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Many physical and biological systems can be studied using complex network theory, a new statistical physics understanding of graph theory. 

The recent application of complex network theory to the study of functional brain networks generated great enthusiasm as it allows 
addressing hitherto non-standard issues in the field, such as efficiency of brain functioning or vulnerability to damage. However, in spite of 
its high degree of generality, the theory was originally designed to describe systems profoundly different from the brain. We discuss some 

important caveats in the wholesale application of existing tools and concepts to a field they were not originally designed to describe. At the 
same time, we argue that complex network theory has not yet been taken full advantage of, as many of its important aspects are yet to make 

their appearance in the neuroscience literature. Finally, we propose that, rather than simply borrowing from an existing theory, functional 
neural networks can inspire a fundamental reformulation of complex network theory, to account for its exquisitely complex functioning 

mode. 
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1. Introduction 

Characterizing how the brain organizes its activity to carry out 
complex tasks is highly non trivial. While early neuroimaging 

and electrophysiological studies typically aimed at identifying 

patches of task-specific activation or local time-varying patterns 

of activity, there has soon been consensus that task-related brain 
activity has a temporally multiscale, spatially extended character, 

as networks of coordinated brain areas are continuously formed 

and destroyed [ 1, 2].  
Up until recently, though, the emphasis of functional brain 

activity studies has been on the identity of the particular nodes 

forming these networks, and on the characterization of 

connectivity metrics between them [ 3], the underlying covert 
hypothesis being that each node, constituting a coarse-grained 

representation of a given brain region, provides a unique 

contribution to the whole. Thus, functional neuroimaging 

initially integrated the two basic ingredients of early 
neuropsychology: localization of cognitive function into 

specialized brain modules and the role of connection fibres in the 

integration of various modules.  

Lately, brain structure and function have started being 
investigated using complex network theory, a statistical 

mechanics understanding of an old branch of pure mathematics: 

graph theory [ 4]. Graph theory allows endowing networks with a 

great number of quantitative properties [ 5, 6], thus vastly 
enriching the set of objective descriptors of brain structure and 

function at neuroscientists’ disposal. 
However, in spite of a great potential, the results have so far 

not entirely met the expectations in that complex network theory 

has not yet given rise to a major breakthrough, has mainly been 

used to achieve descriptive goals, and has not yet had an impact 
on the way neurological or psychiatric pathologies are treated. 

In this paper, we discuss possible reasons behind the current 

state of affairs and point to directions where graph theory could 

fruitfully be employed. In particular, we illustrate how complex 
network theory is used to describe functional brain activity, 

suggest alternatives to current practices, but also propose ways 

in which it could achieve further fundamental objectives, from 

classifying, to modelling, forecasting and even controlling brain 
activity. 

2. Great expectations: graph theory's revolution  

Complex network theory is not a mere additional set of tools in 
the neuroscientists' bag of tricks. Rather, it constitutes a major 

turning point, both conceptual and methodological. 

(a) A new paradigm for brain function 

At a conceptual level, the complex network approach represents 
a paradigm shift from a computer-like to a complex system 

approach to the brain [ 7]. In the former approach, as is the case 

of computers, the brain is a collection of heterogeneous parts 

where function can be traced back to the computations carried 
out at well-defined locations and to the transport of their output 

from one location to another. At the system-level of 
investigation of standard non-invasive neuroimaging techniques, 

modelling typically involves a small number of units.  

The huge number of neurons (∼10
11

) and synapses (∼10
15

) 

[ 8] suggests that the brain is better modelled as a complex 
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system [ 9], capable of generating a vast repertoire of 

macroscopic patterns of collective behaviour with distinctive 
temporal, spatial or functional structures.  

While modelling macroscopic behaviour in terms of only a 
few degrees of freedom as in the former approach likely 

represents a drastic reduction, the sheer number of interacting 

parts makes it unfeasible to study the brain's macroscopic 

functional properties by explicitly modelling each of its degrees 
of freedom. Statistical mechanics provides a framework for 

describing how these macroscopic patterns may result from the 

interactions of a multitude of microscopic individual entities [ 10]. 

