box that a color must be selected before
selecting the next keyword

55

JOptionPane.showMessageDialog{ null,

"Please select a color for the previous keyword first!"™ :;
//decrements the count the number of selected keywords up
to now

checkBoxes [keywordId: .setSelected false;;

//everything is going all right up to now
else

//remember the keyword id to check its color

selKwlId = keywordId;

textOfKeyword = (String! checkBoxes [selKwld!.getText::;
colors selKwld).setEnabled true;;

//add the keyword with no color in the tree map; will be
replaced when the color is chosen
selectedKeywordsAndColors.put {textOfKeyword, "None":;

//append it to the text area
textArea.append (checkBoxes [selKwId:.getText () ;
break;

/** This class is an inner class which is covenient when writing
event-driven programs; it adds or removes a color fromm the current
selection

and the text box; warns the user if color has been already used

*/

public class ColorAction implements ActionListener

/** Implements the actionPerformed interface to carry out the
functions of the class*/
public void actionPerformed {ActionEvent colorEvent:

//find the color chosen
colorOfKeyword = (String:colorsiselKwId!.getSelectedItem ';

int colorFlag = 0;

//iterate through all the entries of the hash color map
Set cols = chosenColeors.entrySeti;;

Iterator it = cols.iterator!:;;

while it.hasNext:::

Map.Entry color = (Map.Entry'it.next!;
Object key = color.getKey(:;
Object value = color.getValue:;

//if color has been used before
if key == colorOfKeyword;

colorFlag = 1;

//warn the user; show a dialog box to choose another color
JOptionPane.showMessageDialog{ null, "" + colorOfKeyword +
" color was used used for keyword \"" + value +

"\".\n Please choose another color.":;

break;

//color has not been used up to now
if colorFlag == 0!

//put the color in the hash table (to keep track of the used
colors)
chosenColors.put (colorOfKeyword, textOfKeyword:;

//put the pair keyword-color into the hash table
selectedKeywordsAndColors.put (textOfKeyword, colorOfKeyword):;

//repaint the text area each time before showing the new entries
textArea.setText /"Selected keywords and associated colors :" +
'l\n"

//iterate through all the entries of the tree map

Set entries = selectedKeywordsAndColors.entrySet();
Iterator iter = entries.iterator(;;
int number = 0;

while iter.hasNext (::

number++;

Map.Entry entry = /Map.Entry)iter.next(;;
Object key = entry.getKey!{};

Object value = entry.getValue!;;

//add the chosen keyword in the chosen color in the text area
below the tabbed pane

textArea.append("\n" + number + ". " + key):
textArea.append "\t" + value);

textArea.appendf"\n"z;
colors selKwld).setEnabled (false:;

/**Set the text for the label
@param text the text to which teh label will be set
*/

protected Component makeTextPanel (String text;

JPanel panel = new JPanel false:
JLabel filler = new JLabel (text;
filler.setHorizontalAlignment (JLabel.LEFT; ;
panel.setlLayout inew GridLayouti(l, 1;:!;
panel.add filler:;

return panel;

e w

/** Add each component to the layout with the corresponding
constraints

@param c¢ Component - the component to be added

@param constr - the constraints to the component

@param x specifies the column position in the upper left corner of the
component to be added

@param y specifies the row position in the upper left corner of the
component to be added

@param
@param
*/

public
int w,

57

w specifies how many columns the component occupies
h specifies how many rows the component occupies

void add Component c, GridBagConstraints constr, int x, int vy,
int h

constr.gridx = x;

constr.gridy = y;
constr.gridwidth = w;
constr.gridheight = h;
getContentPane ':.addic, constr:;

/** A class to establish the connection, perform the query and fill
the corresponding hash tables with the infor for the drawing

*/
public

class Connect

/** the constructor for the class Connect
Establishes the connection, performs the query and fills the
corresponding hash tables with the infor for the drawing

*/

public Connect '

Connection conn = null;
PreparedStatement ps = null;
ResultSet rs = null;

try
conn = DBManager.getConnection!/);

//hash map to hold column - color correspondence
columnColorMapping = new HashMap(:;
kwColor = new HashMap::;

//iterate through all the entries of the tree map
selectedKeywordsAndColors

Set allEntries = selectedKeywordsAndColors.entrySet (:;
//System.err.println("selected kws: " +
selectedKeywordsAndColors.size() + "\n");

Iterator iter = allEntries.iterator:;;

//number of selected keywords

int number = 0;

//create an array of hashmaps

geneInfoPerKeyword = new HashMap|selectedKeywordsAndColors.size
//iterate through the selectedKeywordsAndColors

while iter.hasNext (:

Map.Entry entry = Map.Entryiiter.next::;

Object key = entry.getKey:::;

//make an array of all the keywords to be used for the
annotation of the genes

allSelectedKeywords [number} = (String. key;
//System.err.println("selected keyword#: " + number + " is "
+ key + "\n");

//the color of the keyword

Object value = entry.getValue::

//System.err.println("it's color is : " + wvalue + "\n");

String currNum = "" + number;

//populate the hash table
columnColorMapping.put icurrNum, value;;
//System.out.println("columnColorMapping# " + currNum +

+columnColorMapping.get (currNum) + "\n");

//key is the clolor and value is the keyword
kwColor.put (value, key:;

String currentQuery =

"select name, ac_kw.ac_num, kw " +
"from ac_kw, kw_id, ac_name " +

"where kw_id.kw_id = ac_kw.kw_id " +
"and ac_name.ac_num = ac_kw.ac_num " +
"and kw = ?";

ps = conn.prepareStatement {currentQuery;:;
ps.setString (1, allSelectedKeywords number}:;

//populate the array list with gene names
tree.writeOut {(geneNames) ;

/*
for

{

(int i = 0; 1 < (tree.getNumberOfGenes()); i ++)

System.out.println((String)geneNames.get (i));

}
*/

if

//for each keyword create a hash map to hold gene name and

it

rs = ps.executeQuery:;

rs != null

's color

geneIlnfoPerKeyword number; = new HashMap!(!;

while rs.next :

else

kw = rs.getString: "kw");
ac_num = rs.getString{ "ac_num” };
name = rs.getString! "name" :;

"

is

//populate the hash map for that query (kw) with gene name

and the color for the keyword
geneInfoPerKeyword (number] .put (name, value);

//iterate through the new entries to see them for
debugging purposes
/*

Set entries = geneInfoPerKeyword[number].entrySet();
Iterator iterations = entries.iterator();
int num = 0;
while(iterations.hasNext ())
{
Map.Entry hashEntry = (Map.Entry)iterations.next();
Object hashKey = hashEntry.getKey():;
Object hashValue = hashEntry.getValue():;
num+t++;
//System.err.println("\n" + num + ". " + "Name: "+
hashKey + "\t" + "Color: " + hashValue);

59

System.err.println{"Result set is null";;

number++;

éatch DBManagerException e
e.printStackTrace{;;
catch SQLException e :
l e.printStackTrace({);
&inally
| DBManager.close{ rs, ps ;;
f/)end constructor

/**Method to get the number of keywords selected by the user */
public int getNumberOfKeywords (!

return selectedKeywordsAndColors.size();

/**Method to loop throught the HashMaps and the geneNames array and
to fill a keyword-color Array

2D array; raw =gene name; column = keyword; value = color*/

public void fillColorArray/!

