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In recent years, the role of astrocytes in shaping neuronal signaling has come to
the forefront of neuroscience research. The development of genetic tools that enable
targeted manipulation of astrocytes has revealed a wealth of mechanisms by which
they can alter the synaptic strength and intrinsic excitability of neurons in behaviorally
relevant ways. In parallel, several studies have demonstrated significant variability in
the gene expression and physiology of astrocytes within and between brain regions.
Thus, to form an accurate understanding of how astrocytes contribute to neuronal
transmission, we must take into consideration the diversity that exists in their intrinsic
properties. In this review, we will summarize recent findings on astrocyte heterogeneity
and discuss the implications for their interactions with neurons and their effects on
neuronal transmission.
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INTRODUCTION

The diversity in neuronal physiology and signaling mechanisms has long been appreciated.
What has been relatively neglected until recent years is the ways in which glial cells shape
neurotransmission. With the advent of new tools that enable more sophisticated investigation
of glial populations, this underexplored area has emerged as a rich and unquestionably essential
topic to address in our quest to understand brain computation. In particular, researchers have
generated a mountain of evidence in support of astrocytes as important regulators of neuronal
activity (Rouach et al., 2008; Pannasch et al., 2014; Tong et al., 2014; García-Cáceres et al., 2016;
Cui et al., 2018). In parallel, studies focused on the intrinsic properties of astrocytes have identified
numerous axes of functional heterogeneity within this cell type (Poopalasundaram et al., 2000;
Griemsmann et al., 2015; Chai et al., 2017; Morel et al., 2017; Boisvert et al., 2018). As such, it
is almost certainly inaccurate to assume that astrocytes interact with neurons in equivalent ways
regardless of cell type and brain region. In this review, we will take stock of recent findings on
astrocyte heterogeneity, specifically pertaining to their most well-known, uncontested properties
that are regarded as universal astrocyte functions (Figure 1), and consider how these differences
may shape their interactions with neighboring neurons.
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FIGURE 1 | Basic aspects of astrocyte function that are heterogeneous across the brain. These include the identity and expression levels of connexins (CX30 and/or
CX43), potassium channels (e.g., Kir4.1, TWIK-1), glutamate and GABA transporters (GLT-1, GLAST, GAT-3), regulators of synapse formation (e.g., SPARC,
thrombospondins) and synapse elimination (e.g., MERTK), substrates for metabolic support (e.g., glycogen and pyruvate), as well as patterns of intracellular calcium
activity, which have been linked to gliotransmission. Aside from the molecular players highlighted here, many other genes expressed by astrocytes are also
differentially regulated.

CONNEXINS AND GAP JUNCTION
COUPLING

The phenomenon of widespread gap junction coupling between
astrocytes has been described since the 1970s, but in recent
years, studies on astrocyte gap junctions have shifted scientific
opinion from regarding this coupling as a passive syncytium of
support tissue to considering it an active network that is informed
by, and can also determine, neuronal network activity (Giaume
et al., 2010). For example, glutamate release from neurons
can increase the amount of glucose and lactate trafficking
through astrocytic gap junctions, and this trafficking seems to
be necessary for delivery of energy substrates from astrocytes to
neurons to sustain ongoing synaptic transmission (Rouach et al.,
2008). Another complementary role for astrocyte connexins
is a resultant acceleration in potassium clearance from the
extracellular space, particularly during synchronized neuronal
firing (Wallraff et al., 2006). Despite the apparent universality
in their function, the major astrocytic connexins, CX30 and
CX43, display heterogeneous expression patterns across the brain

(McKhann et al., 1997; D’Ambrosio et al., 1998; Kunzelmann
et al., 1999; Griemsmann et al., 2015; Boisvert et al., 2018).