Macro and microscopic scales are not absolute ones, but depend 
on the range of scales afforded by the experimental techniques 

used to observe brain activity, as well on the coarse-graining 

level used in data analysis. For instance, microscopic entities 

could be single neurons or neuronal micro-columns (∼10
2
 

neurons) or even neuronal populations comprising hundreds or 

thousands of micro-columns, etc. 

The statistical mechanics approach underlying complex 

network theory [ 11] allows conceiving of macroscopic brain 
function as emerging in a non-trivial way from the interactions 

of a vast number of microscopic neural units. The networks 

formed by these interactions are endowed with properties which 

do not depend on those of their constituent nodes: neither 
particular nodes, nor particular links have, at least prima facie, 

an identifiable role in determining network properties. These are 

instead essentially statistical in nature. Ultimately, observable 

functional abilities are but the macroscopic output of the 
renormalization of neural fluctuations at microscopic scales. 

(b) A new way of describing brain activity 

Both at rest and during the execution of cognitive tasks, the brain 

produces complex fluctuations at many spatial and temporal 
scales. Finding good collective variables describing such an 

inherently multiscale spatially-extended system's function is 
possibly the most impervious task facing neuroscientists. 

Endowing brain activity with a network representation 

allows applying a set of mathematical tools, ultimately yielding 

valuable information on the collective behaviour of the brain. 

(i) From important parts to general organizing principles 
One of the main objectives of neuroscientists is typically 
identifying key brain regions responsible for certain observed 

behaviours. With complex network theory this can be 
accomplished at various scales. For instance, it is possible to 

identify and quantify the role played by the most basic actors of 
the network, i.e. nodes and links [ 12], and the extent to which 

they are playing a leading role. In turn, one can examine whether 
well-connected nodes display a specific connectivity, known as 

rich club, characterized by a tendency to denser connectivity 
than that of nodes with fewer connections [ 13].  

The importance of a node in a network can be measured in 
various ways using centrality metrics [ 6]. Centrality may refer to 

a leading node of a brain region or to the main connector 

between different regions [ 12], and can be quantified in terms of 

local properties, e.g. the number (or weight) of connections, or 
global properties, e.g. the number of shortest paths connecting 

any pair of nodes crossing a given node. Correspondingly, 

various centrality measures, e.g. node degree, betweenness [ 14], 

or eigenvector centrality [ 15], have been proposed, each 
quantifying different ways in which some nodes of a network 

can be thought of as central.  

Complex network theory allows going one step further and 

investigating general organizing principles at all scales, 
reflecting the fact relevant aspects of functional brain activity, 

such as information storing, may be either local, or non-locally 
spread across widely separated units.  

At a global level, neither random nor regular lattices seem to 

constitute an adequate description of functional brain networks. 

Instead, it has been shown that these networks have small-world 
(SW) structure, indicating that any two vertices in the network 

can be connected through just a few links and, at the same time, 

that local connectivity is much denser than that of networks 

where connections are made at random [ 16]. Functional brain 
networks have also been reported to be scale-free [ 17, 18], 

indicating a non negligible power-law probability p(k) of finding 

nodes with a high number of connections k [ 19].  

In addition, functional connectivity has also been shown to 
be assortative [ 17], i.e. its nodes tend to form groups with nodes 

having a similar number of connections [ 20].  

Within this global organization, a modular structure [ 21] has 

been highlighted. A core-periphery organization, where highly 
connected nodes form a stable dense core, surrounded by a 

periphery, composed of low-degree nodes with a time-varying 
connectivity can also occasionally be identified [ 22], providing 

insight into the way functional modules are connected with each 
other.  

Complex network theory also allows characterizing non 
random patterns that are neither global nor local. Numerous 

mesoscale topological structures, possibly representing 
functionally relevant units, have been identified and their 

interactions assessed, using ad hoc detection algorithms [ 23, 24]. 

These include for instance connectivity patterns between nodes 
that are overrepresented in the network known as motifs [ 25], or 

larger functionally coupled regions known as community 

structures [ 26]. 

