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Abstract

Common variant heritability has been widely reported to be concentrated in variants within cell-

type-specific noncoding functional annotations, but little is known about low-frequency variant 

functional architectures. We partitioned the heritability of both low-frequency (0.5%≤MAF<5%) 

and common (MAF≥5%) variants in 40 UK Biobank traits across a broad set of functional 

annotations. We determined that non-synonymous coding variants explain 17±1% of low-

frequency variant heritability (hl f
2  ) versus 2.1±0.2% of common variant heritability (hc

2 ). Cell-

type-specific noncoding annotations that were significantly enriched for hc
2 of corresponding traits 
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were similarly enriched for hl f
2  for most traits, but more enriched for brain-related annotations and 

traits. For example, H3K4me3 marks in brain dorsolateral prefrontal cortex explain 57±12% of hl f
2

vs. 12±2% of hc
2 for neuroticism. Forward simulations confirmed that low-frequency variant 

enrichment depends on the mean selection coefficient of causal variants in the annotation, and can 

be used to predict effect size variance of causal rare variants (MAF<0.5%).

Introduction

Common variant (minor allele frequency (MAF) ≥5%) trait heritability has been widely 

reported to be concentrated into noncoding functional annotations that are active in relevant 

cell-types or tissues, with a limited role for common coding variants1–8. Although common 

variants explain the bulk of heritability9–11, low-frequency variants can have larger per-allele 

effect sizes than common variants when impacted by negative selection9–17, and may thus 

yield important biological insights even though the heritability they explain is modest6,7.

Recent large genome-wide association studies (GWAS) have identified low-frequency 

variants with large per-allele effect sizes and reported an excess of genome-wide significant 

low-frequency variants in coding regions18–21, implying that low-frequency coding variants 

have larger effect sizes than other low-frequency variants. However, the relative contribution 

of low-frequency coding variants to low-frequency variant heritability is currently unknown. 

For cell-type-specific noncoding variants, discovery of genome-wide significant low-

frequency variants has been limited, and their contribution to low-frequency variant 

heritability is also unknown. Dissecting low-frequency variant functional architectures can 

shed light on the action of negative selection across functional annotations and inform the 

design of low-frequency and rare variant association studies14,22.

To investigate functional enrichments of low-frequency variants (defined here as 

0.5%≤MAF<5%), we extended stratified LD-score regression5,23 (S-LDSC) to partition the 

heritability of both low-frequency and common variants; our method produces robust 

(unbiased or slightly conservative) results in simulations. We applied our method to partition 

the heritability of low-frequency and common variants in 40 heritable traits from the UK 

Biobank24–26 (average N=363K UK-ancestry samples) across a broad set of coding and 

noncoding functional annotations5,6,8,23,27–31. We performed forward simulations to connect 

estimated low-frequency and common variant functional enrichments to the action of 

negative selection, and to predict the effect size variance of causal rare variants 

(MAF<0.5%) within each functional annotation.

Results

Overview of methods

S-LDSC5,23 is a method for partitioning the heritability causally explained by common 

variants across overlapping discrete or continuous annotations using genome-wide 

association study (GWAS) summary statistics for accurately imputed variants and a linkage 

disequilibrium (LD) reference panel. Here, we extended S-LDSC to partition the heritability 
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causally explained by low-frequency variants using GWAS summary statistics for accurately 

imputed and poorly imputed variants. We included separate annotations for low-frequency 

and common variants, and used WGS data from 3,567 UK10K samples18 as an LD 

reference panel to ensure accurate LD information for low-frequency variants in the UK-

ancestry target samples analyzed in this study (see Methods).

We jointly analyzed 163 annotations (referred as the “baseline-LF model”), including 33 

main binary annotations, MAF bins, and LD-related annotations (Supplementary Table 1 

and Supplementary Table 2; see Methods). We note that the inclusion of MAF- and LD-

related annotations implies that the expected causal heritability of a SNP is a function of 

MAF and LD. We first estimated the heritability causally explained by all low-frequency 

variants (hl f
2 ) and the heritability causally explained by all common variants (hc

2). For the 33 

main binary annotations, we computed their low-frequency variant enrichment (LFVE), 

defined as the proportion of hl f
2  causally explained by variants in the annotation divided by 

the proportion of low-frequency variants that lie in the annotation, and common variant 

enrichment (CVE), defined analogously. Further details of the method are provided in the 

Methods section. We have released open-source software implementing the method, and 

have made our annotations publicly available (see URLs).

Simulations of extending S-LDSC to low-frequency variants

Although S-LDSC has previously been shown to produce robust results for partitioning 

common variant heritability using overlapping binary and continuous annotations23,32, we 

performed additional simulations to assess our extension to low-frequency variants. We first 

confirmed that S-LDSC with the UK10K LD reference panel produced unbiased heritability 

estimates for variants with MAF≥0.5% in simulations using UK10K target samples (see 

Supplementary Figure 1, Supplementary Table 3, and Supplementary Note). We 

subsequently performed more realistic simulations using target samples from the UK 

Biobank interim release24, so that LD (and MAF) in the target samples and UK10K LD 

reference panel do not perfectly match (see Methods and Supplementary Figure 2). S-LDSC 

was run either by restricting regression variants to accurately imputed variants (i.e. INFO 

score33 ≥0.99), as we recommended previously5, or by including all variants (regardless of 

INFO score). We focused our simulations on two representative annotations spanning 

roughly 1% of the genome: coding and enhancer. We considered various MAF-dependent 

architectures34,35, and conservatively specified our generative model to be different from the 

URLs
ldsc software, http://www.github.com/bulik/ldsc.
baseline-LF annotations: https://data.broadinstitute.org/alkesgroup/LDSCORE/baselineLF.tar.gz.
BOLT-LMM association statistics computed in this study are available at https://data.broadinstitute.org/alkesgroup/UKBB/
UKBB_409K.
phastCons elements, http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/phastConsElements46way*.txt.gz;
Flanking bivalent TSS/enhancers, http://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/
coreMarks/jointModel/final/*_15_coreMarks_segments.bed.
BOLT-LMM software, https://data.broadinstitute.org/alkesgroup/BOLT-LMM.
SLiM2 software, https://messerlab.org/slim/.
Code availability
ldsc software is available at http://www.github.com/bulik/ldsc. A tutorial for running our extension of stratified LD score regression is 
available in https://data.broadinstitute.org/alkesgroup/LDSCORE/baselineLF.tar.gz.
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additive model assumed by S-LDSC (see Methods). For each of the two annotations, we 

simulated scenarios with no functional enrichment (“No Enrichment”) and scenarios with 

CVE roughly equal to 7× and lower LFVE (“Lower LFVE”), similar LFVE (“Same 

Enrichment”), or higher LFVE (“Higher LFVE”), respectively. For both annotations, we 

observed that including all variants in the regression produced slightly conservative LFVE 

estimates and unbiased LFVE/CVE ratio estimates, while restricting to accurately imputed 

variants produced upward biases (Figure 1, Supplementary Table 4). The slightly 

conservative hl f
2  and LFVE estimates are due to LD-dependent architectures (coding and 

enhancer variants have lower than average levels of LD, as do other enriched functional 

annotations23), as we observed nearly unbiased estimates when creating shifted annotations 

with average levels of LD (see Methods and Supplementary Figure 3). We thus recommend 

including all variants in the regression when running S-LDSC using the baseline-LF model. 