//for each gene in the current tree
for ‘int geneTreeEntry = 0; geneTreeEntry < tree.getNumberOfGenes
" ; geneTreeEntry++)

//create a new array to hold colors per gene
currColorArray = new int|selectedKeywordsAndColors.size ()] ;

//System.out.println("Current Gene in tree: " + geneTreeEntry +
" is " + geneNames.get (geneTreeEntry)+ " Total number of
keywords is: "+selectedKeywordsAndColors.size()):

//for each selected keyword

for int kws = 0; kws < selectedKeywordsAndColors.size(); kwst++

if geneInfoPerKeyword kws.containsKey: {String;geneNames.get
geneTreeEntry;

//£ill the keyword-color array

currColorArrayikws! = 1;

//colorMapping[geneTreeEntry] [kws] = 1;
'//leave it al zero

else currColorArrayikws: = 0;
/*
if (kws == (selectedKeywordsAndColors.size() - 1))

{

System.out.print ("The values for gene " +

geneNames.get (geneTreeEntry) + " are: ");

for (int k = 0; k < selectedKeywordsAndColors.size(); k++)
{

System.out.print (currColorArray(k]);
}
System.out.println("");
}
*/

//end inner for (kws)
geneColorMapping.put ' geneNames.get igeneTreeEntry;,
currColorArray; ;

//System.out.println((String)geneNames.get (geneTreeEntry));
/*
//System.out.println(""™ + (int

[1)geneColorMapping.get ((String) geneNames.get (geneTreeEntry)));
int [] copy = new int [selectedKeywordsAndColors.size()];
copy = (int
[1)geneColorMapping.get ((String) geneNames.get (geneTreeEntry)):;
System.out.print ("The values of the copy array are: ");
for (int k = 0; k < selectedKeywordsAndColors.size(); k++)

{

}
System.out.println(""):;
*/
//end outer for loop geneTreeEntries
//System.out.println(geneColorMapping);
//end fillColorArray()

System.out.print (copy(k]);

/**print geneColorMapping array elements for debugging purposes*/
public void printColorMappingElements (HashMap geneColorMapping!

/*
for (int i = 0; i < genes; i++)
{
for (int j = 0; j < 10; j++)
{

}

System.out.println("\n");
}
*/
//System.out.println(geneColorMapping);
Set entries = geneColorMapping.entrySet::;
Iterator iter = entries.iterator!;;
while iter.hasNext:':

System.out.print (colorMapping[i] [j]);

Map.Entry entry = 'Map.Entry’)iter.next (:;

Object key = entry.getKey::;

Object value = entry.getValue::;
System.out.printlni("key " + key + "value " + value;;

/**Return the specified colorMapping array element*/
public int getCurrenrColorMappingElement (int curGene, int curKw:

return colorMappingicurGene! |curKw!;
//end class Connect ()

/**The number of panels for each letter representing keywords starting
with that letter*/

public final int panelNumber = 24;
/**The height of the frame*/

public final int HEIGHT = 600;

/**The width of the frame*/

public final int WIDTH = 400;

/**The height of the text area*/
public final int HEIGHTTEXTAREA = 220;
/**The width of the text area*/

public final int WIDTHTEXTAREA = 350;
/**The height of the tabbed pane*/
public final int HEIGHTTABBEDPANE = 280;
/**The width of the tabbed pane*/
public final int WIDTHTABBEDPANE = 350;

//private ArrayList KwNumber;

private int KwNumber = 334;

private ArraylList alllLetters;

private int MAXLETTERS = 26;

private int MAXKEYWORDS = 400;
private int letterKws = 0;

private JScrollPane scrollPane;
private JButton annotateButton;
private JButton cancelButton;
private JButton closeButton;

private int keywordIld = 0;

private JLabel label;

private int i = 0;

private int kwSelectedCounter = 0;
private JCheckBox |! checkBoxes;
private JPanel '@ panels;

private Component [! tabPanels;
private char | letters;

private JTabbedPane tabbedPane;
private JComboBox ! colors:;

private CheckBoxListener keywordListener;
private ActionListener colorlListener;
private GridBagConstraints constraints;
private int coll = 0;

private int col2 = 1;

private int width = 1;

private int height = 1;

private int row = 0;

private String colorOfKeyword;
private String textOfKeyword;

private TreeMap selectedKeywordsAndColors;
private HashMap chosenColors:
private HashMap yeastKeywords;
private JTextArea textArea;
private JPanel buttonPanel;
private JPanel keywordsPanel;
private JPanel middlePanel;
private JPanel lowerPanel;
private JPanel upperPanel;
private int selKwId;

private int totalSelectedKeywords = 0
private String ac_num;

private String kw;

private String sec_ac;

private String name;

private int kw_id;

LY

public final int SelectedKeywordNumber = 10;
//array of hash tables ‘
private HashMap ' genelInfoPerKeyword;
private Connect annotateSession;
private int | currColorArray;

-//end class KeywordsFrameOptimized()

.

62

/**The scrollable panel in which selected portion of tree is zoomed*/

class ZoomPanel extends JPanel implements Scrollable

/**Paint the component by drawing the zoomed portion of tree on

it*/
public void paintComponent (Graphics g:

super.paintComponent (g} ;

Rectangle rect=spr.getViewport::.getViewRect{,;

if treel!=null:

tree.drawBigig, .int; ‘rect.getY:: /TreeOptions.sbv;,
int: : ‘rect.getY: +rect.getHeight:/:;/
TreeOptions.sbv+li, geneColorMapping,
columnColorMapping, kwColor:;

g.setColoriColor.black:;;
//display the legend

g.setFont (new Font (fontType, Font.BOLD,

fontLegendSize: :;

g.drawString/"Legend:", movelegendleft,TreeOptions.sbv;;

//display the icons next to keywords

g.setFont ‘new Font (fontType, Font.BOLD,

fontKeywordSize: : ;
incr = inc;
width = add;

for icol = 0; col < columnColorMapping.size:

//find its color

String color = {(String;columnColorMapping.get:""+

col' ' .toLowerCase!:;

//System.out.print ("Color is : " + color);

if (color.equals {"red"::

g.setColor (Color.red;;
drawRowLegend (g ;

else if (color.equals!™green”::

g.setColor :Color.green:;
drawRowLegend ig:;

else if :color.equals ("orange”:

g.setColor (Color.orange);
drawRowLegend (g} ;

else if :color.equals("white"::

g.setColor iColor.whitei;
drawRowLegend (g ;

else if {color.equals("yellow":!

g.setColor Color.yellow; ;
drawRowLegend ig! ;

else if (color.equals{"cyan":

g.setColor (Color.cyan;;
drawRowlegend (g: ;

else if ‘color.equals ("black":;

g.setColor (Color.black);
drawRowLegend (g! ;

else if icolor.equals {"magenta”::
' g.setColor (Color.magenta; ;
drawRowlLegend (g ;

else if ‘color.equals ("pink";

g.setColor ‘Color.pink;;
drawRowLegend (g ;

else if {color.equals("blue":;

g.setColor Color.blue};
drawRowLegend (g} ;

incr = incr + add;
width = width + add;

/** Draw each row of the legend */
public void drawRowlLegend (Graphics g!

