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Abstract

To maximise the assignment of function of the proteins encoded by a genome and to aid the
search for novel drug targets, there is an emerging need for sensitive methods of predicting
protein function on a genome-wide basis. GeneAtlas™ is an automated, high-throughput
pipeline for the prediction of protein structure and function using sequence similarity
detection, homology modelling and fold recognition methods. GeneAtlas is described in detail
here. To test GeneAtlas, a ‘virtual’ genome was used, a subset of PDB structures from the
SCOP database, in which the functional relationships are known. GeneAtlas detects additional
relationships by building 3D models in comparison with the sequence searching method PSI-
BLAST. Functionally related proteins with sequence identity below the twilight zone can be

recognised correctly.

INTRODUCTION
The genomes of many organisms have
been or are now being sequenced. A
critical step in exploiting the data is to
determine the function of the encoded
proteins.1 Assignment of putative
function is often done by attempting to
find a relationship between the sequence
of a new protein and the sequences of
existing proteins of known function.”
Protein function, however, is more
directly related to the three-dimensional
structure of the protein than to its amino
acid sequence. Structure, therefore, tends
to be more highly conserved than
sequence. Thus, prediction of the three-
dimensional structure of a protein and
comparison with proteins of known
structure and function might enable
the elucidation of function in cases
where searching for sequence homology
fails>™*

Structure and function prediction
efforts are closely allied with structural
genomics initiatives.!” These are oriented

towards the large-scale experimental
determination of protein structures, with
the goal of expanding our knowledge of
the range of folds accessible to proteins
and of placing all proteins within
‘modelling distance’ of an experimental
structure. The success of structure
prediction methods depends on the
existence of a structure that adopts a
similar fold to the sequence for which a
relationship 1s being sought. Structural
genomics initiatives will, therefore,
enhance the applicability of structure
prediction methods, which in turn will
provide the tools to fully utilise the
experimental data.

An automated ‘pipeline’
(GeneAtlas™)"! for the high-throughput
annotation of protein sequences has been
constructed. The methodology used in
GeneAtlas is described below, followed
by the results of a validation study and the
results of the application of the pipeline to
the proteins encoded by complete
genomes.
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Homology detection using 3D structure prediction

Use of a combination of
methods enhances
homology recognition

METHODOLOGY

The GeneAtlas pipeline
GeneAtlas is designed to predict structures
of proteins for large sets of protein
sequences and to assign function based on
sequence and structural analysis.” The
major components of GeneAtlas (Figure
1) include homology searching using PSI-
BLAST, fold recognition using SeqFold,
high-throughput homology modelling
using MODELER, and functional

annotation based on the sequence and
predicted structure. Park ef al.'* observed
that different sequence similarity
searching methods give both common
hits and hits that are unique to each
method. GeneAtlas, therefore, uses the
combination of several methods to
enhance homology recognition. The
confidence of the assignment is also
increased when consensus hits are
obtained by different methods.

/ PROTEIN SEQUENCES /

LC screening
PSI-BLAST

SeqFold

Hits in List 1

Loose cutoff

Tight cutoff = 2*e-8

Loose cutoff = 6%e-2

no l

PSI-BLAST

HTM

HTM
Verify >0
no yes

Sequence Annotation in RDB

V/ V./
Unique  PSI-BLAST &
Seqfold SeqFold

PSI-BLAST &

PSI-BLAST only HTM

Unique HTM

Figure |: GeneAtlas flowchart. Hits obtained with GeneAtlas are divided into several categories. PSI-BLAST and HTM
hits are the hits with a PSI-BLAST score better than tight cutoff and a positive model verification score. PSI-BLAST and
SeqFold hits are hits with a PSI-BLAST score better than tight cutoff that also occur in the SeqFold hit list. PSI-BLAST-only
hits are hits with a PSI-BLAST score better than tight cutoff that are not found in SeqFold and that have a negative model
verification score. Unique HTM hits are hits with a PSI-BLAST score between tight cutoff and loose cutoff that have a
positive model verification score. After removing PSI-BLAST and SeqFold consensus hits, the remaining SeqFold hits are
sorted using the SeqFold raw score and the top five hits are selected. Any of these top five hits that are found in the PSI-
BLAST hit list with a score between tight cutoff and loose cutoff are classified as SeqFold unique hits. If a sequence does
not have any homologue in the structure database, the hits found by searching the nrdb database are reported as sequence

annotations
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A ‘reverse’ PSI-BLAST
search enhances
homology recognition

An algorithm is used to
reduce the effects of
PSI-BLAST profile
divergence

MODELER is used to
build models

DPSI-BLAST search

PSI-BLAST" is used to identify
homology relationships between a query
sequence and sequences of proteins with
known structure in the PDB95 database
(see below). Using PSI-BLAST, each
query sequence is used to search a non-
redundant sequence database, nrdb90,14 to
build a position-specific scoring matrix (a
‘profile’) for the query. The profile is then
used to search the PDB95 database to
identify possible structural templates. To
maximise homology recognition, a
reverse search starting from template
sequences is also carried out (Figure 2).
The hits from the direct and reverse
searches are then combined.