Our simulations indicate that this method is robust (unbiased or slightly conservative) in 

estimating low-frequency and common variant functional enrichments and LFVE/CVE 

ratios across a wide range of genetic architectures, even in the presence of poorly imputed 

variants, a target sample that does not exactly match the UK10K LD reference panel, and a 

MAF-dependent architecture that does not match the additive model assumed by S-LDSC.

Low-frequency functional architecture of UK Biobank traits

We applied S-LDSC with the baseline-LF model to 40 polygenic, heritable complex traits 

and diseases from the full UK Biobank release25 (average N=363K; Supplementary Table 

5). Analyses were restricted to the set of 409K individuals with UK ancestry25 to ensure a 

close ancestry match with the UK10K LD reference panel. Summary statistics were 

computed by running BOLT-LMM v2.3 (ref.26) on imputed dosages, and made publicly 

available (see URLs). S-LDSC results were meta-analyzed across 27 independent traits 

(average N=355K; see Supplementary Note). We observed a roughly linear relationship 

between estimates of hc
2 and hl f

2  (Figure 2 and Supplementary Table 5), with low-frequency 

variants explaining 6.3±0.2× less heritability and having 4.0±0.1× lower per-variant 

heritability than common variants on average. These ratios are consistent with a model in 

which the variance of per-normalized genotype effect sizes is proportional to(2p(1 − p))1 + α

(where p is the minor allele frequency; refs.34,35) with α=−0.37 (95% confidence interval 

[−0.40;−0.34]; similar to previous α estimates from raw genotype-phenotype data10,11), and 

consistent with a model in which low-frequency variants have smaller per-variant heritability 

but larger per-allele effect sizes10,11,23,34,35 (Supplementary Figure 4).

We compared the LFVE and CVE of the 33 main binary functional annotations of the 

baseline-LF model, meta-analyzed across traits (Figure 3, Supplementary Table 6). LFVE 

were highly correlated to CVE (r=0.79) and larger than CVE on average (regression slope 

=1.85). We identified 9 main functional annotations with significantly different LFVE and 

CVE (Figure 3, Supplementary Table 6). Non-synonymous variants had the largest LFVE 

and largest difference vs. CVE (5.0× ratio; LFVE=38.2±2.3×, vs. CVE=7.7±0.9×; 

P=3×10−36 for difference). As non-synonymous variants comprise 0.45% of low-frequency 

variants vs. only 0.27% of common variants due to strong negative selection on non-

synonymous mutations36,37 (see below), this difference is even larger when comparing the 
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proportion of heritability they explain (8.2× ratio; 17.3±1.0% of hl f
2 , vs. 2.1±0.2% of hc

2; 

P=5×10−47). Non-synonymous variants predicted to be deleterious by PolyPhen-2 (ref.29) 

had larger LFVE and LFVE/CVE ratio than non-synonymous variants predicted to be 

benign (Supplementary Figure 5).

We also observed LFVE significantly larger than CVE for coding variants (2.5× ratio; 

P=1×10−18), 5’ UTR (2.5× ratio; P=1×10−4) and the five main conserved annotations27,28,30 

(ratios 1.5×-2.2×; each P<5×10−7; Figure 3, Supplementary Table 6). Surprisingly, 

phastCons regions conserved in primates27 were more enriched than phastCons regions 

conserved in vertebrates or conserved in mammals27 (even though regions conserved in 

more distant species may be viewed as more biologically critical). We observed that the 

significantly larger LFVE (compared to CVE) for all 5 conserved annotations is mainly due 

to conserved regions that are coding, and that coding enrichments are similar for regions 

conserved across different species (Supplementary Figure 6). Finally, we observed 

significantly smaller LFVE than CVE for intronic variants (0.85× ratio; P=8×10−5). These 

results were generally consistent across the 40 UK Biobank traits analyzed (Supplementary 

Figure 7).

We also observed significantly larger enrichment/depletion for LFVE than for CVE in the 

first and/or last quintile of LD-related continuous annotations related to negative selection23 

(Supplementary Figure 8 and Supplementary Table 7); our forward simulations from ref.23 

confirmed larger effects of low-frequency variants in these LD-related annotations 

(Supplementary Table 8). Overall, our results suggest that LFVE is substantially larger than 

CVE only for annotations that are strongly constrained by negative selection, as the 

strongest differences were observed for coding and non-synonymous variants, which are 

known to be under strong negative selection36,37. A more detailed interpretation of the 

LFVE/CVE ratio is provided below (see Forward simulations).

Cell-type-specific enrichments of low-frequency variants

We sought to investigate the contribution to low-frequency variant architectures of cell-type-

specific (CTS) annotations1–6 (i.e. reflecting regulatory activity in a given cell type) with 

excess contributions to common variant architectures. For each of the 40 UK Biobank traits, 

we selected the subset of 396 CTS Roadmap annotations6 with statistically significant 

common variant enrichment after conditioning on (non-CTS annotations in) the baseline-LD 

model5,8 (see Methods). We selected a total of 637 trait-annotation pairs, with at least one 

CTS annotation for 36 of 40 traits (25 of 27 independent traits) (Supplementary Table 9); the 

637 CTS annotations contained 2.7% of common variants and 3.0% of low-frequency 

variants on average (Supplementary Table 10). We analyzed each of these trait-annotation 

pairs using the baseline-LF model (Figure 4a and Supplementary Table 10). For the 25 trait-

annotation pairs with the most statistically significant CVE for each of the 25 independent 

traits (critical CTS annotations), LFVE and CVE were similar, with LFVE 1.12±0.13× 

larger than CVE on average (other definitions of critical CTS annotations produced similar 

conclusions; see Supplementary Figure 9).
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We observed Bonferroni-significant differences (after correcting each trait for 1–53 

annotations tested) for two traits. The most significant trait-annotation pairs were 

neuroticism and H3K4me3 in brain dorsolateral prefrontal cortex, vs. CVE=8.3±1.5×; 

P=0.001; 63.2±15.4% of hl f
2 , vs. 11.1±2.0% of hc

2). We note that these results are not driven 

by the fact that H3K4me3 marks are often located in 5’ UTR and exons38 (Supplementary 

Table 10). Interestingly, these two annotations (and 55 of all 62 CTS annotations with 

LFVE/CVE>2) are brain-specific, implicating stronger selection against variants impacting 

gene regulation in brain tissues (see Forward simulations and Discussion).