String currKw = [String:kwColor.get: String)}columnColorMapping.get
""+ col ;

g.fillRect moveLegendleft, TreeOptions.sbv+incr, TreeOptions.sbh-

moveHor, TreeQOptions.sbv-moveVert:;

g.setFont new Font :fontType, Font.BOLD, fontSize:};:;

g.setColor Color.black!;

g.drawString icurrKw, moveKeywordleft, TreeOptions.sbv+width;;

/**Create the panel*/
ZoomPanel

super: :;
setBackground {TreeOptions.cback: ;

/**

Draw the zoomed tree, used in saving tree images. This way the entire
Actionlistener does not need to be overriden, only this function.
@param g Graphics to draw on

@param from the starting height of drawing

@param to the ending height of drawing

@param colorMapping HashMap holds keyword-color correspondence
@param columnColorMapping HashMap holds correspondence between gene
and its keywords corresponding to the columns

*/

void drawZoomedTreelmage {Graphics g,int from, int to, HashMap
geneColorMapping, HashMap columnColorMapping)

tree.drawBigig, from,to, geneColorMapping, columnColorMapping,
kwColor: ;

‘e

/**
Draw the whole zoomed tree
@param g Graphics to draw on
@param from the starting height of drawing
@param to the ending height of drawing
@param colorMapping HashMap holds keyword-color correspondence
@param columnColorMapping HashMap holds correspondence between gene
and its keywords corresponding to the columns
*
/
void drawWholeZoomedTreelImage (Graphics g,int from, int to, HashMap
colorMapping, HashMap columnColorMapping)

tree.drawBigWhole (g, from, to, geneColorMapping,
columnColorMapping, kwColor);

/**Load the tree, used so the constructor can be reused in the
inherited classes by only overriding this function.*/
void loadTree File file)throws FileNotFoundException,ParsingException

tree=new GeneTree file);

//get the number of genes
genes = tree.getNumberOfGenes(!;

//create the hash map to hold gebne names as keys and arrays
with color info as values
geneColorMapping = new HashMap(;:;

//get the number of genes

//genes = tree.getNumberOfGenes();

//create an array to hold the keyword-color code for each
gene

colorMapping = new int {genes] [MaxKeywordNumber!:;
//initialize all elements to zero to begin with

for ‘int i = 0; i < genes; i++)

for (int j = 0; j < MaxKeywordNumber; j++)

colorMapping (i {ji= 0;

//print the values of the colorMapping array

//void printColorMapping(int []([] colorMapping)
void printColorMapping (HashMap geneColorMapping:

*
éor (int i = 0; i < genes; i++)
(for (int j = 0; j < 10; j++)
{ System.out.print (colorMapping[i] [j1):
éystem.out.println("\n");
y
System.out.print {geneColorMappingi ;

> e

//data members of MainFrame class
String fontType = "Serif";

int fontLegendSize = 14;

int fontKeywordSize = 10;

int fontSize = 12;

private int moveHor = 3;

private int moveVert = 8;

private int movelegendleft = 280;
private int moveKeywordleft = 300;
private ArrayList geneNames;
private int . .! colorMapping:;
private final int MaxKeywordNumber = 10;
private String ! allSelectedKeywords;
private int genes;

private HashMap geneColorMapping;
private HashMap columnColorMapping;
private HashMap kwColor:;

private int incr, inc = 9;

private int width = 15;

private int col = 0;

private int add = 15;

private int allYeastGenes = 6890;

JMenu kwAnnotationsmenu= new JMenu:"Annotate":;
JMenultem annotate = new JMenultem:"Select Keywords"™:;

public MainFrame::

e

//array list to hold the gene names of the current input file;
set the size at run time

geneNames = new ArrayList(:;
geneNames.ensureCapacity{allYeastGenes:;

allSelectedKeywords = new String{MaxKeywordNumber];

//annotate genes

annotate.addActionListener inew Actionlistener;

-
4

public void actionPerformed (ActionEvent e} {
if tree!=null:

KeywordsFrameOptimized keywordsFrame = new
KeywordsFrameOptimized:;;

JOptionPane.showMessageDialog (up,
"There is no tree to annotate ", "No tree", JOptionPane.
INFORMATION MESSAGE:;

//build the keywords frame with the help of JBuilder
annotationoptions.addActionListener inew ActionListener::

-
14

+ v

public void actionPerformed (ActionEvent e}

//must open the optimized frame

KeywordsFrameOptimized optionsFrame = new
KeywordsFrameOptimized::;

//this part may be unnecessary

//Validate frames that have preset sizes

//Pack frames that have useful preferred size info, e.q.
from their layout

if ‘packFrame:

optionsFrame.pack(};
else
optionsFrame.validate . :;
//Center the window
Dimension screenSize = Toolkit.getDefaultToolkit::.
getScreenSize ;;
Dimension frameSize = optionsFrame.getSize(;;
if {frameSize.height > screenSize.height)
frameSize.height = screenSize.height;
if (frameSize.width > screenSize.width:
frameSize.width = screenSize.width;
optionsFrame.setLocation (screenSize.width - frameSize.
width; / 2, ¢(screenSize.height - frameSize.height: / 2:;

optionsFrame.setVisibleitrue:;
//the part above may be unnecessary

kwAnnotationsmenu.setToolTipText |
"Annotates genes with keyword information":;

PR

kwAnnotationsmenu.add (annotate;;

67

/**construct the menu*/
void setUpMenu (:

o ..

menubar.add (kwAnnotationsmenu: ;

“ o

/**enable/disable all parts of menu that are disabled if no tree is
loaded*/
void setEnabledMenu:boolean enabler;

annotate.setEnabled{enabler:;

//end MainFrame class

package combinedtrial:;
import java.io.*;
import java.util.*;
import java.sgl.*;
public class DBManager
private static Connection conn = null;
private static String synchMember =
"I'm a shared resource. Lock on me.";
public static Connection getConnection :: throws DBManagerException
if conn != null
return conn;
// here is when we can get racing conditions - synchronize
synchronized | synchMember
if conn == null

conn = createConnection!(:;

return conn;

public static void releaseConnection{ Connection ¢

// do nothing for now - could be used later for connection
pooling

private static Connection createConnection !: throws
DBManagerException

Connection conn = null;

try
// load the DB driver's class dynamically
Class.forName! "org.gjt.mm.mysgl.Driver” ;;
conn = DriverManager.getConnection/
"jdbc:mysql://localhost/yeast kw db", "", "":;

// convert the ClassNotFoundException into a DBManagerException
catch ClassNotFoundException e i |
throw new DBManagerException!
"DBManager:Couldn't load the DB driver!”, e);

// convert the SQLException into a DBManagerException
catch SQLException e ;| ¢
throw new DBManagerException
"DBManager:Couldn't connect to the database!", e ;;

return conn;

public static void close/
ResultSet rs,
PreparedStatement ps

try
if rs != null
rs.close(;;

catch SQLException el
// do nothing

try
if ps != null
ps.close(;;

catch :SQLException e2: !
// do nothing

public static void close!
PreparedStatement ps,
ResultSet rs

close 1rs, ps i:

.

package combinedtrial;

/** This exception is intended to be returned by the DBManager class. It
should

simplify the way clients call methods of the DBManager class.
*/
public class DBManagerException extends Exception

private Exception rootCause;

69

/**
* This constructor helps to create the exception by passing not
just some error
* message at the logical level of the program, but also passing an
exception
* one might have caught. Later, if one wants to see the message of
the

* DBManagerException, one will get the exception he passed in here
appended

* after a logical error message.