The profiles are built by running 20
iterations of PSI-BLAST against the
nrdb90 database, unless convergence
occurs earlier. The E-value threshold used
for selecting the hits that are used for
constructing the profile is set at 0.0005.
The BLOSUM-62 scoring matrix is used.
Profile divergence is one of the main
problems that can lead to false positive
hits. To test for divergence, checkpoints

Profile of a
Genome
sequence PSI-BLAST Search
of PDBY5 Database

PSI-BLAST Search

of nrdb90 Database
A Typical Procedure for
Template Identification

N using PSI-BLAST
Protein Template

Sequence Sequences

from Genome / —— in PDB95

A Reverse Search Procedure
using PSI-BLAST /
PSI-BLAST Search PSI-BLAST Search

Profile of a of nrdb90 Database
PDBY5
sequence

of Genome Database

Figure 2: PSI-BLAST search protocol.
Homology relationships between genome
sequences and structures in the PDB95
database are found using both a direct search
and a reverse search. In the direct search, a
PSI-BLAST profile is generated for a genome
sequence and this profile is used to search
the sequences of the PDB95 proteins. In the
reverse search, a profile is generated for a
PDB95 protein and this is used to search the
genome sequence database. Profiles are
generated by searching the nrdb90 database

are set at iterations 3, 5, 10, 15 and 20. If
the top hit in the initial iteration
disappears at a checkpoint, the profile is
considered to have diverged. If the
sequence identity of the top hit in the
initial iteration is much higher (difference
larger than 50 per cent) than the top hit at
a checkpoint and the length of the former
is at least 80 per cent of the latter, the
profile is also considered to have
diverged. When divergence occurs, the
PSI-BLAST search is stopped and the
profile of the previous checkpoint is used.
Since sequences with low-complexity
regions often result in diverged profiles,
the low-complexity screening option in
PSI-BLAST is used to remove these
regions during a search.

High-throughput modelling (HTM)
Relationships between query sequences
and PDB95 structures found in both the
direct and reverse PSI-BLAST searches
are used to build homology models of the
query sequences.

A number of protein families include
many structures that are close
homologues. When a query sequence is
homologous to this type of family, many
matching templates will cover the same
region of the query sequence. Building
models for all of these hits will result in
little additional annotation of the query
sequence, while requiring extensive
computational time. For each region of
the query sequence, a maximum of 10
top-ranking hits is selected for building
models (see the supplementary material >
for details).

The models are built using the
homology modelling package
MODELER,'® with the alignments taken
directly from PSI-BLAST. They are then
evaluated using the Profiles-3D'" and
PMF (A. Sali, personal communication)
methods. Profiles-3D tests a structure by
examining the environment of each
residue and assigning a score to reflect the
suitability of the environment. The total
score for all residues is then compared to
expected upper and lower bounds for a
protein of the same length. The upper

34 © HENRY STEWART PUBLICATIONS 1467-5463. BRIEFINGS IN BIOINFORMATICS. VOL 3. NO I. 32-44. MARCH 2002

220z ¥snBny 0z uo 1senb A 20/€61/2€/L/€/3101E/q10/W0d dNo"olWapeoe)/:SAjyY WO) POPEOUMOQ



Homology detection using 3D structure prediction

Low-confidence PSI-
BLAST hits are judged
by evaluation of 3-D
models

bound is derived by analysis of protein
structures known to be correct or
incorrect. In the present work, the lower
bound was set to 50 per cent of the upper
bound. The score is normalised using:

Normalised score =

raw score — %high score

% high score

Models with a normalised score above 0
are accepted. The PMF score is similar to
the Profiles-3D score, but uses a pairwise
potential that accounts for the pairwise
residue interaction energy.