While CTS annotations generally have only moderately large LFVE (e.g. smaller than non-

synonymous variants; Figure 4a), they often explain a large proportion of hl f
2  (e.g. larger 

than non-synonymous variants; Figure 4b) due to large annotation size, as with common 

variant enrichment. In particular, H3K4me1 in regulatory T-cells (3.7% of low-frequency 

variants) explains 86.2±20.8% of hl f
2  for All autoimmune diseases (vs. 3.4% of common 

variants explaining 48.9±9.1% of hc
2), and H3K4me1 in primary monocytes (4.8% of low-

frequency variants) explains 79.3±18.1% of hl f
2  for monocyte count (vs. 4.6% of common 

variants explaining 70.8±8.6% of hc
2; Figure 4b and Supplementary Table 10). Thus, CTS 

annotations often dominate low-frequency architectures, analogous to common variant 

architectures5,8.

Larger non-synonymous enrichments in genes under selection

Recent studies have identified gene sets that are depleted for non-synonymous variants31,39. 

To further investigate the connection between functional enrichment and negative selection, 

we stratified the CVE and LFVE of non-synonymous variants (Figure 3a) based on the 

strength of selection on the underlying genes. We considered 5 bins of estimated values of 

selection coefficients for heterozygous protein-truncating variants31 (shet), with 3,073 

protein-coding genes per bin, and added annotations based on non-synonymous variants 

within each bin to the baseline-LF model (see Methods). We determined that both the LFVE 

and CVE of non-synonymous variants correlated strongly with the predicted strength of 

selection on the underlying genes (Figure 5 and Supplementary Table 11). In particular, we 

observed extremely strong enrichments for non-synonymous variants in genes under the 

strongest selection (bin 1: LFVE=102.0±7.9× and CVE=41.5±4.8×). However, the 

LFCE/CVE ratio was smaller for non-synonymous variants in genes under the strongest 

selection (bin 1: 2.5×) than in genes under the weakest selection (bins 4+5: 5.8×); we 

discuss this surprising result below (see Forward simulations). We obtained similar results 

when stratifying non-synonymous variants in genes under varying levels of selective 

constraint based on other related criteria (Supplementary Figure 10).

Forward simulations confirm role of negative selection

We hypothesized that the LFVE and CVE of different functional annotations would be 

informative for the action of negative selection, which constrains strongly selected variants 

to lower frequency9–17. To investigate this, we performed forward simulations40 using a 
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genetic architecture involving annotations mimicking non-synonymous variants (1% of the 

simulated genome), functional noncoding variants (1%), and ordinary noncoding variants 

(98%), with different respective distributions of selection coefficients s (Supplementary 

Figure 11). For each of these three annotations we specified the probability for a de novo 
variant to be deleterious (πdel), the mean selection coefficient for de novo deleterious 

variants (sdn) and the probability for a deleterious variant to be causal for the trait 

(πdel:causal); the probability for a de novo variant to be causal for the trait is 

π=πdel·πdel:causal. Per-allele trait effect sizes were specified to be proportional to|S
τEW | 

where τEW parameterizes the coupling between selection coefficient and trait effect size in 

the Eyre-Walker model12, implying that only deleterious variants have nonzero effects (see 

Methods). We investigated how the LFVE and CVE of the functional noncoding annotation 

varied as a function of the values of sdn and π for that annotation. To achieve a realistic 

simulation framework, we fixed the remaining values of πdel, sdn and π for the three 

annotations, as well as the value of τEW, to values that we fit using our UK Biobank estimate 

of 4.0× larger per-variant heritability for common vs. low-frequency variants, as well as the 

LFVE and CVE of non-synonymous variants (38.2× and 7.7×, respectively). Specifically, we 

fixed πdel=60% for the functional noncoding annotation (similar results for πdel=40%; see 

Methods); πdel=80% (ref.13), sdn=−0.003 (ref.13) and π=8% for the non-synonymous 

annotation; πdel=40%, sdn=−0.0001 and π=4% for the ordinary noncoding annotation; and 

τEW=0.75. We note that our fitted value of τEW is larger than previous estimates11,13,15,16 

(see Discussion).

We determined that the CVE of the functional noncoding annotation in our simulations 

depends on both sdn and π (Figure 6a), while the LFVE/CVE ratio depends primarily on sdn

(Figure 6b). When de novo deleterious variants are under strong selection (sdn≥−0.0003, 

corresponding to LFVE/CVE ratio ≥1.2×; Figure 6b), the CVE depends primarily on π 
(Figure 6a), as the mean selection coefficient of deleterious common variants varies only 

weakly with sdn (since most deleterious common variants have s<<|sdn|; Figure 6c). Finally, 

we observed that functional noncoding annotations with similar CVE and LFVE tend to 

have causal variants with slightly stronger selection coefficients (i.e. sdn≈−0.0002) than 

ordinary noncoding causal variants (sdn=−0.0001), for which LFVE is lower than CVE 

(Figure 6b). We note that the LFVE/CVE ratio can be used to infer the mean selection 

coefficient of deleterious causal variants as a function of MAF (see Figure 6c), because this 

ratio depends primarily on sdn and because the selection coefficients of de novo deleterious 

causal variants are drawn from a distribution with mean sdn.