CX43, although present throughout the brain, is particularly
enriched in hippocampus (Griemsmann et al., 2015; Chai
et al., 2017), while CX30 expression is high in thalamus and
cerebellum and lower in cortex or hippocampus (Gosejacob
et al., 2011; Griemsmann et al., 2015). Accordingly, genetic
deletion of CX30 dramatically reduces coupling in thalamus,
whereas CX43 deletion decreases coupling in hippocampus only
(Griemsmann et al., 2015). These differences in expression
raise the possibility that astrocyte capacity for potassium uptake
and metabolic support to neurons is not uniform and may
differentially limit the ability of a local neuronal network to
sustain high frequency firing or largely synchronous activity.

In addition to the differences in their spatial distribution,
there are other pieces of evidence suggesting that CX30 and
CX43 are not functionally equivalent. The onset of CX30 and
CX43 expression are separated in time, with CX43 coming
on prenatally and CX30 expression appearing at 2 weeks
postnatally and increasing gradually to adulthood levels

Frontiers in Cellular Neuroscience | www.frontiersin.org 2 May 2018 | Volume 12 | Article 141

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Xin and Bonci Astrocyte Heterogeneity and Implications for Neurotransmission

(Kunzelmann et al., 1999; Nagy et al., 1999). Global knockout of
CX30 alters astrocyte cytoarchitecture and changes the degree
of contact between astrocyte processes and synapses in the
hippocampus (Pannasch et al., 2014), despite the preservation
of structural astrocyte coupling. Meanwhile, CX43 knockout
increases astrocyte cell volume and reduces the quantal size
of presynaptic glutamate release (Chever et al., 2014b). The
mechanisms behind these divergent effects remain unclear,
but may be due to a combination of differences in their
permeability to various small molecules and in their ability
to form hemichannels between astrocyte membranes and the
extracellular space (Chever et al., 2014a; Hansen et al., 2014).

ENERGY METABOLISM

Glycogen is considered an on-demand source of energy for the
brain that is sequestered within astrocytes and broken down to
form lactate when neurons require additional sources of energy
(Tsacopoulos and Magistretti, 1996). Numerous studies have
found evidence suggesting that this form of energy transfer
from astrocytes to neurons is essential for learning and synaptic
plasticity (Tsacopoulos and Magistretti, 1996; Newman et al.,
2011; Suzuki et al., 2011), but almost all of them were performed
in the hippocampus. A recent study investigated the localization
of glycogen throughout the brain and found that, indeed,
glycogen was predominantly located within astrocyte processes
(Oe et al., 2016). However, there was a high degree of variability
within and between regions, with highest levels of glycogen
observed in hippocampus and cerebellar cortex, and lowest levels
in the corpus callosum and thalamus (Oe et al., 2016). Within the
hippocampus, detected glycogen levels were extremely variable
among neighboring astrocytes.

The variability observed in glycogen levels suggests that
astrocyte synthesis of glycogen does not occur uniformly, and
perhaps that the transfer of energy substrates from astrocytes
to neurons is not essential for the normal functioning of some
brain circuits. For example, regions which receive primarily
GABAergic inputs may require less metabolic coupling between
astrocytes and neurons, as the coupling of astrocyte glycolysis
to neuronal activity appears to be robust at glutamatergic
synapses but not at GABAergic synapses (Chatton et al., 2003).
Alternatively, astrocytes in certain brain regions may be deriving
lactate primarily from pyruvate via the activity of lactate
dehydrogenase (LDH) (Mächler et al., 2016; Magistretti and
Allaman, 2018 ). An interesting follow-up to the glycogen study
would be to correlate glycogen stores in individual astrocytes
with expression levels of LDH to determine if these two pathways
for lactate generation are complementary. More broadly, the
heterogeneity of cell types and neuronal activity patterns across
brain regions merits greater consideration when it comes to
the study of astrocyte metabolic support to neurons and other
brain cells.