Any hits with an E-value better than
the tight cutoff (Figure 1) are considered
good hits regardless of their model scores,
and are retained. The E-value cutoff that
is used for selecting hits for model
building (the loose cutoft; Figure 1) is
much looser than the cutoft that would
normally be used for PSI-BLAST
searches. The large number of false
positives included in the PSI-BLAST hits
between the tight and loose cutoffs are
weeded out based on the quality of the
three-dimensional models, as described
above. By using HTM and SeqFold (see
below) as an extension of the PSI-BLAST
search, low-confidence hits found in the
sequence search are, therefore, confirmed
or rejected by structural information.

SeqFold

SeqFold'"®! is a secondary structure-
enhanced, sequence-similarity searching
program. The query sequence is searched
against a library of known structures to
find potential folds. In GeneAtlas, the fold
library is constructed based on the PDB95
database and contains both the sequence
and the secondary structure derived using
the Kabsch and Sander method* The
secondary structure for the query
sequence, which is compared with the
actual secondary structure of the members
of the fold library, is predicted using
Discrimination of protein Secondary
structure Class (DSC).2! SeqFold hits are
selected in combination with the PSI-
BLAST hits as shown in Figure 1.

Searching the nrdb sequence database

If no homologues of a query sequence are
found in the PDB95 structure database,
no model can be built for this sequence.
However, there is a greater chance of
finding homologues in the nrdb sequence
database since this contains many more
sequences, which often have functional
annotation. GeneAtlas uses the PSI-
BLAST profile generated in the previous
step and runs one iteration of PSI-BLAST
to identify hits in nrdb.

Databases
PDB95
This database, in which any pair of
sequences has less than 95 per cent
sequence identity, is derived from the
Protein Data Bank (PDB).** Theoretical
models in the PDB are not included. The
sequences for multi-chain proteins are
divided into separate sequences for each
chain. A filtering mechanism is used that
removes chains with greater than 95 per
cent sequence identity to any other
member of the database (see the
supplementary material® for details).
The current PDB95 database was
created based on the PDB release of 14th
December, 2000, and consists of 5,460
PDB chains extracted from 4,658 PDB
structures.

nrdb and nrdb90
The nrdb sequence database™ contains
non-redundant protein sequences from
GenBank CDS translations, PDB,
SwissProt, PIR and PRF databases. In the
current GeneAtlas release, the nrdb
version of 5th February, 2001, which
consists of 616,766 sequences, is used.
The nrdb90 database'* is a subset of
nrdb and included 359,584 sequences on
1st February, 2001. Any two sequences in
this database have less than 90 per cent
sequence identity.

Validation of high-throughput
modelling

The premise behind the GeneAtlas
pipeline is that, by using structural
methods in addition to sequence-based
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A ‘virtual genome’
(PDBD40-JA) is used for
validation

The goal of the
validation study is to
selectively identify 1,980
superfamily-level pairs

This validation study
focuses on the HTM
component of
GeneAtlas

PDB40-JA includes 912
SCOP domains

methods, we can assign additional
relationships between remote
homologues, over and above those that
can be found by sequence-based methods
alone. The ability of the high-throughput
modelling component of GeneAtlas to
assign relationships has been evaluated
using a ‘virtual genome’ in which the
relationships are already known.

Validation database

The Structural Classification Of Proteins
(SCOP) database®* contains the sequences
and structures of protein domains. These
are classified according to their structures
and evolutionary relationships. Families
contain domains with a close evolutionary
relationship. Superfamilies contain
families where the structures and other
evidence indicate a common origin. The
sequence similarity at this level, however,
may be low. The fold level includes
superfamilies that have the same overall
structural fold, but which are believed not
to have an evolutionary relationship.
Finally, folds with the same gross overall
structure (all-alpha, all-beta, etc.) are
brought together at the class level.

Park ef al.'* derived a subset of the
SCOP database (PDBD40-]) that
included only domains that have a
pairwise sequence identity of 40 per cent
or less. This was used in their evaluation
of the ability of various sequence-based
methods to find relationships between
remote homologues. Our database was
based on PDBD40-], with changes made
to reflect updates in SCOP version 1.37
and to remove domains that could be
unsuitable for structural modelling (for
example, those with only alpha-carbon
coordinates). This left 912 domains,
which are listed in the supplementary
material."”> We shall refer to this test set as
PDBD40-JA.