Our forward simulations provide an interpretation of the LFVE/CVE ratios of different 

functional annotations that we estimated for UK Biobank traits and annotations. First, they 

confirm that non-synonymous variants (which are strongly deleterious41: large πdel and |sdn|) 

can have a limited contribution to common variant architectures (2.1% of hc
2) but a large 
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contribution to low-frequency variant architectures (17.3% of hl f
2 ) (Figure 3a). Second, they 

indicate that the proportion of causal variants (π) is larger for critical cell-type-specific 

(CTS) annotations than for non-synonymous variants (based on their CVE; Figure 4a), but 

that the causal variants in critical CTS annotations have only slightly larger selection 

coefficients than ordinary noncoding variants, except for some brain annotations that are 

under much stronger selection (much larger |sdn|, based on their LFVE/CVE ratios; Figure 

4a). Third, they explain the extremely large CVE for non-synonymous variants inside genes 

predicted to be under strong negative selection31 (large shet; Figure 5), which are expected to 

correspond to genes with an extremely large proportion of deleterious non-synonymous 

variants (large πdel, implying large π=πdel·πdel:causal). However, despite extremely large 

CVE and LFVE, this class of variants had a smaller LFVE/CVE ratio than that of non-

synonymous variants inside genes predicted to be under weak selection (Figure 5), a 

surprising result that appears to suggest a smaller(Figure 6b) despite the extremely large 

value of πdel. We performed additional forward simulations to show that a larger |sdn| 

doesnot produce larger LFVE/CVE ratios for annotations with extremely large values of 

πdel, for which the ratio between the proportion of low-frequency variants that are 

deleterious and the proportion of common variants that are deleterious is reduced to 1 

(Supplementary Figure 12).

Although our focus is primarily on low-frequency variants (0.5%≤MAF<5%), we also used 

our forward simulation framework to draw inferences about rare variant (MAF<0.5%) 

architectures of noncoding functional annotations, based on LFVE and CVE estimates from 

UK Biobank (Figure 4a). Specifically, we compared the mean squared per-allele effect size 

of rare causal variants in annotations mimicking functional noncoding variants and non-

synonymous variants, respectively. We inferred disproportionate causal effects of rare 

variants in annotations under very strong selection (|sdn|=−0.003, similar to non-synonymous 

variants13), with mean squared causal effect sizes 11×, 26× and 60× larger than annotations 

with |sdn|=−0.0006, |sdn|=−0.0003 and |sdn|=−0.0002, respectively (Figure 6d and 

Supplementary Table 12; similar results for different choices of π, Supplementary Figure 

13). These results indicate that an annotation with large CVE needs to have even larger 

LFVE (e.g. LFVE/CVE ratio ≥2×, corresponding to |sdn|≤−0.0006; Figure 6b) in order to 

harbor rare causal variants with substantial mean squared effect sizes (e.g. only an order of 

magnitude smaller than rare causal non-synonymous variants; Figure 6d). Unfortunately, 

most of the non-brain CTS annotations that we analyzed do not achieve this ratio (Figure 

4a), motivating further work on more precise noncoding annotations (see Discussion).

Discussion

In this study, we partitioned the heritability of both low-frequency and common variants in 

40 UK Biobank traits across numerous functional annotations, employing an extension of 

stratified LD score regression5,23 to low-frequency and common variants that produces 

robust (unbiased or slightly conservative) results. Meta-analyzing functional enrichments 

across 27 independent traits, we highlighted the critical impact of low-frequency non-
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synonymous variants (17.3% of hl f
2 , LFVE=38.2×) compared to common non-synonymous 

variants (2.1% of hc
2, CVE=7.7×). Other annotations previously linked to negative selection, 

including non-synonymous variants with high PolyPhen-2 scores29, non-synonymous 

variants in genes under strong selection31, and LD-related annotations23, were also 

significantly more enriched for hl f
2  as compared to hc

2. Finally, at the trait level, we observed 

that CTS annotations6,8 also dominate the low-frequency architecture, and that significant 

CVE tend to have similar LFVE, or larger LFVE for brain-related annotations and traits. 

This last observation implicate the action of negative selection on low-frequency variants 

affecting gene regulation in the brain, and is consistent with the interaction between brain 

enhancers and genes under stronger purifying selection18, and with the excess of rare de 
novo mutations in regulatory elements active in fetal brain in patients with 

neurodevelopmental disorders43. We showed via forward simulations that the CVE of an 

annotation depends primarily on its proportion of causal variants (π), while its LFVE/CVE 

ratio depends primarily on the mean selection coefficient for de novo deleterious variants 

(sdn), and thus to the mean selection coefficient of causal variants (Figure 6). These 

conclusions are consistent with previous studies of the role of selection9–17, including 

pleiotropic selection17, in maintaining variants with large effects on complex traits at low 

frequencies. Overall, our work quantifies the relationship between the strength of selection 

in specific functional annotations (both coding and noncoding) and low-frequency and 

common variant enrichment for human diseases and complex traits, providing an 

interpretation of the enrichments estimated for UK Biobank traits and annotations.

Our results on low-frequency variant functional architectures have several implications for 

downstream analyses. First, our results provide guidance for the design of association 

studies targeting low-frequency variants. Non-synonymous variants should be strongly 

prioritized at the low-frequency variant level21, as they explain a large proportion of hl f
2  and 

directly implicate causal genes (and specifically implicate core disease genes rather than 

peripheral genes7), avoiding the challenge of mapping noncoding variants to genes42,44. 

However, we observed that all coding and UTRs variants jointly explained only 26.8±1.9% 

of hl f
2  (Supplementary Table 6), providing an upper bound of the proportion of low-

frequency signal captured by whole-exome sequencing (WES) studies. This underscores the 

advantages of large GWAS (with imputed genotypes obtained using large reference panels), 

compared to WES or exome chip data, for querying low-frequency variation16. Furthermore, 

using functionally informed association tests that assign higher weight to low-frequency 

non-synonymous variants or CTS annotations should significantly improve power in these 

analyses4,20,45. Second, our results provide guidance for the design of association studies 

targeting rare (MAF<0.5%) variants, which require large sequencing datasets14. While WES 

datasets have been successfully used to detect new coding variants, genes and gene sets 

associated to human diseases and complex traits, there is an increasing focus on WGS that 

can capture rare noncoding variants. However, our LFVE and CVE results for critical CTS 

annotations (Figure 4), coupled with our predictions of causal rare variant effect size 

variance (Figure 6d), suggest that in most instances these annotations do not harbor causal 

variants with large mean squared effect sizes (with brain-related annotations and traits as a 
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notable exception; also see ref.43), highlighting the need for more precise noncoding 

annotations for prioritization in WGS. As a first step towards this goal, we estimated the 

LFVE and CVE of annotations constructed using a wide range of recently developed 

noncoding variant prioritization scores46–50. We identified only one annotation, defined 

using the top 0.5% of Eigen scores48, with an LFVE/CVE ratio significantly larger than 1 