Not only does complex network theory afford a description 
of brain activity at multiple scales, but it also helps unveiling 

various aspects of the relations between them. Various studies 
highlighted that the brain shows prominent hierarchical 

structure, with modules themselves containing other modules 
[ 26]. Zooming in and out of brain functional activity reveals a 

complex fractal structure, showing both self-similarity [ 27] and 
self-dissimilarity [ 28]. Interestingly, these global properties are 

associated with some mesoscale properties such as assortativity, 

with hubs in fractal and non fractal structures respectively 

repelling or attracting each other [ 29]. 
Complex network theory also allows quantifying the inherent 

trade-off between the emergence of segregated specialized 

modules, stemming from the need for fast and reliable responses 

to changes in the environment, and integrated global coherent 
activity, necessary for the binding of complex information and 

the formation of adaptive responses [ 30], and evaluating the 

extent to which this balance is optimized [ 31, 32]. 

The fact that some of these properties have been found in 
systems that are very different from the brain, suggests that they 

may have a universal character [ 33], and may possibly be 

grouped into universality classes, identifying common 

interaction rules over and above the microscopic details of each 
particular system, which can be treated as irrelevant, as they 

disappear when getting rid of details and observing the system at 

increasingly longer length scales.  
Appropriate null models facilitate quantitative network 

evaluation. A random network topology with the same degree 
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distribution as the original network can be used as a null model 

[ 34]. 

(ii) From structure to dynamics to function 
The fact that the same methodology can be applied to networks 

of different nature is an advantage when delineating the 
relationship between anatomy, dynamics and function. For 

example, the topological properties of anatomical and functional 
networks have been compared with the aim of detecting 

influences or constraints of one network on the other [ 35- 37]. 
Although difficult to compare, due to dissimilar origins and to a 

different number of nodes and links, these networks share some 

topological properties, such as the SW structure [ 38-40]. Several 

studies have compared functional networks at rest with structural 
connections, reporting high correspondence between both types 

of networks in regions with higher density of anatomical 

connections, while high variability in the functional correlation 

was associated with scarce anatomical connectivity [ 35- 37].  
Anatomical brain networks have been used as a benchmark 

to test dynamical models of spontaneous brain activity and how 

dynamics is affected by structure [ 35, 37, 41- 49; see also  50, 51 

for recent reviews on the topic]. While the way resting 
connectivity relates to the anatomical connectivity remains an 

open question, the correlation structure of resting functional 

connectivity as measured by the slow spontaneous BOLD 

fluctuations was shown to relate to the underlying anatomical 

circuitry as obtained by diffusion tensor spectrum imaging 

[ 35, 36]. This was taken to suggest that resting state networks 

arise from correlations of neuronal noise between brain areas 
that are coupled by the underlying anatomical connectivity [ 49].  

However, at time scales faster than those of BOLD 

fluctuations, the relationship between functional and structural 

networks is far from clear [ 35,  51]. In general, what sort of 
boundary condition anatomy plays, and at what (spatial and 

temporal) scales this constraint cannot be neglected remains 

largely unknown. 

(iii) Treating the brain as a biophysical object 
In the complex system approach, the brain is thought of as a 
thermodynamical system, subject to energy costs and constraints, 

entropy barriers and information flows across its boundaries [ 8].  

A wide range of nested, hitherto unaddressed theoretical and 

experimental questions arise naturally. For instance, how 
efficiently does the brain perform the functions it is supposed to 

carry out, under the constraints it is facing? How does it 
withstand external perturbations?  

The way the human brain organizes its structure and function 
can be understood as the result of the constraint optimization 

process faced by any physical and biological system such as 

electronic devices or communications networks, and shows that 
similar principles of resource allocation can be found in many 

physical and biological systems [ 8]. These questions can be 

addressed by examining the topological and dynamical network 

properties. Far from being mere fancy mathematical descriptions 
of a system, these properties have important implications for the 

system’s functioning [ 52].  