POTASSIUM CHANNELS

Kir4.1 is frequently touted as the predominant astrocytic
potassium channel, based on studies performed in the

hippocampus (Djukic et al., 2007). Deletion of Kir4.1 produces
membrane depolarization of astrocytes, inhibition of potassium
uptake, enhanced short-term synaptic potentiation in
hippocampus and stress-induced seizures (Djukic et al.,
2007; Sibille et al., 2014). Additionally, a downregulation of
Kir4.1 in the striatum of Huntingtin mice produces elevated
extracellular potassium levels in vivo, sufficient to drive neuronal
hyperexcitability, which can be rescued by viral overexpression
of Kir4.1 in astrocytes (Tong et al., 2014). Most recently, a
study in the lateral habenula (LHb) showed that upregulation of
astrocytic Kir4.1, paradoxically, induces bursting of LHb neurons
as a result of increased potassium clearance and neuronal
hyperpolarization, and that knockdown of astrocytic Kir4.1 in
the LHb can alleviate depressive behaviors in rodents (Cui et al.,
2018). Thus, the same net result (i.e., a reduction in extracellular
potassium) can reduce excitability in one circuit (striatal neurons
in Huntingtin mice) but facilitate burst firing in another (LHb
neurons).

Despite its apparent prominent role in astrocyte potassium
buffering, this channel is not uniformly expressed in
astrocytes throughout brain. Immunostaining revealed high
Kir4.1 expression in astrocytes of the spinal cord (Olsen et al.,
2007), deep cerebellar nuclei and hippocampal astrocytes, but
not in other regions, including astrocytes residing within white
matter tracts (Poopalasundaram et al., 2000). Using a ribotag
method to isolate astrocyte-specific mRNA, a recent study
reported higher expression of Kir4.1 in hypothalamic astrocytes
and low expression in cerebellar astrocytes (Boisvert et al.,
2018). Within the spinal cord itself, there is also a non-uniform
expression pattern of Kir4.1, with expression being significantly
higher in the ventral horn compared to the dorsal horn (Olsen
et al., 2007).

Do these differences in expression translate to functional
differences in channel activity? In the case of spinal cord, ventral
horn astrocytes indeed displayed much higher levels of Kir-
mediated current than dorsal horn astrocytes, as measured by
whole cell recording (Olsen et al., 2007). Additionally, a recent
study using whole cell recording reported that hippocampal
astrocytes exhibited significantly higher levels of Kir4.1 current
than striatal astrocytes (Chai et al., 2017). Thus, it may be
over-simplistic to conclude that Kir4.1 is the most important
contributor to potassium conductance in all astrocytes. Indeed,
the same study (Chai et al., 2017) performed RNAseq on
hippocampal and striatal astrocytes and identified nine different
potassium channels, four of which were differentially expressed
among the two populations. Interestingly, Kir4.1 was not
differentially expressed at the RNA level, demonstrating the
importance of functional studies as a complement to gene
expression analyses. Other channels identified in the study
include voltage-gated delayed rectifier channels, as well as
the two-pore domain channel TWIK-1, which had previously
been identified as an astrocyte potassium channel but does
not appear to contribute significantly to hippocampal astrocyte
membrane properties (Du et al., 2016). However, the lack of
effect on hippocampal astrocyte physiology does not preclude
the possibility that TWIK-1 plays a more prominent role in
other astrocytes, such as in regions where Kir4.1 expression is
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low. As for the voltage-gated delayed rectifier channels, their
role in astrocyte physiology and potassium buffering remains
an open question. One study using pharmacological inhibitors
of voltage-gated potassium channels suggests that these delayed
rectifier channels can regulate astrocyte calcium stores in vitro
by controlling membrane potential (Wu et al., 2015); more
targeted manipulations will be required to confirm whether this
regulation can also occur in situ or in vivo.