*/

public DBManagerException: String message, Exception e !

super message);

rootCause = e¢;

/**
* This constructor simply passes the message along to parent class,
since we
* weren't given a root cause - another exception that one might
save.
*/
public DBManagerException:! String message |
super ' message ;;
rootCause = null;
public String toStringi:

return getMessage(;;

public String getMessage !’
if rootCause == null
return super.getMessage;;
else

return super.getMessage:: + ": (" + rootCause.getMessage(; +

")"’.

LY

package combinedtrial;

import
import
import
import

public

java.awt.*;
java.io.*;
java.math.*;
java.util.*;

class GeneTree

70

/**abstract class, from which everything (nodes and genes) in the

gene tree is inherited*/
abstract class Treeltem

abstract void writeOut (ArrayList geneNames:;
abstract void drawBig(Graphics g, int wide, int from, int
to, HashMap geneColorMapping, HashMap columnColorMapping,
HashMap kwColor:;

//class Treeltem

/**inside tree node*/
class InsideTreeltem extends Treeltem

//save all the gene names from the current file in an array
void writeOut ArrayList geneNames'

left.writeOut (geneNames: ;
//System.out.println("Node "+gid+" sim: "+similarity);

right.writeOut /geneNames};

//draw zoomed part of tree
void drawBig/Graphics g, int wide, int from, int to, HashMap
geneColorMapping, HashMap columnColorMapping, HashMap kwColor:

if left.width>=from:
left.drawBigig,wide, from,to, geneColorMapping,

columnColorMapping, kwColor::;

if left.width<to:
right.drawBig:g,wide+left.width, from-left.width, to-left.

width, geneColorMapping, columnColorMapping, kwColor;:;

f//class InsideTreeltem

/**Leaves of the tree, representing genes and containing gene

data.*/
class Dataltem extends Treeltem

//write to standard output, used for debugging purposes
void writeOut | ArrayList geneNames:

//System.out.print (" name: "+name +" desc:
"+description+" "+"\n");

total = total + 1;
//System.out.println(total);
geneNames.add inew String iname’ :;
//System.out.println("Gene# " + total +" "+ geneNames);

//draw zoomed genes
void drawBigi(Graphics g, int wide, int from, int to, HashMap

geneColorMapping, HashMap columnColorMapping, HashMap kwColor:

g.setFont (TreeOptions.font!};

n

for int i = 0; i < dataLength; i++:

g.setColor.color’'i:;;

g.fillRect {i*TreeOptions.sbh,wide*TreeOptions.sbv,
TreeOptions.sbh-TreeOptions.sborder, TreeOptions.sbv-
TreeOptions.sborder:;

g.setColor (TreeOptions.ctext:;

g.drawString (description,datal.ength*TreeOptions.sbh+l, |
wide+l *TreeOptions.sbv-1l:;

//System.out.println("Gene name is " + name);

//if that gene name is contained in the geneColorMapping
hash map
if :geneColorMapping.containsKey (name: '

//must access the value of the hash that holds array with
color mappings

// create a temp array to hold the mappings

int | copy = new int [columnColorMapping.size: B i;

copy = {int . geneColorMapping.get (name!};
//System.out.print ("The values of the new copy array are:
")

//for (int k = 0; k < columnColorMapping.size(); k++)

/74

//System.out.print (copy(k]):

/7})

//System.out.println("");

//go through the values of the copy array and display the
color icon if value is 1

for ‘int col = 0; col < columnColorMapping.size ' ; col++:

//if the value is 1, i.e. if the corresponding keyword
annotates that gene
if ‘copyicol! == 1:

//find its color

String color = i i{String:columnColorMapping.get:(""+
col! .toLowerCase :;

//System.out.print("Color is : " + color);

if ‘color.equalsi/"red"::

g.setColor Color.red;;
g.fillRect: (col + shiftCol: *TreeOptions.sbh,wide*
TreeOptions.sbv +
shiftVert, TreeOptions.sbh - shiftHor,
TreeOptions.sbv - shiftVert:;

else if icolor.equals"green"”::

g.setColor Color.green;;
g.fillRect ! icol + shiftCol *TreeOptions.sbh,wide*
TreeOptions.sbv +
shiftVert, TreeOptions.sbh - shiftHor,
TreeOptions.sbv - shiftVert:):;

else if icolor.equals:"orange":

g.setColor Color.orange:;
g.fillRect | {col + shiftCol:*TreeOptions.sbh,wide*

72

TreeOptions.sbv +
shiftVert, TreeOptions.sbh - shiftHor,
TreeOptions.sbv - shiftVert:;

else if (color.equals{"white"::

g.setColor Color.white:;
g.fillRect . icol + shiftCol: *TreeOptions.sbh,wide*
TreeOptions.sbv +
shiftVert, TreeOptions.sbh - shiftHor,
TreeOptions.sbv - shiftVert:;

else if ‘color.equals ("yellow": !

g.setColor (Color.yellow!;
g.fillRect: icol + shiftCol:*TreeOptions.sbh,wide*
TreeOptions.sbv +
shiftVert, TreeOptions.sbh - shiftHor,
TreeOptions.sbv - shiftVert:;

else if ‘color.egualsi"cyan”::

g.setColor:Color.cyan;;
g.fillRect: {col + shiftCol;*TreeOptions.sbh,wide*
TreeOptions.sbv +
shiftVert, TreeOptions.sbh - shiftHor,
TreeOptions.sbv - shiftVert;;

else if icolor.equalsi"black”;;

g.setColor Color.black:;
g.fillRect: icol + shiftCol:*TreeOptions.sbh,wide*
TreeOptions.sbv +
shiftVert, TreeOptions.sbh -~ shiftHor,
TreeOptions.sbv - shiftVert:;

else if i{color.equals "magenta";:

g.setColor (Color.magenta; ;
g.fillRect: icol + shiftCol:*TreeOptions,sbh,wide*
TreeOptions.sbv +
shiftVert, TreeOptions.sbh - shiftHor,
TreeOptions.sbv - shiftVert!;

else if i{color.equals "pink"::

g.setColor {Color.pink;;
g.fillRect ({col + shiftCol: *TreeOptions.sbh,wide*
TreeOptions.sbv +
shiftvert, TreeOptions.sbh - shiftHor,
TreeOptions.sbv - shiftVert:;

else if {color.equals ("blue"::
g.setColor (Color.blue;;
g.fillRect ‘ icol + shiftCol:*TreeOptions.sbh,wide*
TreeOptions.sbv +
shiftVert, TreeOptions.sbh - shiftHor,
TreeOptions.sbv - shiftVert:;

73

//display it in the color of the background
else

g.setColor (Color.lightGray;;
g.fillRecticol + shiftCol;*TreeOptions.sbh,wide*
TreeOptions.sbv +
shiftvVert, TreeOptions.sbh - shiftHor,
TreeOptions.sbv - shiftVert);

-//class DatalItem

private
private
private
private
private
-//GeneTree

int total = 0;

int currGeneNum =

int shiftCol = 13;
int shiftVert = 8;
int shiftHor = 3;

H

APPENDIX B

PERL SCRIPT AND SUPPORTING FILES

This appendix contains the source Perl script used to parse the original SWISS-PROT file
and to generate the files used to populate the local database (B.1). An excerpt of the
output file KwACTableFile.txt is included for illustration purposes (B.2). The
FillTables.bat file used to automate the population of the database is shown (B.3).
Included also is the complete list of 333 keywords used in the yeast annotation process

that was extracted from the SWISS-PROT original file (B.4).