Pairs of functionally related proteins
will fall within the same SCOP family or
in different families within the same
superfamily. Thus, the task of identifying
pairs of homologous domains equates to
identifying, out of all possible pairwise
relationships, those pairs of domains that

are within the same SCOP superfamily.
In our test set of 912 domains, there are
1,980 pairs that are in the same
superfamily. Owing to the uncertainty in
the relationship between domains that are
in the same fold class, but different
superfamilies,12 pairs that have this
relationship were excluded from the
analysis — there were 1,975 such pairs.
This leaves 411,461 non-homologous
pairs. The challenge of identifying
homologous pairs is, therefore, to find as
many as possible of the 1,980 superfamily-
level pairs, while minimising the incorrect
selection of false positives from the
411,461 non-homologous pairs.

This is a very challenging test set, with
72 per cent (1,426) of the relationships
having a pairwise sequence identity of less
than 20 per cent and 41 per cent (811)
having a pairwise identity of less than 16
per cent (Figure 3).

Protocol used for validation study

In this validation study, we focused on
assessing the HTM component of
GeneAtlas, using a subset of the pipeline
(Figure 4). The two most significant
changes to the pipeline were: (a) SeqFold
was not used; and (b) since the goal was to
search for pairwise relationships within
the PDBD40-JA test set, this set of
structures was used in place of the PDB95
template database. This means that the
same set of 912 protein domains
(PDBD40-JA) constitutes both the query
(target) sequences and the template
structures. A PSI-BLAST profile was
constructed for each query sequence as
described above and this was used to
search a database containing the sequences
of the 912 domains. All hits with an E-
value of less than or equal to 10.0 were
accepted, as long as the alignment
included at least 25 residues of the target
sequence.

To test each hit, a model was built of
the query sequence using MODELER,
using the three-dimensional structure of
the hit as a template. The models were
evaluated using Profiles-3D and models
with a positive normalised score were
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Homology detection using 3D structure prediction

Many true pairs have
very low sequence
identity

Figure 4: Subset of
pipeline used for
validation study. PSI-
BLAST was used to
search the PDBD40-JA
database using each
sequence in the same
database as a query
sequence in turn. All hits
with an E-value of less
than 10.0 were saved
(List 1). Models were
built for each hit and
evaluated with Profiles-
3D. All models with a
positive score were
accepted (List 2)
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Figure 3: Sequence identities within the test set. The distribution of pairwise sequence
identities for the 1,980 superfamily level relationships within the test set is shown. The
sequences were aligned using a global alignment algorithm and the percentage identity was
calculated for the alignment. Many of the pairs have a very low percentage identity. Given the
low sequence identity, it is probable that some of the sequence alignments are in error (see
also the results discussed below relating to accuracy of sequence alignments). Thus, these
percentage identities should be considered an upper bound on the true values (those that
could be derived from a structural alignment of the domains)
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E-Value < 10.0

accepted. In this experiment the use of a
tight cutoft (Figure 1) was not applied —
all hits were modelled, and accepted or
rejected based on their Profiles-3D score.

Assessment of hit lists

Since the relationships between the 912
domains are known, we can evaluate
whether the relationships (hits) that we
find are correct matches (true positives;
both domains are in the same SCOP
superfamily) or false positives (in different
superfamilies). The results from the PSI-
BLAST searches were analysed first. The
hit list was first processed to remove self-
hits and redundant hits (this is described
in detail in the supplementary material').
The resulting hit list was ranked according
to the E-values, with the hits with the
lowest (most favourable) E-value at the
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start of the list (Figure 5). The list could
then be scanned to count, for a given E-
value cutoff, the numbers of true and false
positive relationships that were found.
Alternatively, the number of true
positives found for a given number of
false positives could be counted”

As described above, for each PSI-
BLAST hit, a model was built. In
assessing the results of the modelling, pairs
were first rejected for which the Profiles-
3D score indicated an incorrect model.
Again, the hit list was processed to
remove redundant hits (see the
supplementary material °) and then all
pairs were ranked according to the PSI-
BLAST E-value (Figure 5). The hit list
was then analysed as described above.