The particular structure of connections has important 

consequences for the information processing capacities. The 
ability to process and propagate signals between nodes is for 

example affected by whether networks possess branching or 
loop-like features [ 53]. It also affects the efficiency and 

robustness of networks. For instance, several studies have 
suggested that the small-world organization of functional brain 

activity favours high communication efficiency for a low wiring 

cost [ 4]. It has also been shown that the presence of rich-club 
organization provides important information on network 

properties such as hierarchal structure, modularity and resilience 
[ 54, 55]. The SW structure is commonly associated with an 

efficient organization of the brain, compatible with a 

simultaneous integration and segregation of information through 

the network [ 19]. On the other hand, scale-free networks are 
highly resistant against random failures [ 18, 56], though 

extremely fragile to attacks targeting their most connected nodes 

[ 57]. Similarly, the presence of degree-degree correlations 

affects the tendency to separate into distinct groups, as well as 
network synchronizability and vulnerability to attacks. 

Specifically, assortative networks facilitate the spread of 

information over the network [ 20], are less vulnerable to attacks, 

but are more difficult to synchronize [ 58], and show a stronger 

resistance to disintegrate into different groups [ 59] than 

disassortative networks [ 20]. 

In addition, networks with heterogeneous components and 

modularity tend to have adaptive capacity, adjusting gradually to 
change. In highly connected networks, on the contrary, local 

losses tend to be withstood until the system reaches a critical 
stress level at which it collapses [ 61]. 

Network scientists have striven to translate some of these 
concepts into network measurable variables. For example, from 

an information transfer point of view, it is possible to quantify a 
network's ability to transmit a message in an efficient way, i.e. 

with the shorter number of steps between the sender and the 
receiver [ 52]. It is also possible to understand how network 

parameters are affected by targeted attacks or random failures, 
thus quantifying the vulnerability and robustness of functional 

networks [ 57].  

Functional networks' potential for coordinating the dynamics 

of their nodes and proneness to synchronize could also be 
measured using synchronizability [ 62], a property that can be 

evaluated from the spectral properties of the network [ 63].  

(iv) Characterising functional brain disease and cognitive 
function 

Ultimately, complex network theory would seem to allow 
characterizing how all these properties of functional networks of 

healthy brains are modulated under various experimental 

conditions, e.g. sensory stimulations, motor or cognitive tasks 

[ 19], and by neurological or psychiatric pathology, e.g. epilepsy 
[ 64, 65], traumatic brain injury [ 66], brain tumours [ 67], mild 

cognitive impairment [ 42, 68, 69], Alzheimer’s disease [ 70, 71] or 

schizophrenia [ 72, 73].  

While it is not clear to what extent the execution of cognitive 
tasks influences global topological parameters or 

synchronizability [ 19], the fine structure of functional 
connectivity can be taken to reflect that of functional modules. 

For instance, the core-periphery organization was found to 
reflect the ability of subject to learn a motor skill, with 

participants showing a larger separation between core and 
periphery learning better than individuals with a smaller 

separation [ 22].  

On the other hand, whether or not they stem from focal, 

spatially localized damage, neurological and psychiatric 

pathologies seem to affect the overall functional network 
structure, from global organization down to meso- and 

microscopic network scales [ 74]. Significant global changes may 
for instance involve loss of small-worldness, with networks 

becoming more random [ 42]. Pathology-related changes are also 
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found both in the mesoscale structure of functional activity, e.g. 

in the community structure of the networks [ 26], and at the 
microscale, where the role played by single nodes may be altered 

[ 75]. For instance, network hubs appear to be especially 
vulnerable to brain disease [ 18, 76], which appears to reshuffle 

the ranking of node centralities in the network [ 66, 77]. 

3. Hard times 

The introduction of fundamentally different concepts and tools 
to a new field is a path often plagued with pitfalls, typically 

coming under the guise of over-, under- and mis-application and 
interpretation.  

In fact, the enthusiastic resort to any new method, 
particularly when imported from other fields, may on one hand 

lead into disregarding some of its assumptions and limitations 
and, on the other hand, lead to the (often improper) isolation of 

those parts of the method that are more readily amenable to the 
pillar concepts of pre-existing ones, while other parts are only 

resorted to at later stages, regardless of their possible scope in 

the field.  

Neuroscience is not being spared these various problems, as 
stumbling blocks lurk at all levels, from the very domain of 

complex network theory's applicability, to the crucial choices 

made to build networks from empirical neuroimaging data, to the 

definition of network properties and their interpretation, and the 
principled discrimination of the most important ones. 