TRANSPORTERS

Astrocytic glutamate transporters are essential for preventing
glutamate-mediated excitotoxicity (Rothstein et al., 1996; Tanaka
et al., 1997), but they can also influence neuronal excitability
in more subtle ways, such as modulating the activity of
extrasynaptic glutamate receptors (Tong and Jahr, 1994; Huang
et al., 2004) or shaping the time course of postsynaptic
currents (Murphy-Royal et al., 2015). Based on analysis of
fluorescent proteins expressed under the promoters of GLT-1
and GLAST, the two predominant astrocytic transporters, they
appear to be expressed in developmentally and spatially distinct
patterns (Regan et al., 2007). GLT-1 promoter activity is
prominent in astrocytes throughout the brain, whereas GLAST
promoter is downregulated from adolescence to adulthood,
with significant promoter activity remaining only in the
Bergmann glia of the cerebellum, the superficial layers of
cortex and radial glia of the hippocampus (Regan et al.,
2007). A different study performed RNA sequencing on mRNA
isolated from adult astrocytes and found higher levels of
GLAST expression in cerebellar astrocytes compared to cortical
astrocytes (Boisvert et al., 2018). The same study also reported
significant regional differences in transcript expression of
GLT-1, with higher levels detected in cortical astrocytes as
compared to hypothalamic and cerebellar astrocytes. Of course,
promoter activity and mRNA do not correspond perfectly
to protein expression; nevertheless, it suggests that glutamate
transport is widely heterogeneous across brain regions, and
that GLT-1 and GLAST may not have entirely overlapping
functions for the cell and/or circuit. Although identical in
their stoichiometry (Owe et al., 2006), GLT-1 and GLAST
display different glutamate transport rates and binding affinities
(Bergles and Jahr, 1997; Wadiche and Kavanaugh, 1998),
with GLT-1 being faster in turnover and GLAST having
a slightly higher glutamate affinity. In addition, although
glutamate transport results in the import of a net positive
charge in both cases, the reversal potential of the current
generated by GLAST activity is more negative than GLT-1
and is altered by extracellular chloride concentrations (Wadiche
and Kavanaugh, 1998). This difference in ion flux is likely
due to differences in a secondary property of glutamate
transporters—their ability to conduct anions, independent
of their transport activity (Wadiche and Kavanaugh, 1998;
Machtens et al., 2015; Divito et al., 2017). This property of
glutamate transporters is often overlooked by studies examining
transporter function in astrocytes, but there is evidence
that chloride efflux through glutamate transporter-formed
channels greatly influences intracellular chloride concentrations

in cerebellar Bergmann glia (Untiet et al., 2017). Whether
intracellular chloride concentrations are similarly regulated
in astrocytes predominantly expressing GLT-1, and what the
implications are for local extracellular chloride concentrations
and GABAergic transmission in neurons, are important
questions that will need to be tested empirically.

Like glutamate transporters, expression of GABA transporters
varies greatly among different populations of astrocytes (Boisvert
et al., 2018), with higher levels detected in hypothalamic
astrocytes, followed by cortical astrocytes, and cerebellar
astrocytes having the lowest expression among the populations
included in this study. GABA activation of the astrocytic GABA
transporter GAT-3 produces a depression in EPSC amplitude, a
phenomenon that appears to be dependent on signaling through
adenosine receptors (Boddum et al., 2016). The authors of
this study hypothesized that a GAT-3 dependent elevation in
extracellular adenosine is due to ATP release from astrocytes,
driven by a net influx of sodium into astrocytes as a result
of the stoichiometry of GAT-3, which reduces the activity of
sodium/calcium exchangers and increases intracellular calcium
levels (Doengi et al., 2009; Boddum et al., 2016). It should
be noted, however, that the mechanisms gating the release of
astrocytic signaling factors—and indeed, what those signaling
factors are—are still a subject of active debate (Wolosker
et al., 2016). Independent of the downstream mechanisms,
these findings suggest that astrocytic GABA transporters may
influence circuits inmultiple ways, beyond just their direct action
of removing GABA from the extracellular space.