74

75

B.1 Perl Script

This program parses the yeast information from the Swiss-Prot
generated file which contains the primary

and secondaryaccount information, description, keyword and gene names
of all yeast (Saccharomyces cerevisiae)

genes and fills the files that are used to populate

the tables in the yeast annotation database

The statements used for debugging purposes are commented and left in
the program

use strict;

The filename of the file containing the yeast data
my Syeastfilename = 'YeastAcDeGnKw.txt';

the files to be created by the program
my $keywordIdFile = 'KwldTableFile.txt';
my S$ACdescrFile = 'ACDETableFile.txt';
my SkeywordACfile = 'KwACTableFile.txt';
my SACGNfile = 'ACGNTableFile.txt';

my $secACfile = 'SecACTableFile.txt';

my %$kw_ids = ();

my @unique_keyword = (};
my @sortedUnique_keyword = ();
my @keywords =();

my @all_ keywords =();

my %kw_seen = ();

my QallACs = ();

my %kw_appeared = ();

my %kw_index = ();

my $uniq_kw_counter = 1;
my $redund_kw_counter = 1;
my %ac_kw = ();

First we have to "open"” the file, and in case the
open fails, print an error message and exit the program.
open(OUTkeywordIdFile, ">SkeywordIdFile"™) or die
"Can't open output file <$keywordIdFile>: $!\n";
open(OUTACdescrFile, ">S$ACdescrFile") or die
"Can't open output file <$ACdescrFile>: $!\n";
open(OUTkeywordACfile, ">$keywordACfile"™) or die
"Can't open output file <$keywordACfile>: $!\n";
open(OUTACGNfile, ">SACGNfile") or die

"Can't open output file <$ACGNfile>: $!\n";

open{ OUTsecACfile, ">$secACfile"™) or die

"Can't open output file <$secACfile>: $!\n";

my $file;
&ReadFile($yeastfilename, \$file);

Each element of array genes contains the data for a single gene

76

my Bgenes = split(/~AC\s+/m, $file); #??m means applied for each line
of the file
#print @genes;

go through each gene's string and parse out the AC, DE, KW and GN
foreach my $gene_string (@genes)

extract the accession numbers line
my {($acc_string) = split(/;\n/, $gene_string);
#print "$acc_string\n";

parse out the accession number (s)
$acc_string =~ s/;i\s/ /:
#print "S$acc_string\n";

#hold primary (and secondary) accession number in an array
my @acc_numbers = split(/\s/, $acc_string);
#print "@acc_numbers\n";

#save all the primary accession numbers in an array
push (@allACs, $acc_numbers{0}]);

#if the array contains two Ac numbers
if (@Qacc_numbers == 2)

my $sec_ac_table =
"insert into second ac (sec_ac, acc _num) values
(\"$acc_numbers[1]\", \"$acc_numbers[0]\");\n";

#write the array into the output file
print OUTsecACfile $sec_ac_table;

remove the accesion numbers line from the gene string
$gene_string =~ s/.*\n//:

process next gene string if gene has no more data
#next if ($gene_string eq ''):
next unless ($gene_string);

read all the annotations for this gene in an array of lines
my (@annotations) = split(/[.;]?\n/, $gene_string);

remove the last element if it's empty (it should be)
pop @Gannotations unless (defined $annotations[$#annotations]);

arrays to keep each gene's DE, GN, KW data
my @descriptions = ();

my @name_lines = ();

my @keyword lines = ();

my @unique_name = ()’

my %name_seen = ();

#my ($description) = undef;

my $description = undef;

my S$name = undef;

my $keyword = undef;

parse out the annotations (keyword lines, gene name lines,
descriptions)
foreach my $ann_line (@annotations)

77

the annotation is a description
if ($ann_line =~ m/~DE\s+/)

fremove all (") from the descriptions - bothers the SQL
$ann_line =~ s/\"/ /g;

#print "$ann_line\n";
$ann_line =~ m/"DE\s+(.*)/;
remember the description and save it in the array of

descriptions
#$1 or \1 remembers what the first paretheses () hold, e.g.

(.*)
push(@descriptions, $1 }:

the annotation is a gene name line
if ($ann_line =~ m/"“GN\s+/)

#remove " (" and ")" from gene names
$ann_line =~ s/[\(\)]|AND\s+|OR\s+//g;

$ann_line =~ m/"GN\s+(.*)/;

remember the gene name line
push(€name_lines, $1);
#print"@name_lines\n";

the annotation is a keyword lines string
if ($ann_line =~ m/"KW\s+(.*)/)

remember the keyword lines string
push(@keyword lines, $1);

end of each annotation line

merge the descriptions into one string (one description per gene)
$description = join(" ", @descriptions);

my $ac_descr_table =
"insert into ac_descr (acc_num, descr) values (\"$acc_numbers[0]\",

\"$description\");\n";
print OUTACdescrFile $ac_descr_table;

parse out the gene names from the gene name lines
foreach my $name line (@name_lines)

#put all the names per line into an array names
my @names = split (/\s/, $name_line);

#first record only non-redundant names for that gene
foreach my $name (@names)

push (@unique name, $name) unless $name_seen{$name;++;

foreach my $uniq name (@unique_name)

#correlate the gene's primary AC with all the alternative gene

names
my $Sac_name_table =

Tincart intAn s~ nama (3~ nimm namal wralnoe

"insert into ac_name (ac_num, name) values
(\"Sacc_numbers[0]\", \"$uniq name\");\n";
print OUTACGNfile $ac_name_table;

#print Sac_name_table;

parse out the keywords from the gene keyword lines
foreach my $keyword line (@keyword lines)

#put all the keywords per line into an array keywords
{@keywords) = split { /\;\s/g, S$keyword line);

check whether each keyword in the array
foreach my $new_kw (@keywords)

my $redundFlag = 0;
#if unique keywords hash is empty
if (! (%kw_index))

$kw_index{$uniq_kw_counter: = $new_kw;

#correlate keyword ids with acc_num in the table kw_ac
my Sac_kw_table =

"insert into ac_kw (ac_num, kw_id) values
(\"$acc_numbers[0]\", \"Suniq_kw_counter\");\n";

print OUTkeywordACfile $ac_kw_table;

#print Sac_kw_table;

S$uniq_kw_counter++;
else #the kw_index hash is not empty

#check for each key
foreach my $key (keys (%kw_index))

#whether the value is the same as the new keyword read
if ($kw_index!$key! eq $new_kw)

#if so, put it in the hash of redundant keywords
$kw_appeared:$redund_kw_counter: = $new_kw;