(a) Applicability of complex networks theory 

The standard formulation of the statistical physics approach to 

graph theory implies a substantial equivalence of all its 
constituent nodes [ 78]. While the underlying substrate that each 

node is taken to represent may differ from one node to another, 
differences are generally supposed to be irrelevant.  

However, from a statistical mechanics view-point, at the 
system-level network representation typical of non-invasive 

neuroimaging techniques, the brain can be thought of as a 
disordered system, with pronounced anatomical and 

physiological heterogeneity, and functional modularity.  

In the presence of strong disorder and inhomogeneity, and 

complex structure-function relationships, the degree of coarse-

graining of the system crucially determines the meaningfulness 
of a network representation. For a given spatial and temporal 

resolution, genuine property emergence predicated by the 
statistical mechanics approach may for instance not apply to the 

whole brain, but only to specific parts. 
As a result, the node equivalence doesn't hold prima facie, 

leading to some fundamental questions: when does a brain 
network cease to be a complex network and start being a mere 

collection of nodes, with network properties reducing to simple 
connectivity? Is there a particular observation scale at which this 

occurs?  

(b) Building functional networks 

Explaining functional brain activity in terms of objectively 

quantifiable functions of observed connectivity would seem to 

address one of the most fundamental concerns vexing 
neuroscientists, particularly those interested in brain functional 

activity.  

However, complex network theory is neutral as to the way a 

network is reconstructed from empirical data. Identifying 

nodes, establishing links according to some relationship 

between them, deciding which links are significant, and, once 
network properties are computed, using them to characterize 

the network are all steps involving somehow arbitrary choices 
with often covert underlying assumptions, and far-reaching 

nested consequences. See [9; 79- 81] for recent critical reviews 

on the topic.  

(i) Identifying nodes 
Identifying nodes supposes that the studied system can 
meaningfully be decomposed into discrete structureless parts. 

This reduction is not trivial when dealing with systems of 

largely unknown organization and dynamics.  

Depending on the technique used to record brain activity, 
the main issue may be the extent to which sensors sample the 

underlying dynamical system or how to best segment the space. 

Studies using electrophysiological techniques such as 

electro- or magnetoencephalography identify nodes with sensors. 
This introduces spatial scales possibly unrelated to the actual 

system organization, and potentially affecting the network’s 

topological properties [ 82, 83]. Furthermore, it is not clear 

whether the functional networks based on surface recordings 
actually reflect the topology of the underlying network of 

neuronal sources [ 84, 85]. 

Multiple electrode recordings tend to overestimate the true 

network small-worldness of the underlying network, as each 

sensor picks up many sources at small scales. The small 

number of sensors constrains the sampling on large scales [ 86], 

whereas the imperfect sampling may impede the detection of 
scale-freeness [81]. 

In functional magnetic imaging studies, the main issue 

associated with node identification is that of delineating 

functionally separated brain units. This task, which goes under 
the name of parcellation, exposes a series of very general 

issues related to the representation of a functional space, and to 

the correct definition of the corresponding tools provided by 

complex network theory to account for the internal organization 
of such spaces. 

Parcellation may identify nodes with either anatomical 
landmarks, or locations in the brain volume, or else with peaks 

in functional activation [ 87]. While the choice of the 
parcellation technique may not affect whether or not certain 

global topological properties such as small-worldness are 
actually detected, it may nonetheless have an influence on their 

quantitative estimates [ 88].  
However, on the one hand, methods based on anatomical 

landmarks rest on the controversial isomorphism between 
anatomical and functional spaces [ 89]. On, the other hand, 

using functional landmarks may lead to a fluctuating number of 

nodes, and care should be taken when comparing the associated 

topologies. 
In general, parcellation of neuroimaging data typically 

yields very high-dimensional data sets. Principled dimension 

reduction should preserve physiologically relevant information 

and functional organisation rules. However, the anatomo-

functional space is often segmented with partitional clustering 
methods [ 90]. This class of methods typically involves two 

unrealistic assumptions: the same region cannot simultaneously 
participate in different functional units. At the same time, all 

parts are typically forced into belonging to at least one cluster. 
In addition, most methods used to detect modularity are not 

robust with respect to the presence of well separated scales 
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[ 91], and are therefore ill-suited to reconstruct organizational 

principles at different levels. 