Since both true and false positives are
eliminated from the HTM hit list when
models are rejected, the HTM hit list
must be a subset of the PSI-BLAST hit

/ List 2 (HTM) /
v

Remove Self- and

Remove Self- and

Redundant Hits Redundant Hits

v v
PAIR# EV TP FP PAIR# EV TP FP
1 0e+00 1 0 1 0e+00 1 0
2 0e+00 2 0 2 0e+00 2 0
3 0e+00 3 0 3 0e+00 3 0
654 5.8¢-08 606 48 654 5.8¢-08 497 15
655 5.8¢-08 607 48 655 5.8¢-08 498 15
656 5.9¢-08 607 49 656—59e=08
657 5.9¢-08 608 49 55088
658 6.0e-08 609 49 658 6.0e-08 499 15
659 6.0e-08 609 50 659...... 60608 499 16
660 6.2¢-08 609 51 660 6.2¢-08 499 17
661 6.2¢-08 610 51 G l——6 208
662 6.3¢-08 610 52 662 6.3¢-08 499 18
883 7.9¢-03 709 175 883 7.9¢-03 550 49
884 7.9¢-03 709 176 $84—F9e=03-
885 7.9¢-03 710 176 $85—F9e=03-
886 8.0e-03 710 177 886 8.0e-03 550 50
887  8.0e-03 710 178 | | 887 . 8003 550 51
888 8.1e-03 711 178 888 8.1e-03 551 51

list. This means that the cutoft for a given
number of false positives will occur
‘further down’ the HTM hit list (at
higher, less favourable E-values). In
comparing the lists, the hits that fall
between the cutoff for a given number of
false positives in the PSI-BLAST hit list
and the cutoft for the same number of
false positives in the HTM hit list are
considered to be additional hits (true or
false) found by HTM. This is illustrated in
Figure 5. The 52 true positives and 35
false positives that fall between the dotted
lines on the HTM hit list in this figure are
considered to be additional hits at the 50
false positive cutoft.

To allow for a comparison between
BLAST?® and PSI-BLAST for our test set,
a straightforward BLAST search was also
run for each of the 912 sequences. This
was run and analysed in the same way as
the PSI-BLAST search described above,

Figure 5: Protocol for assessing hit lists.
After removing self-hits and redundant hits,
the remaining pairs were ranked according
to their PSI-BLAST E-value (EV). For any
given pair, the total number of true positives
(TP) and false positives (FP) up to that point
is listed. For the HTM hit list, pairs that had
an unfavourable model score were rejected
(shown struck through). The dotted lines on
the HTM hit list enclose the additional hits
(52 true and 35 false) that are found between
the cutoff at which 50 false positives are
found in the PSI-BLAST list (6.0e—08) and
the cutoff at which 50 false positives are
found in the HTM list (8.0e—03). Hits that
have been eliminated above the upper dotted
line (including 656 and 657 in this illustration)
are unique to the PSI-BLAST hit list at the 50
false positive rate

38
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Homology detection using 3D structure prediction

PSI-BLAST identifies

more true positives
than HTM, but also
many more false

positives

except that the initial step of building
sequence profiles by searching nrdb90 was
omitted.

RESULTS
Remote homology detection
rates of PSI-BLAST and HTM

Using BLAST, the total numbers of true
and false positives found were 462 and
2,702, respectively, if we do not apply an
E-value cutoft to the hit list (ie we
include all hits up to the limit of 10.0 that
was used in the search). For PSI-BLAST
the corresponding numbers were 899 and
2,750. After eliminating the pairs for
which HTM indicated an incorrect
model, 611 true and 284 false positives
remained. These are out of a total of
1,980 true positive pairs present in the test
set, and 411,461 false positives. Thus,
PSI-BLAST finds more true positives
than HTM, but at the expense of almost
ten times more false positives.

To compare the methods, we can use a

Number of True Positives

700

600 -

500 -

400

300

200

100

PSI-BLAST

20

40 60 80 100

Number of False Positives

plot that indicates the numbers of true
positives found for a fixed number of false
positives™ — Figure 6. This shows that
the first several hundred true positives are
readily found by all methods, at a cost of
few false positives. After around five false
positives have been found, however, the
number of false positives found per true
positive increases significantly. Table 1
lists the number of true positives found at
rates of 5, 10, 50, 100, 200 and 400 false
positives, and shows the E-value
thresholds corresponding to these false
positive rates.