(1.7× ratio; LFVE=22.0±2.2×, vs. CVE=13.0±1.4×; P=7×10−4 for difference; 

Supplementary Figure 14). However, even for this annotation, the LFVE/CVE ratio <2 again 

implies that this annotation does not harbor causal variants with substantial mean squared 

effect sizes (only an order of magnitude smaller than rare causal non-synonymous variants; 

Figure 6d). Third, our results were consistent with strong coupling between selection 

coefficient and trait effect size (Eyre-Walker coupling parameter12 τEW=0.75; robust to error 

bars in LFVE and CVE estimates, see Supplementary Figure 15), implicating a larger impact 

of negative selection on complex traits than previously reported11,13,15,16 and much larger 

effect sizes for rare variants in functional annotations with strong selection coefficients. This 

can be explained by the fact that our inference procedure explicitly allows different 

distributions of selection coefficients for non-synonymous and noncoding variants (sdn=

−0.003 and sdn=−0.0001, respectively; Supplementary Figure 16). Finally, the different 

LFVE/CVE ratios that we inferred for different functional annotations suggest that it may be 

appropriate to allow annotation-specific α values when using the α model (per-normalized 

genotype effect size proportional to ((2p(1 − p))1 + α; refs.10,11,34,35). In the extreme case of 

non-synonymous variants, we explored different choices of α values for non-synonymous 

and other variants, and determined that a value of α=−1.10 for non-synonymous variants and 

α=−0.30 for other variants provided the best fit our UK Biobank heritability and enrichment 

results (Supplementary Table 13).

Although our work has provided insights on low-frequency variant architectures of human 

diseases and complex traits, it has several limitations (see Supplementary Note). Despite 

these limitations, our low-frequency and common variant enrichment results convincingly 

demonstrate and quantify the action of negative selection across coding and noncoding 

functional annotations.

Methods

Extension of S-LDSC to low-frequency variants.

S-LDSC5,23 is a method for partitioning heritability explained by common variants across 

overlapping annotations (both binary and continuous23) using GWAS summary statistics. 

More precisely, S-LDSC models the vector of per normalized genotype effect size β as a 

mean-0 vector whose variance depends on D continuous-valued annotations a1, …, aD :

Var β j = ∑
d = 1

D
ad( j)τd 1
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where αd (j) is the value of annotation ad at variant j, and τd represents the per-variant 

contribution of one unit of the annotation αd to heritability. We can thus perform a 

regression to infer the values of τ using the following relationship with the expected x2

statistic of variant j:

E χ j
2 = N ∑

d = 1

D
τdl( j, d) + Nb + 1 2

where l( j, d) = ∑k ad(k)r jk
2  is the LD score of variant j with respect to continuous values αd(k) 

of annotation αd, rjk is the correlation between variant j and k in an LD reference panel, N is 

the sample size of the GWAS study,and b is a term that measures the contribution of 

confounding biases51. Then, the heritability causally explained by a subset of variants S can 

be estimated as hs
2 = ∑ j ∈ s ∑d a j, dτd. We note that this definition, used here to define and 

estimate hc
2 and hl f

2 , is different from the definition of “SNP-heritability” hg
2 (ref.52), which 

refers to the heritability tagged by a set of genotyped and/or imputed variants.

To allow different effects for low-frequency and common variants inside a functional 

annotation αd, we modeled the variance of the per normalized genotype effect sizes using 

different τd for these two categories of variants. In a case where we consider Df functional 

annotations, we write:

Var β j = ∑
d = 1

D f
ad( j) . 1 j ∈ (l f )τd

(l f ) + 1 j ∈ (c)τd
(c) 3

where 1 j ∈ (1 f ) (resp.1 j ∈ (c) ) is an indicator function with value 1 if variant j is a low-

frequency (resp. common) variant, and 0 otherwise, τd
(l f ) (resp. τd

(c) ) represents the per-

variant contribution of one unit of the annotation αd to the heritability explained by low-

frequency (resp. common) variants. These parameters can be estimated using S-LDSC by 

writing equation (3) in the form:

Var β j = ∑
d = 1

D f
ad

(l f )( j) ⋅ τd
(l f ) + ad

(c)( j) . τd
(c) 4

where αd
(i f )( j)(resp. αd

(c)( j) ) is an annotation equals to αd(j) if variant j is a low-frequency 

(resp. common) variant and 0 otherwise. In all analyses we also added one annotation 

containing all the variants, 5 MAF bins for low-frequency variants, and 10 MAF bins for 

common variants in order to take into account MAF-dependent effects23,53,54.

Gazal et al. Page 11

Nat Genet. Author manuscript; available in PMC 2019 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For each functional binary annotation of interest αd, we compared its low-frequency variant 

enrichment (LFVE) and common variant enrichment (CVE), defined as the proportion of hl f
2

(resp. hc
2) explained by the annotation, divided by the proportion of low-frequency (resp. 

common) variants that are in the annotation (see Supplementary Note for a justification of 

the denominator). Standard errors were computed using a block jackknife procedure5. We 

note that these computations did not include the heritability causally explained by rare 

variants (MAF<0.5%).

Application of S-LDSC was performed using 3,567 unrelated individuals of UK10K data 

set18 (ALSPAC and TWINSUK cohorts) as an LD reference panel. This choice was made in 

order to ensure a close ancestry match between the target sample used to compute summary 

statistics (UK Biobank) and the LD reference panel (UK10K), as LD patterns of low-

frequency variants are expected to vary across European populations55,56 (see 

Supplementary Note for more information on our application of S-LDSC). The main 

differences of our application of S-LDSC compared to standard S-LDSC analyses on 

common variants are summarized in Supplementary Table 14.

Baseline-LF model and functional annotations.

We considered 34 main functional annotations from the baseline-LD model v1.1 (27 binary 

and 7 continuous annotations, including LD-related annotations; refs.5,23,57,58), including 

coding, UTR, promoter and intronic regions, the histone marks monomethylation 

(H3K4me1) and trimethylation (H3K4me3) of histone H3 at lysine 4, acetylation of histone 

H3 at lysine 9 (H3K9ac) and two versions of acetylation of histone H3 at lysine 27 

(H3K27ac), open chromatin as reflected by DNase I hypersensitivity sites (DHSs), 

combined chromHMM and Segway predictions (which make use of many Encyclopedia of 

DNA Elements (ENCODE) annotations to produce a single partition of the genome into 

seven underlying chromatin states), three different conserved annotations, two versions of 

super-enhancers, FANTOM5 enhancers, typical enhancers, and 6 LD-related continuous 

annotations (see Supplementary Table 1).