#correlate keyword ids with acc_num in the table kw_ac
#even if we've encountered the word before, it should
be there for that ac_num

my Sac_kw_table =

"insert into ac _kw (ac_num, kw_id) values
(\"$acc_numbers[0]\", \"S$key\"):;\n";

print OUTkeywordACfile $ac_kw_table;

#print $ac_kw_table;

$redund_kw_counter++;
#indicate we've encountered a redundant keyword

$redundFlag = 1;
#go directly to the next read keyword and skip the

rest of the loop
last;

79

#end foreach;last comes here

#if the keyword was not redundant, i.e. it's unique
if ($redundFlag != 1)

#£il1l in the hash kw_index with indeces and corresponding
unique keywords
$kw_index{$uniq_kw_counterj = $new_kw;

#correlate keyword ids with acc _num in the table kw_ac
my $ac_kw_table =

"insert into ac_kw (ac_num, kw_id) values
(\"$acc_numbers[0]\", \"$uniq_kw_counter\”);\n";

print OUTkeywordACfile $ac_kw_table;

#print $ac_kw_table;

Suniq_kw_counter++;

‘#end each keyword
push (8all_keywords, @keywords);
-#end keyword line
#print "@all_ keywords";
each gene's string

#print all the unique keywords and their indeces

#and sort alphabetically the keywords

foreach my $key(sort {$kw_indexi$a’ cmp kw_indexib! ! keys %kw_index
)

#show key and its value
#print "$key\t$kw_index{Skey}\n";

#correlate keyword ids with acc_num in the table kw_ac
my $kw_index table =

"insert into kw_id (kw_id, kw) values (\"$key\",
\"$kw_index{$key}\");\n";

print OUTkeywordldFile $kw_index_ table;

#print $kw_index_table;

#print "Redundant keywords: \n";
#print all the redundant keywords and their indeces
foreach my $k(keys (%kw_appeared))
#show key and its value
#print "$k $kw_appeared{$k}\n";
#print all the primary accession numbers
foreach my $ac (@allACs)
#print "$ac\n";
save only non-redundant names for the genes

foreach my $keyword (@all keywords)

push (@unique_keyword, S$keyword) unless $kw_seen|$keyword:++;

#sort all the unique keywords alphabetically
@sortedUnique_keyword = sort @unique_keyword;
my $kw_counter = 1;

foreach my $uniq_kw (@sortedUnique_keyword)

#£i11 the hash table with unique keywords for each numeric key
$kw_ids $kw_counter: = Suniq_kw;

#print "$kw_counter\t$kw_ids{$kw_counter}\n";

#correlate keyword ids with unique keywords in the table kw_id
my $kw_id_table =

"insert into kw_id (kw_id, kw) values (\"$kw_counter\"”,
\"$kw_ids{$kw_counter}\");\n";

#print $kw_id_table;

$kw_counter++;

Close the files
close OUTkeywordIdFile;
close OUTACdescrFile;
close OUTkeywordACfile;
close OUTACGNfile:;
close OUTsecACfile;

subroutine
sub ReadFile

#function parameters
my $file = shift @_; #same as: my $file = shift;
my $r_content = shift;

local $/ = undef; # ignore new line chars (must be "local" var)
open(IN, "<$file") [| die "Can't open $file: $!";
$Sr content = <IN>; #dereference it with $

close(IN);

B.2 Excerpt of a Perl Script Output File

insert into ac_kw (ac_num, kw_id) values ("P31383", "1");
insert into ac_kw (ac_num, kw_id) values ("P31383", "2");
insert into ac_kw (ac_num, kw_id) values ("Q00362", "3");
insert into ac_kw (ac_num, kw_id) values ("P47096", "4");
insert into ac_kw (ac_num, kw_id) values ("P47096", "5");
insert into ac_kw (ac_num, kw_id) values ("P47096", "6");
insert into ac_kw (ac_num, kw_id) values ("P40433", "7");
insert into ac_kw (ac_num, kw_id) values ("P40433", "8");
insert into ac_kw (ac_num, kw_id) values ("P40433", "9");
insert into ac_kw (ac_num, kw_id) values ("P40433", "10");
insert into ac_kw (ac_num, kw_id) values ("Q12471", "7");
insert into ac_kw (ac_num, kw_id) values ("Q12471", "8");
insert into ac_kw (ac_num, kw_id) values ("Q12471", "9");
insert into ac_kw (ac_num, kw_id) values ("P38720", "4");
insert into ac_kw (ac_num, kw_id) values ("P38720", "11");
insert into ac_kw (ac_num, kw_id) values ("P38720", "12");
insert into ac_kw (ac_num, kw_id) values ("P53319", "4");
insert into ac_kw (ac_num, kw_id) values ("P53319", "11");
insert into ac_kw (ac_num, kw_id) values ("P53319", "12");
insert into ac_kw (ac_num, kw_id) values ("P25612", "4");
insert into ac_kw (ac_num, kw_id) values ("Q07747", "4"),
insert into ac_kw (ac_num, kw_id) values ("P43547", "4");
insert into ac_kw (ac_num, kw_id) values ("P47182", "4");
insert into ac_kw (ac_num, kw_id) values ("P42884", "4");
insert into ac_kw (ac_num, kw_id) values ("P37898", "13™);
insert into ac_kw (ac_num, kw_id) values ("P37898", "14");
insert into ac_kw (ac_num, kw_id) values ("P37898", "15");
insert into ac_kw (ac_num, kw_id) values ("P37898", "16™);
insert into ac_kw (ac_num, kw_id) values ("P32357", "17");
insert into ac_kw (ac_num, kw_id) values ("P32357", "18");
insert into ac_kw (ac_num, kw_id) values ("P23542", "7");
insert into ac_kw (ac_num, kw_id) values ("P23542", "19");
insert into ac_kw (ac_num, kw_id) values ("P23542", "20");
insert into ac_kw (ac_num, kw_id) values ("P23542", "21");
insert into ac_kw (ac_num, kw_id) values ("P23542", "22™);
insert into ac_kw (ac_num, kw_id) values ("Q01802", "7");
insert into ac_kw (ac_num, kw_id) values ("Q01802", "19");
insert into ac_kw (ac_num, kw_id) values ("Q01802", "20");
insert into ac_kw (ac_num, kw_id) values ("Q01802", "23");
insert into ac_kw (ac_num, kw_id) values ("Q01802", "24");
insert into ac_kw (ac_num, kw_id) values ("P27697", "23");
insert into ac_kw (ac_num, kw_id) values ("P27697", "24");
insert into ac_kw (ac_num, kw_id) values ("Q02486", "23");
insert into ac_kw (ac_num, kw_id) values ("Q02486", "25");
insert into ac_kw (ac_num, kw_id) values ("Q02486", "26");

81

B.3 The FillTables.bat File

mysqld

mysql yeast kw_db < ACDETableFile.txt
mysql yeast_kw_db < ACGNTableFile.txt
mysql yeast_ kw_db < KwACTableFile.txt
mysql yeast_kw_db < KwldTableFile.txt
mysql yeast kw_db < SecACTableFile.txt
mysqladmin shutdown