Comparison of homologues
found using PSI-BLAST and
HTM

As discussed above, we can characterise
hit lists by counting the numbers of true
positives found for a given rate of false
positives. At a rate of 100 false positives,
we find 681 true positives with PSI-
BLAST and 590 with HTM, at E-value

Figure 6: Hit rates for homology search
methods. The number of correct matches
(true positives) found by different search
methods, for between | and 100 false
positive relationships is shown. Hit lists were
ranked according to the E-values of the hits.
The hit lists were then processed, starting at
the lowest (most favourable) E-value,
counting the numbers of true and false
positives found. Comgarison of this plot and
Figure | in Park et al.'? shows that, for 100
false positives, approximately 100 fewer true
positives were found using PSI-BLAST in the
present study than in the work of Park et al.
Detailed comparison of the hit lists from this
work and from Park et al. (J. Park, personal
communication) indicated that this was due
to differences between SCOP version 1.37,
used in the present study, and version .35,
used by Park et al. (ie some pairs of domains
that were identified as superfamily-level
homologues in version 1.35 were placed in
different superfamilies in version 1.37)
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Table I: Numbers of correct matches (true positives) found for different rates of false positives using sequence-based
methods and HTM

No. false BLAST PSI-BLAST HTM
Positives
E-value No. true E-value No. true E-value No. true
threshold positives® threshold positives® threshold positives®
5 1.5e—02 281 (14.2) 3.0e—15 481 (24.3) 5.0e—13 403 (20.4)
10 2.7e—02 293 (14.8) 2.0e—14 498 (25.2) 7.0e—09 455 (23.0)
50 I.1e—01 325 (16.4) 6.0e—08 609 (30.8) 8.0e—03 550 (27.8)
100 2.4e—01 352 (17.8) 3.0e—04 681 (34.4) 1.5e—01 590 (29.8)
200 5.0e—01 371 (18.7) 1.0e—02 744 (37.6) 1.9e+00 607 (30.7)
400 I.1e+0l 396 (20.0) 1.2e—01 814 (41.1) -b = =

2The number of true positives is given, followed by the percentage of the total possible number of true positives (1,980) in parentheses.
bA total of only 284 false positives was found using HTM.

HTM finds additional

thresholds of 3.0e—04 and 1.5e—01,
respectively (Table 1). However, while
PSI-BLAST finds a larger number of
correct matches than HTM, our primary
interest is to discover whether or not we
find additional matches (as defined
above — ‘Assessment of hit lists’) using
HTM, that are not found by PSI-BLAST.
To investigate this, we can compare the
specific hits found by each method. Table
2 lists the number of matches that were
found by both methods, and the number
found by only one, for various rates of
false positives. This indicates that we do
indeed find additional matches using

additional 52 true positives, to give a total
of 661 (8.5 per cent more than PSI-
BLAST alone). Combining the hit lists in
this way also leads, of course, to additional
false positives.

The E-value thresholds for 100 false
positives are 3.0e—04 and 1.5e—01 for
PSI-BLAST and HTM, respectively. All
hits in the HTM list with an E-value of
less than or equal to 3.0e—04 must also be
in the PSI-BLAST list. Thus, the
additional hits in the HTM list are those
with an E-value of between 3.0e—04 and
1.5e—01 (see Figure 5). This illustrates the
function of the HTM process — to

matches HTM. For example, at a false positive rate  evaluate the pairs for which the PSI-
of 50 for either PSI-BLAST or HTM, BLAST E-value is too high for the
PSI-BLAST finds 609 true positives relationship to be clear. If the threshold
(498 4 111 in Table 2). HTM finds an for the PSI-BLAST list had been set to
Table 2: Numbers of unique and common hits found using PSI-BLAST and HTM for different rates of false positives
No. false E-value thresholds Common hits PSI-BLAST unique hits HTM unique hits
positives
PSI-BLAST HTM TP FP: TP FP: TP FP:
5 3.0e—15 5.0e—13 391 | 90 4 12 4
10 2.0e—14 7.0e—09 411 3 87 7 44 7
50 6.0e—08 8.0e—03 498 16 11 34 52 35
100 3.0e—04 1.5e—01 536 33 145 78 54 68
200 1.0e—02 1.9e+00 567 77 177 127 40 123

2The number of true positives (TP) and false positives (FP) found in common and by each method uniquely. The thresholds chosen were those at which
the 5th, 10th, etc. false positive occurred. In some cases, several false positives were found with this threshold E-value. For this reason, the total number of
false positives may be slightly higher than the specified number (for example, 33 4 78 = 1 1| for PSI-BLAST for the 100 false positive rate). The total
number of true or false positives found by both methods combined can be calculated for any false positive rate by adding together the number of
common hits and the unique hits — for example, 661 true positives and 85 false positives at the 50 false positive rate.
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There is scope for
improvement

Only 17 per cent of all-
beta-class pairs are
found

1.5e—01, rather than 3.0e—04, we would
have found an extra 465 hits, of which
140 are true positives and 325 are false
positives. After building and evaluating
models of these 465 hits, using HTM, 54
that are true positives and 68 that are false
positives were retained (Table 2).
Therefore, 79 per cent of the additional
false positives were eliminated, but also 61
per cent of the true positives. We are
investigating ways in which the process
can be improved so that even more of the
false positives can be eliminated, while
reducing the number of true positives that
are eliminated (see below).