In order to further dissect the set of coding variants, a major focus of this study, we 

annotated each coding variant using ANNOVAR59, and added one synonymous and one 

non-synonymous annotation to our model. We also added three new annotations based on 

phastCons27 conserved elements (46 way) in vertebrates, mammals and primates, and one 

annotation based on flanking bivalent TSS/enhancers from Roadmap data6 (see URLs). 

These 6 new annotations led to a total of 33 main binary annotations (see Supplementary 

Table 1).

We included 500 bp windows around each binary annotation and 100 bp windows around 

four of the main annotations, leading to a total of 74 main functional annotations. Then, all 

annotations were duplicated for low-frequency and common variants as described in 

equation (4), except for the predicted allele age annotation60 (which had too many missing 

values for low-frequency variants). Finally, we included one annotation containing all 

variants, 10 common variant MAF bins (as in the baseline-LD model23) and 5 low-

frequency variant 5 MAF bins. We thus obtained a set of 163 total annotations. We refer to 
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this set of annotations as the “baseline-LF model” (see Supplementary Table 2), which we 

used for all of our S-LDSC analyses. More details on the baseline-LF model are provided in 

the Supplementary Note.

We note that the inclusion of MAF and LD-related annotations in this model implies that the 

expected causal heritability of a SNP is a function of MAF and LD. More details on LD-

related heritability models are provided in the Supplementary Note.

Simulations using UK Biobank target samples to assess extension of S-LDSC to low-
frequency variants.

To assess possible biases in heritability and enrichment estimates under a more realistic 

scenario, we simulated quantitative phenotypes from chromosome 1 of UK Biobank interim 

release dataset with imputed variants from thousand genomes61 and UK10K18 (113,851 

unrelated individuals, 1,023,655 variants with allele counts greater or equal to 5 in UK10K). 

First, we randomly sampled integer-valued genotypes from UK Biobank imputation dosage 

data. Second, we set trait heritability to h2=0.5, selected M=100,000 causal variants, and 

performed simulations under a coding-enriched architecture by simulating the variance of 

per-normalized genotype effect sizes proportional to 

1 j noncoding(2p(1 − p))
1 + α0 + c * 1 j coding(2p(1 − p))

1 + αcoding, where 1jcoding (resp.

1j noncoding )is an indicator function taking the value 1 if variant j belongs (resp. does not 

belong) to the coding annotation,p is the frequency of the causal variant in the simulated UK 

Biobank genotypes dataset, α0 was set to −0.25, and c and αcoding were chosen to produce 

four different genetic architectures (see Supplementary Table 4). We note that this generative 

model is different and more complex than the additive inference model implemented in S-

LDSC, but may be more realistic as the effect size of coding variants depends now directly 

on their allele-frequency (and not or their low-frequency/common status). We also 

performed simulations under an enhancer-enriched architecture by considering the baseline 

ChromHMM/Segway weak-enhancer62 annotation, which has similar properties as the 

coding annotation (2.28% of reference low-frequency variants versus 1.83% for coding, and 

elements with a mean length size of 249bp versus 315bp for coding). To investigate the 

impact of the LD-dependent architecture created by the enrichment of these two annotations 

(coding and weak-enhancer variants tend to have low levels of LD23), we randomly created 

100 shifted coding (resp. weak-enhancer) annotations, and selected the annotation with an 

average level of LD (i.e. the shifted annotation with the 50th smallest level of LD computed 

on low-frequency variants; see ref.23 for a definition of level of LD). Third, we used version 

2.3 of BOLT-LMM software26,63 (see URLs) to compute association statistics on UK 

Biobank dosage data to mimic the fact that we computed summary statistics on imputed 

data. Finally, we used S-LDSC with our baseline-LF model (except that the 6 new functional 

annotations were not included in the simulation analyses) to estimate hc
2, hl f

2 , and coding/

enhancer CVE and LFVE. S-LDSC was run by restricting regression variants to accurately 

imputed variants (i.e. INFO score33 ≥ 0.99), as we suggested previously5, or to all variants 

(irrespective of INFO score). We also report results when using an INFO score threshold of 

0.5 or 0.9, which did not improve the results (see Supplementary Table 4). We also 

considered including INFO score explicitly in the regression to down-weight poorly imputed 
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variants (i.e. replacing equation (2) by E χ j
2 : = I jN ∑

d = 1

D
τdl( j, d) + I Nb + 1, where Ij is the 

INFO score of variant j and I = 1
N ∑

j
I j; this approximation assumes that genotype 

uncertainty decreases the association test statistics), but this did not improve the results, 

consistent with the fact that summary statistics computed from dosage data already down-

weight poorly imputed variants (Supplementary Table 4). We performed 1,000 simulations 

for each simulation scenario. In each case, we removed 0–3 outlier simulations in which the 

estimate of hl f
2  was below 0.0001; we did not observe any such outlier results in analyses of 

real traits (minimum hl f
2 =0.006; Supplementary Table 5).

S-LDSC analyses of UK Biobank data.

We applied S-LDSC with the baseline-LF model to 40 UK Biobank traits, estimated hc
2, hl f

2 , 

and the hc
2/hl f

2  ratio using the 15 MAF bin annotations, and computed their standard errors 

using a jackknife procedure. We meta-analyzed the hc
2/hl f

2  ratio, and multiplied it by the ratio 

of the number of low-frequency and common variants in the LD reference sample (i.e. 

3,398,397/5,353,593) to convert it into a per-variant heritability ratio. To match these ratios 

to a model in which the variance of per-normalized genotype effect sizes is proportional to 

(2p(1 − p))1 + α, we used low-frequency and common variants of our LD reference panel and 

computed the hc
2/hl f

2  ratio using different values of α.

The CVE and LFVE of each functional annotation were compared using a two-sided z-test; 

these values are independent as they are computed using non-overlapping sets of variants. 

The regression slope of LFVE on CVE was computed with no intercept. As most of the 33 

annotations are correlated, we did not attempt to assess the statistical significance of the 

regression slope, or of the corresponding correlation between CVE and LFVE. We note that 

after removing the 9 annotations with significantly different LFVE and CVE in Figure 3, 

LFVE remained highly correlated to CVE (r=0.83) and only slightly larger than CVE on 

average (regression slope=1.10).

For CTS analyses, we analyzed the 396 Roadmap6 annotations constructed in Finucane et al.
8 from narrow peaks in six chromatin marks (DNase hypersensitivity, H3K27ac, H3K4me3, 

H3K4me1, H3K9ac, and H3K36me3) in a subset of a set of 88 primary cell types/tissues. 