(ii) Defining links 
Functional links usually reflect statistical relationships between 

activity recorded at different brain sites or sensors.  
How different connectivity metrics affect the topological 

properties of the resulting networks and how to elect the most 
appropriate metric of brain activity out of the great number of 

available ones are still poorly understood issues. Because even 
slight changes in connectivity patterns may result in large 

changes in the measurements made at a particular node, these 

factors are likely to have a non negligible impact even at 

macroscopic scales. 
Another important issue is how to transform an all-to-all 

connected clique into a functional network. However carried 

out, this generally involves setting a threshold value either a 

priori [ 21], or after examining a range of values [ 92, 93], or 
through an adaptive process [ 19], e.g. by choosing its maximal 

value keeping the network connected [ 62]. A qualitatively 

different strategy consists in selecting the threshold level that 

optimizes some criterion, e.g. data classification [ 94].  
Setting a threshold has several interrelated, potential 

consequences. First, too high a threshold can prevent the 

convergence of the sample distribution to the true asymptotic 

one and therefore the emergence of the corresponding 

macroscopic property. The percentage of considered links may 

also not be the one which optimizes data classification based on 

network properties, and where classification is robust to 
fluctuations in network parameters [ 94].  

Furthermore, thresholds are filters biasing the analysis 

towards given scales and corresponding topological properties, 

damping the effect of other ones. The multiscale nature of brain 
activity suggests that no filter is optimal and that choosing a 

threshold value only determines what properties the analysis is 

going to shed light upon, as each network metric is strongly 

associated with a preferred link density. For instance, triangular 
motifs cannot appear in very sparse networks, while 

unconnected triangles disappear in very dense networks. 
Similarly, hub-based structures fade out for very high link 

densities. At macroscopic scales, brain activity may appear 
hierarchically organized into modules with large-world self-

similar properties, while the addition of only a few weak links 
is enough to turn the network into a non-fractal and small-world 

one [ 27]. 

(c) Interpreting network properties  

Once a network is constructed, one needs to interpret the 
meaning and significance of the properties one wants to 

characterize it with. 

Connectivity measures should not be taken to automatically 

reflect the presence of specialized structure, due to the strong 
influence exerted by geometry on connectivity matrices [ 95]. 

Most topological properties typically attributed to brain 

structure, including modularity and hierarchy, can be seen in 

strictly uniform, locally connected two-dimensional spaces. 
Given the prominent role played by geometric constraints in the 

brain, this is a potentially serious problem, which implies that 

the role of geometry must be discounted before interpreting 

observed topologies by analogy with known results from 
different fields in which network theory has been used. 

There is no clear relationship between connectivity and 

transfer or processing of information. The relationship between 
information processing capacities and topological network 

properties has been investigated theoretically [ 53]. However, the 
existing literature typically quantifies the information contained 

in the observed network, while the actual information processed 

or transferred by the underlying system is often difficult to 

quantify due to technical limitations.  
The definition of some constructs of network theory (e.g. 

efficiency, robustness or vulnerability) was dictated by the 

specific constraints of the physical contexts they were designed 

to describe (e.g. internet, WWW, social networks), but may not 
be appropriate in the case of brain activity.  

For example, in the framework of complex network theory, 

the term efficiency is defined as the inverse of the number of 

steps needed to reach one node from any other one in the 
network [ 52]. Thus defined, network efficiency qualitatively 

differs from the usual definition of efficiency, which relates to 

the way the system takes advantage of its resources to perform a 

given task, and should therefore not be equated to it.  
Other examples of these risks are the evaluation of 

robustness and vulnerability. Both parameters are traditionally 
obtained by targeted or random removals of the network nodes 

and/or links [ 57]. The effects of node and link deletion in the 
network parameters are reasonable in networks like the Internet, 

where all routers and servers have similar functions [ 96]. 
Nevertheless, it is adventurous to extrapolate these techniques to 