Characteristics of homologues
found using PSI-BLAST and
HTM

The results of the PSI-BLAST and HTM
calculations can be analysed to determine
whether particular SCOP structural classes
are favoured in the hits that are obtained
(Table 3). For most classes approximately
40—-60 per cent of the pairs in the test set
are found by the combination of PSI-
BLAST and HTM (see the ‘All hits’
column). A much smaller proportion of
the pairs in the all-beta class is found,
however. PSI-BLAST finds only 94 out
of the 547 pairs (17 per cent). While a
significant proportion of the unique
HTM hits are in this class (16 out of 54),

the total number of hits for the all-beta
class is still only 110 (20 per cent).
Potential reasons for this very low hit rate
for all-beta proteins are being investigated
and will be reported in a subsequent
publication. A low hit rate for this fold
class was also found by Miiller et al?

A large proportion of the unique hits in
the PSI-BLAST hit list — 98 out of 145
(68 per cent) — is for the SCOP class
1.003. This is also the most significant
class for the unique hits in the HTM hit
list — 23 out of 54 hits (43 per cent).
Within this class, the 1.003.004.001
superfamily (SCOP version 1.37; the
‘ferredoxin reductase-like, C-terminal
NADP-linked domain’) is significantly
represented in the test set, with a total of
120 pairs between members of the
superfamily. Of these 120 pairs, 47 are
found by both PSI-BLAST and HTM, 44
are found by only PSI-BLAST and 1 by
only HTM. It is instructive to consider
the pairs that are found only by PSI-
BLAST. Models are being constructed for
these 44 correct pairs during HTM, but
these models are being rejected —
consideration of the reasons for this could
suggest enhancements to the procedure.

One potential problem with HTM is
that the sequence alignment used for
building the model could be significantly
incorrect so that, even though an

Table 3: Number of true positives found using PSI-BLAST and HTM for different SCOP
classes, for the hit lists containing 100 false positives for each method

Class description SCOP Total pairs Common PSI-BLAST HTM unique All hits®
class in test set hits® unique hits hits

All alpha 1.001 342 139 I 3 153 (45)
All beta 1.002 547 84 10 16 110 (20)
Alpha and beta (a/b)° 1.003 757 193 98 23 314 (41)
Alpha and beta (a + b)¢ 1.004 136 56 13 3 72 (53)
Multi domain (alpha and beta)  1.005 14 7 | 0 8 (57)
Membrane and cell surface 1.006 9 0 0 0 0 (0)

Small proteins 1.007 175 57 12 9 78 (45)
All classes 1980 536 145 54 735 (37)

2The number of hits found by both PSI-BLAST and HTM.

5The total number of hits found by PSI-BLAST or HTM or both. The percentage of the total number of pairs that are in

the test set is given in parentheses.
“Mainly parallel beta sheets (beta—alpha—beta units).

9Mainly antiparallel beta sheets (segregated alpha and beta regions).
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GeneAtlas can be
applied to whole
genomes

Inaccurate alignments
are a problem

More detailed structural
analysis gives additional
functional information

appropriate template is being used for
constructing the model, the model will be
inaccurate. Here, the alignment produced
by PSI-BLAST is used % Given the
very low sequence similarity of many of
the pairs in the test set, there is a
significant chance that the alignment
could be inaccurate. It could also be the
case that, while the residue alignment
could be correct, there could be large
insertions or deletions in the sequence of
the model relative to the template, or
there could be other significant
differences between the structure of the
target and template. These problems
could also give rise to an inaccurate
model. Since, in this study, we know the
correct (X-ray) structure of each target
domain, we can estimate the accuracy of a
model by performing a least squares
superposition of the model onto its X-ray
structure, followed by calculating the root
mean square (RMS) deviation between
the alpha carbon atoms of the model and
the X-ray structure. A low deviation
would indicate a model built using an
accurate alignment. Calculated in this
way, the RMS deviations for the models
that are found only by PSI-BLAST range
from 0.6 to 20.1 A. Of the 44 models, 27
have a deviation of greater than 4 A.
Thus, many of the models are clearly
being built from inaccurate alignments, or
from alignments in regions where there
are significant differences between the
target and template structures. Methods
that make use of the structure of the
template in addition to its sequence in
producing the alignment are available
(ALIGN2D — Sali ef al., in preparation)
and will be evaluated in the pipeline.
‘While 27 models have high RMS
values when compared to their X-ray
structures, 17 have an RMS of less than
4 A. Why are these models being
rejected? The models are built for the
portion of the target protein that is
covered by the PSI-BLAST alignment.
These 17 models are all short — ranging
from 27 to 57 residues, with an average of
33 residues. The X-ray structures of the
targets, however, range in length from