We selected CTS annotations for which common variants are disease relevant following 

Finucane et al.8 guidelines. First, we analyzed each CTS annotation in turn using default S-

LDSC (i.e. not our extension to low-frequency variants) by conditioning on all the non-CTS 

annotations of the baseline-LD model v1.1, the union of annotations for each of the six 

chromatin marks, and the average of annotations for each mark (as performed in ref.8). We 

note that our choice to switch from the baseline model5, as performed in ref.8, to the 

baseline-LD model (which includes MAF bins and LD-related annotations in addition to 

new functional annotations) was motived by our observation that the baseline model can 

slightly overestimate functional enrichment due to unmodeled annotations23. We also 
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decided to consider only non-CTS annotations and to remove the four enhancers annotations 

derived from Vahedi et al.64 (absent from the baseline model and added in the baseline-LD 

model) as they are T-cell specific and may impact the detection of relevant cell types for 

traits for which T-cells are a relevant cell type (such as asthma and eczema; see 

Supplementary Figure 17). We retained all the CTS annotations with a τ coefficient 

statistically larger than 0 (using P<0.05/396), selecting a total of 637 trait-annotation pairs 

with at least one CTS annotation for 36 of 40 traits (all traits except high light scatter 

reticulocyte count, high cholesterol, sunburn occasion, and age at menopause), including 25 

of 27 independent traits (Supplementary Table 9). Finally, we re-analyzed these 637 trait-

annotation pairs using our extended S-LDSC with the baseline-LF model, the union of the 

six chromatin marks, and the average of annotations for each mark. In Figure 4, we report all 

637 pairs for completeness, demonstrating the consistency between CVE and LFVE for CTS 

annotations (Supplementary Table 10). However, as the 1–53 CTS annotations selected for 

each trait are often highly correlated with each other, we selected for each of the 25 

independent traits the “most critical” CTS annotation, defined in the main text and Figure 4 

as the CTS annotation with the most statistically significant CVE. For these 25 annotations, 

we regressed their LFVE on their CVE with no intercept. We also considered 5 alternative 

definitions of the “most critical” CTS annotation for each trait; for each of these definitions, 

LFVE were similar to CVE (Supplementary Figure 9). Finally, when testing if a CTS 

annotation has a significantly larger LFVE than CVE, we used a trait-specific Bonferonni 

threshold (i.e. 0.05 divided by the number of CTS annotations retained for the trait).

For gene set analyses based on the shet metric31, we divided variants into 5 bins containing 

the same number of genes (3,073; 3,072 for the last bin). For S-LDSC analyses, we added to 

the baseline-LF model two annotations for variants inside a protein coding gene (for low-

frequency and common variants, respectively; we used the 17,484 protein-genes from ref.
65), 10 annotations for variants inside the 5 gene sets, and 10 annotations for non-

synonymous variants inside the 5 gene sets (22 annotations in total).

Forward simulations.

To investigate the connection between LFVE, CVE and the distribution of fitness effects 

(DFE), we performed forward simulations under a Wright-Fisher model with selection using 

SLiM2 software40 (see URLs). We simulated 1Mb regions of genetic length 1cM with a 

uniform recombination rate and a uniform mutation rate (2.36×10−8, as recommended in 

SLiM manual). De novo mutations had probability πdel to be deleterious with a dominance 

coefficient of 0.5 and a selection coefficient s drawn from a gamma distribution with mean 

sdn and shape θ, and had probability 1 - πdel to be neutral (i.e. s=0). We outputted a sample 

of 5,000 European genomes using the out-of-Africa demographic model of Gravel et al.66 

implemented in SLiM. Then, we used Eyre-Walker model12 to compute the per-allele effect 

size b j = c(4Ne s j )
τEW(1 + ε), where c is a constant, Ne is the effective population size, sj the 

selection coefficient of variant j, τEW is the coupling coefficient between selection and 

phenotypic effect, and ε is a normally distributed noise. Here, c was set to have a trait 

heritability h2=0.5 (i.e.Σ j2p j 1 − p j b j
2 = Σ jβ j

2 = 0.5, where pj is the allele frequency of 
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variant j),Ne was set as the expected coalescent time67 of the European population of the 

Gravel et al. model (6,524), and ε was set to 0 for simplicity. We note that we focused here 

on per-variant heritability (i.e. B j
2 ) and not directional effects, thus our conclusions are 

independent of the direction of the selection coefficient on the trait and are valid for traits 

that are either under direct or stabilizing selection.

Unlike our previous forward simulation framework23, we designed these simulations to have 

a realistic DFE for annotations mimicking both non-synonymous and noncoding variants. 

Briefly, we created 50 non-synonymous elements with a realistic length 200bp (10kb in 

total, 1% of the 1Mb simulated genome) separated by non-coding elements of size 14.9kb 

(99% of the simulated genome; Supplementary Figure 11a). To mimic non-synonymous 

elements, we used πdel = 80%, sdn = −3.16 × 10−3 and θ = 0.32, as previously estimated13. 

Then, we estimated that fixing πdel=40%, sdn=−1.00×10−4, =0.32 for noncoding variants 

and τEW =0.75 provide a good fit of our UK Biobank heritability and non-synonymous 

enrichment results (see Supplementary Note).

In most subsequent simulations, we fixed the probability of a deleterious variant to be causal 

(πdel:causal) at 10%, so that the proportion of de novo non-synonymous variants that are 

causal (π, defined as π=πdel·πdel:causal) is 8% (resp. 4% for noncoding variants). This 

allows non-synonymous variants to have LFVE and CVE on the same order of magnitude as 

the LFVE and CVE observed for the non-synonymous variants inside genes predicted to be 

under strong negative selection31 (102.0× and 41.4×, respectively; Figure 5). We note that 

we replicated our main results when using πdel:causal=5% (Supplementary Figure 18).