REGULATION OF SYNAPTOGENESIS

One of the most surprising findings that has emerged from
the field of astrocyte biology is the requirement of astrocyte
secreted proteins for synapse formation (Ullian et al., 2001), but
whether this requirement is uniform across the brain has not
been studied until recently. To address this question, one group
cultured astrocytes from the cortex, hippocampus, midbrain
and cerebellum of newborn mice, then analyzed the expression
of synaptogenic factors from these region-specific astrocyte
cultures, as well as the effect of their conditioned media (ACM)
on cultured neuron synapse formation (Buosi et al., 2018). They
reported significantly different expression levels of synaptogenic
factors among the different astrocyte populations. In addition,
although all ACMs were able to induce synapse formation in
neurons, the ACMs isolated from cortex and hippocampus
astrocytes increased the number of synaptophysin and PSD-95
puncta significantly more than ACMs isolated from midbrain
and cerebellum. In a similar vein, a different study performed
co-culture experiments with cortical or subcortical astrocytes
and neurons, and found that neurons cultured with astrocytes
from the same region developed significantly longer neurites, as
well as more functional synapses, than neurons cultured with
astrocytes from a different region (Morel et al., 2017). These
results indicate that not only are there absolute differences in
the levels of factors secreted by different astrocyte populations,
but that neurons within a given region are tuned to be more
responsive to astrocytes from the same region.
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Although the existing literature has focused on
synaptogenesis during development (Kucukdereli et al., 2011;
Singh et al., 2016; Farhy-Tselnicker et al., 2017; Stogsdill
et al., 2017), there may be parallels between developmental
synaptogenesis and the formation and/or plasticity of synapses
in adulthood as a result of learning, environmental changes,
or pathology. Indeed, many of the molecules identified as
necessary for synapse formation during development, such
as thromobospondins and SPARC, continue to be expressed
by astrocytes into adulthood, and at significantly different
levels across regions (Morel et al., 2017; Boisvert et al.,
2018). Intriguingly, although the synapse inducing factors
Sparc, Thbs1 and Sparcl1 were significantly enriched in
hypothalamic astrocytes as compared to cortical astrocytes,
the synapse eliminating genes C3, C4b and Mertk were also
higher (Boisvert et al., 2018), reflecting perhaps a greater
need for synapse turnover in the hypothalamus. Further
experiments using genetic tools in vivo will be required to assess
the functional impact of these differences, with potentially
important repercussions on our models of synaptic plasticity in
different brain regions.

GLIOTRANSMISSION

The concept of gliotransmission, i.e., the release of neuroactive
molecules from astrocytes in response to intracellular calcium
elevations, is arguably the most controversial topic in astrocyte
biology. The numerous lines of evidence for and against the
existence of such signaling pathways is beyond the scope
of this review, but we invite readers to consult two recent
reviews for opposing commentaries on gliotransmission ( Fiacco
and McCarthy, 2018; Savtchouk and Volterra, 2018). On the
subject of astrocyte heterogeneity, one group demonstrated that
purported signatures of astrocyte glutamate release (i.e., the slow
inward current) are not uniformly detected across neuronal
populations but in fact, are circuit-specific in the dorsal striatum
(Martín et al., 2015). However, a more recent study failed to
identify any relationship between the occurrence of slow inward
currents and astrocyte activity (Chai et al., 2017), calling into
question the assumed (astrocytic) origin of these slow inward
currents. On the flip side, the same study reported differences

in astrocyte calcium dynamics between striatal and hippocampal
astrocytes. These results suggest that, like other aspects of
astrocyte physiology, the rules that govern astrocyte calcium
signaling and the potential release of any signaling factors are
likely region- and circuit-specific.

CONCLUSION

In summary, astrocytes exhibit highly diverse functional
properties that can impact their influence on neuronal
transmission. This diversity is not limited to specific,
morphologically distinguishable subtypes of astrocytes, such as
Bergmann glia and retinal Müller glia, but is reflected in nearly
all comparisons of astrocytes across (and sometimes within)
brain regions. In addition to pronounced baseline differences,
there is evidence for adaptations in astrocyte function that are
context- and region-specific (Schipke et al., 2008; Zamanian
et al., 2012; John Lin et al., 2017; Boisvert et al., 2018; Itoh
et al., 2018). These data argue that, although hypothesis-driven
research is essential for elucidating the function of astrocytes, a
focused approach needs to be complemented by discovery-based
approaches that can identify the most significant physiological
differences in a given context, as data generated in one model
or region cannot accurately predict the most relevant aspects of
astrocyte function to investigate in all cases. An important future
direction that emerges from these findings is the extent to which
differences in neuronal excitability and transmitter release is, in
fact, a product of astrocyte heterogeneity.
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