brain networks, due to the fact that each brain node is different, 
and that the deletion of a node or link may have qualitatively 

different consequences from those predicted by the topological 

robustness. For example, the removal of a crucial but poorly 
connected node may lead the whole brain network to fail when 

performing a cognitive task. 
On the other hand, some network concepts have been 

borrowed from other domains of application, disregarding the 
conditions under which they are valid. Synchronizability of a 

functional network is a paradigmatic example. This network 
parameter has been used to evaluate whether a complex network 

is able to synchronize or not [ 97], and it has also been translated 
to functional brain networks [ 19, 62]. Synchronizability relies on 

the spectral properties of the Laplacian matrix associated with 
the functional network. Nevertheless, this parameter requires all 

nodes of the network to be identical systems, something that is 

far from being the case of the brain. Furthermore, it refers to 

both phase and amplitude synchronization of the full system 
(i.e., complete synchronization) [ 63, 98], a kind of synchronized 

behaviour never reported in biological systems. 

(d) Considering the true dimension(s) of networks 

Functional networks are continuously evolving, even at rest. To 
capture the behaviour of functional networks, time must be 

included in the analysis. Most existing studies describe 

functional networks in terms of steady-state (topological or 

dynamical) network properties averaged over a given 
experimental condition. Averaged steady-state networks will 

inevitably tend to approximate anatomical ones, as anatomical 
networks are functional ones averaged over an infinite time 

window. 
However, functional networks are inherently transient, as the 

time in which functional links reconfigure is typically orders of 
magnitude faster than the length of neural processes. When the 

duration of a given phenomenon is many orders of magnitude 
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larger than that of changes in the wiring, the temporal dimension 

and its structure cannot be neglected, whether the process is 
stationary or not.  

Very few studies have dealt with how these networks 
emerge, evolve and disappear [19, 99- 101]. Due to the presence 

of delays, functional networks are not only spatially extended 

but also temporally non-local. However, connectivity is typically 

evaluated locally in time, and with a single characteristic scale.  
Moreover, while network theory is used in recognition of the 

existence of non random spatial structure at a variety of scales, 

brain activity also has a multiscale temporal structure. 

Importantly, the generic presence of complex fluctuation 
properties such as scale-freeness and long-range temporal 

correlations, and rich non-trivial hierarchical [ 102 and references 

therein] and ordinal [ 103] temporal structure indicates that 

activities at various scales are not separable, so that describing 
brain activity boils down to accounting for the rules governing 

their relationships. The relationship between different time 

scales is typically forgotten or explicitly avoided as there is as 

yet no standard methodology to quantify the connections 
between temporal scales [ 104]. Failure to account for the non-

random structure associated with the complex generic properties 
of the temporal scales of brain fluctuations leads to missing or 

distorting temporally non-local structure, and does not help 
understanding the complex interactions among structures 

unfolding at very different characteristic time scales [ 102].  
An important and related issue is to determine what 

quantities can be averaged together and how. From a statistical 
mechanics viewpoint, the generic presence of properties such as 

modularity and small-wordness makes the brain a disordered 

system. The disorder found in the brain can be thought of as an 
externally given background and should therefore be considered 

as quenched disorder, i.e. the parameters defining its behaviour 
are random variables which do not evolve with time, with 

modules playing the role of impurities. While there is some 
indication that quantities measured for such system may indeed 

be self-averaging [ 105], indicating that statistics are improved 
by increasing the sample, it is not immediately evident that the 

distribution of impurities does indeed obey the equilibrium 
distribution. 

(e) Evaluating results 

(i) Discriminating important features 

Once a series of network metrics are calculated, neuroscientists 
face the arduous problem of understanding what properties are 

important [ 94].  

Statistical inference often relies on at best a few metrics such 

as the path length, or clustering coefficient [ 56, 106, 107]. 
Significant differences in graph metrics can highlight differences 

between groups, but incur problems related to multiple 

comparisons. More importantly, lead to dramatical information 

losses as a result of the reduction of a complex system to a set of 
scalars [ 9]. In addition, the standard statistical analysis does not 

provide a principled way to favour one property over another, 

neither does it account for the relationship between different 

metrics, which remains unexplored. 