B.4 Extracted Keywords List

3D-structure

3Fe-4S

4Fe-4S

ANK repeat

ATP synthesis
ATP-binding
Acetylation
Actin-binding

Activator
Acyltransferase
Alkylation

Allosteric enzyme
Alternative initiation
Alternative splicing
Amino-acid biosynthesis
Amino-acid transport
Aminoacyl-tRNA synthetase
Aminopeptidase
Aminotransferase
Anion exchange
Antibiotic resistance
Antioxidant

Antiport

Antiviral

Arginine biosynthesis
Arginine metabolism
Aromatic amino acid biosynthesis
Arsenical resistance
Asparagine biosynthesis
Aspartyl protease
Autocatalytic cleavage
Autophagy

Biotin

Biotin biosynthesis
Branched-chain amino acid biosynthesis
Bromodomain

CBS domain

CF(0)

CF(1)

Cadmium

Cadmium resistance
Calcium

Calcium channel
Calcium transport
Calcium-binding
Calmodulin-binding
Capping protein

Carbohydrate metabolism
Carboxypeptidase

Cell adhesion

Cell cycle

Cell division

Cell shape

Cell wall

Centromere

Chaperone

Chitin degradation
Chitin-binding
Cholesterol biosynthesis
Chromatin regulator
Chromophore
Chromosomal protein
Cleavage on pair of basic residues
Coat protein

Coated pits

Cobalt

Coiled coil

Conjugation

Copper

Copper transport

Cyclin

Cycloheximide resistance
Cyclosporin

Cysteine biosynthesis
Cytoskeleton

DNA damage

DNA integration

DNA recombination
DNA repair

DNA replication

DNA replication inhibitor
DNA-binding
DNA-directed DNA polymerase
DNA-directed RNA polymerase
Decarboxylase
Dioxygenase

Dipeptidase

Dynein

Electron transport
Elongation factor
Endocytosis
Endonuclease
Endoplasmic reticulum
Exonuclease

Exosome

FAD

FMN

Fatty acid biosynthesis

Fatty acid metabolism
Fertilization
Flavoprotein

Folate biosynthesis
Formylation

Fusion protein
G-protein coupled receptor
GMP biosynthesis
GPl-anchor
GPI-anchor biosynthesis
GTP-binding

GTPase activation
Galactose metabolism
Gluconeogenesis
Glucose metabolism
Glutamate biosynthesis
Glutamine amidotransferase
Glutathione biosynthesis
Glycerol metabolism
Glycogen biosynthesis
Glycogen metabolism
Glycolysis
Glycoprotein
Glycosidase
Glycosyltransferase
Glyoxylate bypass
Glyoxysome

Golgi stack

Growth arrest

Growth regulation
Guanine-nucleotide releasing factor
Heat shock

Helicase

Heme

Heme biosynthesis
Histidine biosynthesis
Homeobox

Hydrogen ion transport
Hydrogen peroxide
Hydrolase
Hypothetical protein
Hypusine

Hypusine biosynthesis
Initiation factor

Inner membrane
Inositol biosynthesis
Intron homing

Ion transport

Ionic channel

Iron

Iron transport

Iron-sulfur

Isoleucine biosynthesis
Isomerase

Isoprene biosynthesis
Karyogamy

Keratin

Kinase

LIM domain

Leader peptide
Leucine biosynthesis
Leucine-rich repeat
Leukotriene biosynthesis
Ligase

Lipid degradation
Lipid transport
Lipid-binding
Lipoprotein

Lipoyl

Lyase

Lysine biosynthesis
Magnesium

Maltose metabolism
Manganese

Meiosis

Membrane
Metal-binding
Metal-thiolate cluster
Metalloprotease
Methionine biosynthesis
Methylation
Methyltransferase
Microsome
Microtubules
Mitochondrion

Mitosis
Monooxygenase
Motor protein
Multifunctional enzyme
Mutltigene family
Myosin

Myristate

NAD

NADP

Nitrate assimilation
Nonsense-mediated mRNA decay
Nuclear protein
Nuclease

Nucleosome core
Nucleotide biosynthesis
Nucleotide metabolism
Nucleotide-binding

Nucleotidyltransferase
One-carbon metabolism
Outer membrane
Oxidative phosphorylation
Oxidoreductase

Oxygen transport
Palmitate

Pantothenate biosynthesis
Pentose shunt

Peptide transport
Peroxidase

Peroxisome

Phenylalanine biosynthesis
Pheromone

Pheromone response
Phorbol-ester binding
Phosphate transport
Phospholipid biosynthesis
Phosphopantetheine
Phosphorylation

Plasmid

Polyamine biosynthesis
Polymorphism
Polyprotein
Polysaccharide degradation
Porin

Porphyrin biosynthesis
Potassium transport
Prenylation
Prenyltransferase
Primosome

Proline biosynthesis
Proline metabolism
Protease

Protease inhibitor
Proteasome

Protein biosynthesis
Protein kinase inhibitor
Protein phosphatase inhibitor
Protein splicing

Protein transport

Purine biosynthesis

Purine metabolism

Purine salvage

Pyridine nucleotide biosynthesis
Pyridoxal phosphate
Pyridoxine biosynthesis
Pyrimidine biosynthesis
Pyruvate

RNA-binding
RNA-directed DNA polymerase

RNA-directed RNA polymerase
Receptor

Redox-active center
Repeat

Repressor

Respiratory chain
Riboflavin biosynthesis
Ribonucleoprotein
Ribosomal frameshift
Ribosomal protein
Ribosome biogenesis
Rotamase

SH2 domain

SH3 domain

Sensory transduction
Septation

Serine biosynthesis
Serine esterase

Serine protease
Serine/threonine-protein kinase
Signal

Signal recognition particle
Signal transduction inhibitor
Signal-anchor

Sodium transport
Spermidine biosynthesis
Spliceosome
Sporulation

Steroid biosynthesis
Steroidogenesis

Sterol biosynthesis
Structural protein

Sugar transport

Symport

TPR repeat

Telomere
Tetrahydrobiopterin biosynthesis
Thiamine biosynthesis
Thiamine pyrophosphate
Thiol protease
Threonine biosynthesis
Topoisomerase

Toxin

Trans-acting factor
Transcription
Transcription regulation
Transducer

Transferase

Transit peptide
Translation regulation
Translocation

Transmembrane
Transport

Transposable element
Transposition
Tricarboxylic acid cycle
Tryptophan biosynthesis
Tyrosine biosynthesis
Tyrosine-protein kinase
Ubiquinone

Ubiquinone biosynthesis
Ubl conjugation

Ubl conjugation pathway
Unfolded protein response
Urea cycle
Voltage-gated channel
WD repeat

Xylose metabolism
Zinc

Zinc transport
Zinc-finger

Zymogen

cAMP

cAMP synthesis
cAMP-binding

mRNA capping

mRNA processing
mRNA splicing

mRNA fransport

rRNA processing
rRNA-binding

tRNA processing

APPENDIX C

DATABASE TABLES

This appendix contains the database tables implemented in the MySQL database. They
hold the information of the yeast gene keywords, description, primary and secondary

account numbers and gene names.