Next, we investigated the impact of sdn and π on a “functional noncoding” annotation. To do 

so, we alternately considered 200kb functional elements as non-synonymous elements (1% 

of the simulated genome) or as functional noncoding elements (1% of the simulated 

genome), separated by “ordinary noncoding” elements of size 9.8kb (98% of the simulated 

genome; Supplementary Figure 11b). For each functional noncoding element, we fixed 

πdel=60% and θ=0.32 (equal to the value of θ for non-synonymous and overall noncoding 

elements). We chose a value πdel in between the value for overall noncoding (πdel=40%) 

and non-synonymous (πdel=80%) annotations, as we hypothesized that enriched functional 

noncoding annotations in the human genome have a larger proportion of deleterious variants 

than the overall noncoding genome. However, we note that we obtained similar results when 

choosing πdel=40% for the functional noncoding annotation (Supplementary Figure 19). We 

varied sdn and πdel:causal (and thus π) of the functional noncoding annotation, while 

retaining πdel:causal=10% for the variants in the non-synonymous and ordinary noncoding 

elements. (We varied sdn on the logarithmic scale, and report truncated values in the 

manuscript for simplicity; for example,sdn=−0.003 stands for −3.1623×10−3; see 

Supplementary Table 12 for exact sdn values). For each scenario, we simulated 1,000 regions 

of 1Mb for each scenario, merged the outputted variants, and considered 100 randomly 

chosen sets of causal variants.
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When drawing inferences about rare variant (MAF<0.5%) architectures of noncoding 

functional annotations, we focused on simulations with π=48% for the functional noncoding 

annotation, because the CVE and LFVE/CVE ratios for the CTS annotations in Figure 4a 

(between 5 and 20, and between 1 and 2, respectively) roughly correspond to π=48% and 

sdn between 0.0002 and 0.0006 (Figure 6a-b).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Simulations to assess low-frequency variant enrichment estimates.
We report estimates of LFVE and LFVE/CVE ratio in simulations under a coding-enriched 

architecture (first row) or enhancer-enriched architecture (second row). We considered four 

different simulation scenarios (see main text). S-LDSC was run either by restricting 

regression variants to accurately imputed variants (S-LDSC – INFO ≥ 0.99), or by including 

all variants (S-LDSC – All variants). We do not report LFVE/CVE ratio for the No 

Enrichment simulation (CVE=LFVE=1) due to unstable estimates; however, all analyses of 

real traits in this paper focus on annotations with significant CVE. Results are averaged 
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across 1,000 simulations. Error bars represent 95% confidence intervals. Numerical results 

for hl f
2 , hc

2, LFVE, CVE and LFVE/CVE ratio are reported in Supplementary Table 4.
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Figure 2: Common variant heritability (hc
2)and low-frequency variant heritability (hl f

2 )estimates 

for 40 UK Biobank traits.

We report hc
2 and hl f

2  estimated by S-LDSC with the baseline-LF model for 40 UK Biobank 

traits (for binary traits, estimates are on the liability scale), with 7 representative independent 

traits highlighted. Error bars represent 95% confidence intervals. The dashed black line 

represents the ratio between hl f
2  and hc

2 meta-analyzed across 27 independent traits (1/6.3). 

Grey lines represent expected ratios for different values of α (see main text). Error bars 

represent 95% confidence intervals. Numerical results are reported in Supplementary Table 

5.
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Figure 3: Functional low-frequency and common variant architectures across 27 independent 
UK Biobank traits.
We plot LFVE vs. CVE (log scale) for the 33 main functional annotations of the baseline-LF 

model (meta-analyzed across the 27 independent traits), highlighting annotations for which 

LFVE is significantly different from CVE. Numbers in the legend represent the proportion 

of common / low-frequency variants inside the annotation, respectively. The first three 

conserved annotations are based on phastCons elements27, Conserved in mammals* is based 

on GERP RS scores28 (≥4), and Conserved in mammals** is based on Lindblad-Toh et al.30. 

The promoter flanking annotation has (non-significantly) negative LFVE and is not 

displayed for visualization purposes. The solid line represents LFVE=CVE; dashed lines 
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represent LFVE=constant multiples of CVE. Error bars represent 95% confidence intervals. 

Numerical results are reported in Supplementary Table 6.
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Figure 4: Low-frequency and common variant architectures of cell-type-specific (CTS) 
annotations.
For 637 trait-annotation pairs with conditionally statistically significant common variant 

enrichment, we report (a) LFVE vs. CVE (log scale) and (b) proportion of hc
2 vs. proportion 

of hl f
2  explained. The dashed black line in (a) represents the regression slope for 25 critical 

CTS annotations for independent traits (see main text). Brain-specific annotations are 

denoted in blue. Two trait-H3K4me3 annotation pairs with LFVE significantly larger than 

CVE are denoted in dark blue (see main text); error bars represent 95% confidence intervals. 

The two arrows in (b) denote All autoimmune diseases (H3K4me1 in Regulatory T-cells; left 

arrow) and Monocyte count (H3K4me1 in Primary monocytes; right arrow) (see main text). 

Results for coding and non-synonymous annotations (meta-analysis across 27 independent 

traits) are denoted in red; error bars represent 95% confidence intervals. Numerical results 

are reported in Supplementary Table 10.
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Figure 5: Low-frequency and common variant enrichments for non-synonymous variants vary 
with the strength of selection on the underlying genes.
We report LFVE vs. CVE (log scale) for non-synonymous variants in 5 bins of shet (see 

main text), meta-analyzed across 27 independent UK Biobank traits; bins 4+5 are merged 

for visualization purposes. Numbers in the legend represent the proportion of common / low-

frequency variants inside the annotation, respectively. The solid line represents LFVE=CVE; 

dashed lines represent LFVE=constant multiples of CVE. Error bars represent 95% 

confidence intervals. Numerical results for each bin are reported in Supplementary Table 11.
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Figure 6: Forward simulations enable inferences about negative selection and rare variant 
architectures.
Results are based on forward simulations involving an annotation mimicking functional 

noncoding variants, as well as other annotations (see text). (a,b) We report the CVE (a) and 

LFVE/CVE ratio (b) of the functional noncoding annotation as a function of the mean 

selection coefficient for de novo deleterious variants (sdn) and the probability of a de novo 

variant to be causal (π) for this annotation. sdn and π values for non-synonymous and 

ordinary noncoding annotations are described in the main text. (c) We report the mean 

absolute selection coefficient of deleterious variants in the functional noncoding annotation 

as a function of sdn and MAF (rare, low-frequency, common). (d) We report the mean 
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squared per-allele effect size of causal variants in the functional noncoding annotation 

(normalized by the mean squared per-allele effect size of rare causal non-synonymous 

variants) as a function of sdn and MAF (rare, low-frequency and common). Red lines denote 

the value sdn=−0.003 used to simulate non-synonymous variants, grey lines denote the value 

sdn=−0.0001 used to simulate ordinary noncoding variants (see main text). The value 

π=48% used in (d) (see Methods) is denoted via squares in (a) and (b). Numerical results are 

reported in Supplementary Table 12.
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