126 to 322 residues, with an average of
261 residues. Thus the models, although
accurate, represent only a small portion of
the complete structure, and residues that
should be buried in the core of the
protein will be exposed on the surface of
the model. These residues will be assigned
alow score by Profiles-3D during the
validation procedure, and this leads to the
rejection of the models.

Whole genome analysis using
the GeneAtlas pipeline

The proteins encoded by a number of
fully sequenced genomes have been
processed using GeneAtlas (the complete
pipeline, illustrated in Figure 1, was used
for this work). The percentage of the
genome that is annotated is given for
several examples in Table 4. This table
also illustrates how the percentage that
can be annotated structurally increases as
the size of the PDB database increases (see
the results for Mycoplasma genitalium
obtained with different versions of the
PDB database).

DISCUSSION

This study has shown that the use of high-
throughput modelling enables us to assign
additional relationships beyond those that
can be assigned using a purely sequence-
based method. HTM, however, also leads
to the introduction of additional false
positives, and causes the rejection of valid
relationships. Some of these rejected
models are due to inaccuracies in the
sequence alignments that are used to
generate the models. This points to one
possible area of improvement.

The methods that we are exploring are
designed to identify proteins that have
related structures, even at low levels of
sequence similarity. In most cases,
similarity of structure is likely to lead to
clues about function. Proteins with the
same fold can, however, have quite
different functions>" In these cases, a
more detailed analysis of predicted
structures might lead to more conclusive
information on function. This type of
analysis might include the identification of
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Table 4: Genome sequences annotated using GeneAtlas

Genome No. of protein Structural SCOP Active site Structural Sequence-only
sequences annotations® coverage® annotations® template annotations®
annotations?
Homo sapiens 29,304 14,979 (51.1%) 652 5515 15,822 11,229 (38.3%)
Arabidopsis thaliana 25,571 15,334 (60.0%) 654 6,676 11,365 8,972 (35.1%)
Caenorhabditis elegans 19,835 10,962 (55.3%) 648 4,228 8473 5,207 (26.2%)
Drosophila melanogaster 14,332 8,384 (58.5%) 646 3,665 7,466 5,854 (40.8%)
Mycoplasma genitalium® 468 328 (70.1%) N/Af N/Af N/Af 109 (23.3%)
Mycoplasma genitalium" 468 273 (58.3%) N/Af N/Af N/Af 163 (34.8%)

2Sequences for which a match to at least one structure in PDB95 was found.

®The total number of SCOP superfamilies represented in all models built for the genome.

¢Sequences for which at least one functional assignment can be made as a result of a template (used to build a model for a region of the sequence)
containing an active site definition (in the PDB file).

4For each sequence, the total number of occurrences of structural templates (3D patterns) in all models built for that sequence was counted. Where the
same template was found more than once in the models for a sequence, it was counted only once. The number given is the sum over all sequences in the
genome.

¢Sequences for which no match to a structure was found, but for which a match to at least one sequence in nrdb was found.

fThese data were not calculated.

8These results were obtained using the PDB95 database that was created based on the PDB release of 14th December, 2000, and that consists of 5,460
PDB chains extracted from 4,658 PDB structures.

"These results were obtained using the PDB95 database that was created based on the PDB release of November 1999 and that consists of 4,250 PDB

chains.

patterns of residues that are known to
confer a particular function or functions.”’
The PDB95 template structures have
been annotated both to indicate the
presence of active-site definitions from
the original PDB files and to indicate the
presence of patterns of residues, derived
by the functional annotation using
structural templates method (Milik ef al.,
in preparation), that are associated with a
particular type of function. Models can be
analysed to see if either of these types of
features, where present in the template,
are conserved in the model (Table 4).

In other cases, proteins of different
folds may have the same function In
this case a comparison of the overall
structures would not permit a structural
and functional relationship to be
established. When it is possible to build
models based on structurally similar
templates, however, detailed analysis of
the active sites might again permit
functional relationships to be derived.
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