The tables in MySQL database yeast_kw_db were created as follows:

1.ac_descr (ac_num VARCHAR(6) NOT NULL,
descr VARCHAR(240) NULL)
2.kw_id (kw_id INT UNSIGNED NOT NULL,
kw VARCHAR(60) NOT NULL)
3.second_ac (sec_ac VARCHAR(6) NOT NULL,
ac_num VARCHAR(6) NOT NULL)
4. ac_kw (ac_num VARCHAR(6) NOT NULL,
kw_id INT UNSIGNED NOT NULL)
5.ac_name (name VARCHAR(80) NOT NULL,

ac_num VARCHAR(6) NOT NULL)

91

REFERENCES

ArrayDB, Retrieved November 20, 2002 from the World Wide Web:
http://www.niehs.nih.gov/Connections/2000/oct-nov/nov00-4a.htm.

ArrayExpress, Retrieved November 20, 2002 from the World Wide Web:
http://www .ebi.ac.uk/microarray/ArrayExpress/arrayexpress.html.

Baxevanis, A. (2002). The molecular biology database collection: 2002 update. Nucleic
Acids Research, 30, 1, 1-12.

BioKnowledge ™ Library, Retrieved November 20, 2002 from the World Wide Web:
http://proteome.nih.gov:8000/may2001/garrels.html.

BioPerl Project Retrieved November 20, 2002 from the World Wide Web:
(http://bio.perl.org/).

Brazma, A. & Vilo, J. (2000). Gene expression data analysis. FEBS Letters, 480, 17-24.

Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, ., Speliman, P., Stoeckert, C.,
Aach, J., Ansorge, W., Ball, C. A., Causton, H. C., Gaasterland, T., Glenisson, P.,
Holstege, F. C., Kim, 1. F., Markowitz, V., Matese, J. C., Parkinson, H.,
Robinson, A., Sarkans, U., Schulze-Kremer, S., Stewart, J., Taylor, R., ViloJ. &
Vingron, M.(2001). Minimum information about a microarray experiment
(MIAME) - toward standards for microarray data. Nature Genetics, 29, 365 - 371.

Brown, M. P. S., Grundy, W. N,, Lin, D., Cristianini, N., Sugnet, C., Furey, T. S., Ares,

M. Jr. & Haussler, D. (2000). Knowledge-based Analysis of Microarray Gene

Expression Data By Using Support Vector Machines.
Retrieved November 20, 2002 from the World Wide Web:

http://citeseer.nj.nec.com/brown00knowledgebased.html.

Califano, A., Stolovitzky G. & Tu Y. (2000) Analysis of gene expression microarrays for
phenotype classification. Submitted to the International Conference on

Computational Molecular Biology
Retrieved November 20, 2002 from the World Wide Web:
http://citeseer.nj.nec.com/califano00analysis.html.

Celis, J. E., Kruhoffer, M., Gromova, 1., Frederiksen, C., Ostergaard, M., Thykjaer, T,
Gromov, P., Yu, J., Palsdottir, H., Magnusson, N. & Omtoft, T. F. (2000). Gene

expression profiling: monitoring transcription and translation products using DNA
microarrays and proteomics. FEBS Letters, 480, 2-16.

93

Cluster [Computer Software]. (1998), Retrieved November 20, 2002 from the World
Wide Web: http://rana.Ibl.gov/EisenSoftware htm.

Dyck, T. (2002). Server Databases Clash. eWeek online magazine,
http://www.eweek.com/print_article/0,3668,a=23115,00.asp.

DRAGON database, Retrieved November 20, 2002 from the World Wide Web:
http://pc190-10 kennedykrieger.org/dragon.htm.

DuBois, P. (2000). MySOL. USA, New Riders Publishing.

Durbin, R., Eddy, S., Krogh, A. & Mitchinson, G. (1988). Biological Sequence Analysis,
Cambridge, England, Cambridge University Press.

Dutilh, B., & Hogeweg, P. (1999). Gene Networks from Microarray Data, report
Binf.1999.11.01, Bioinformatics, Utrecht University

http://www-binf.bio.uu.nl/~dutilh/gene-networks/thesis.html.

Eisen, M., Spellman, Brown, P. O. & Botstein, D. (1998). Cluster analysis and display of
genome-wide expression patterns. Proc. Natl. Acad. Sci., 95, 14863-14868.

ExpressDB, Retrieved November 20, 2002 from the World Wide Web:
http://arep.med.harvard.edu/ExpressDB/ExpressDB.v102.help.htm.

Gene Expression Omnibus (GEO), Retrieved November 20, 2002 from the World Wide
Web: http://www3.oup.co.uk/nar/database/summary/319.

Gene Ontology™ Consortium, Retrieved November 20, 2002 from the World Wide Web:
http://www.geneontology.org/#ontologies.

GeneCards project, Retrieved November 20, 2002 from the World Wide Web:
http://bioinformatics.btk.utu.fi/genecards.

Gibas, C. &Jambeck, P. (2001). Bioinformatics Computer Skills. Sebastopol, CA, USA,
O’Reilly & Associates., Inc.

Han, J. & Kamber, M. (2001). Data Mining. CA, USA, Morgan Kaufmann Publishers.

Hvidsten, T. R. , Komorowski, J., Sandvik, A. K., & Legreid, A. (2001). Predicting
Gene Function from Gene Expressions and Ontologies. Pacific Symposium on
Biocomputing. 6, 299-310.

Jagota, A. (2001). Microarray Data Analysis and Visualization. Bioinformatics by the
Bay Press, http://bioinformaticsbythebay.hypermart.net.

94

Kanechisa, M., Goto, S., Kawashima, S. & Nakaya, A. (2002). The KEGG databases at
GenomeNet. Nucleic Acids Research, 30, 1, 42-46.

Kanehisa, M. (2000). Post-genome informatics. NY, USA, Oxford University Press.

Kavcic, M. & Zupan, B. (2001). FreeView. University of Ljubljana, Slovenia, and Baylor
College of Medicine, Houston, TX, http://magix.fri.uni-}.si.

Kyoto Encyclopedia of Genes and Genomes (KEGG), Retrieved November 20, 2002
from the World Wide Web: http://www.genome.ad.jp/kegg/).

Quackenbush, J. (2001). Computational analysis of microarray data. Nature Genetics, 2,
418-427.

Ramakrishnan, R. & Gehrke, J. (2000). Database Management Systems, USA, McGraw-
Hill Companies, Inc.

Schwartz, R.L. & Christiansen, T. (1997). Learning Perl. Sebastopol, CA, O’Reilly &
Associates, Inc.

Stanford Microarray Database (SMD), Retrieved November 20, 2002 from the World
Wide Web: http://www.dnachip.org/.

SWISS-PROT database, Retrieved November 20, 2002 from the World Wide Web:
http://us.expasy.org/sprot/.

TreeView [Computer Software]. (1998), Retrieved November 20, 2002 from the World
Wide Web: http://rana.lbl.gov/EisenSoftware.htm.

	Functional annotation and dendrogram representation of gene expression clustering results
	Recommended Citation

	Copyright Warning & Restrictions

	Personal Information Statement

	Abstract

	Title Page

	Copyright Page

	Approval Page

	Biographical Sketch

	Acknowledgment

	Table of Contents (1 of 2)

	Table of Contents (2 of 2)

	Chapter 1: Introduction

	Chapter 2: Specific Design of the Software Application

	Chapter 3: Results

	Appendix A: Java Files

	Appendix B: Perl Script and Supporting Files

	Appendix C: Database Tables

	References

	List of Figures

	List of Abbreviations