(ii) Reproducibility, sensitivity and specificity 
The extent to which measured properties actually describe the 
system and are specific to it remains unclear.  

In spite of the great number of studies reporting topological 
differences between the functional networks of patients suffering 

from a variety of pathologies, the sensitivity and specificity of 

such metrics may not be sufficient to be clinically useful or have 
an effective diagnostic value [ 9].  

The mapping from microstates, represented by observed 
functional network structure, to macrostates, represented by the 

corresponding ability to perform a given task or by a given 

pathology, may be extremely unpredictable. Rather dramatic 

changes in the former may turn out to be neutral, failing to 
translate into appreciable functional change, which instead may 

occur in association with seemingly small ones. This complexity 

is to be expected from a network where each node represents a 

degenerate or conversely a pluripotential system, respectively 
characterized by a many-to-one or one-to-many structure–

function relationship.  

Finally, inconsistent results have occasionally been 

highlighted [ 9]. For instance, epilepsy has been associated to 
both decreased [ 108] and increased [ 109] path length with 

respect to normal control groups. However, studies analysing the 

reproducibility of network parameters are scarce and no clear 

picture emerges in this respect [ 110- 112], partly as a result of the 
lack of understanding of intrinsic brain response consistency 

[ 113], and adaptation, and their role in shaping network 
topology.  

4. The great leap forward 

How can complex network theory move up gears, and start 

delivering the goods that the neuroscience community expected 

of it?  

In the remainder, we propose some ways and conditions 
through which this can be accomplished. These include calling 

upon some already existing conceptual and technical aspects of 
complex network theory that have not yet been resorted to by 

neuroscientists, and proposing tailor-made metrics consistent 

with known properties of functional brain properties and, as a 

result, of a wide class of complex adaptive systems. 

Whether all, some, or even none of the proposed recipes 
bears fruit or not, the most important goal of this section, as of 

the paper as a whole, remains that of promoting a constructive 

debate on the future of complex network theory in neuroscience. 

(a) Taking full advantage of graph theory  

(i) Multiscaling in space, time, and phase space 
Functional brain networks have an inherent spatio-temporal 
dimension. A time-varying description of functional networks 

naturally leads to a multilayer network representation [ 114], with 

layers labelled by time.  

Time-varying and multilayer networks involve a basic 
reformulation of most of complex networks’ founding concepts, 

from topological properties as basic as distances, to community 
structure and modularity, small-worldness, etc. [ 114- 116]. This 

specific field of complex networks analysis is still in its infancy 
and could benefit from the experimental results coming from 

functional brain networks.  
The most appropriate mapping should take into account both 

the spatial and temporal scales, equipped with their respective 
structure. Two complementary approaches constitute dual cuts 

into this space: on the one hand, considering connectivity at 
different time scales helps unveiling hierarchical neural 

communities [ 117]. Likewise, the ordinal and hierarchical 

temporal structure can be explored by sweeping the spatial 

scales.  
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The brain can be considered as a complex many-body system, 

many aspects of which evolve with the resolution scale at which 
it is observed [ 118]. In other words, to capture this essential 

principle of brain functioning methods are needed that are able 
to deal not only with activity at one or many particular scales, 

but also with the relationship across scales. Out of the many 

possible solutions to this fundamental problem, the 

renormalisation group appears as a general paradigmatic method 
providing a compact representation of the relationships across 

scales [ 119].  

A renormalisation group is in essence a dynamical system, 

where time axis is represented by the logarithm of the scale 
factor, describing the evolution of models of a system in a model 

space, as the space of models is mapped into itself, through 

coarse-graining to longer lengths. The evolution of scale-

dependent parameters under coarse-graining can generally be 
expressed in terms of differential equations for the probability 

distribution function. In the case of networks, this can be 

accomplished by covering the network with boxes of a given 

size and then replacing each box with renormalized supernodes 
[ 120].  

Insofar as it is a dynamical system, the renormalization flow 
can be characterized by its fixed points and their stability. The 

fixed points express the properties that are conserved as scales 
are varied and details at small scales are lost. The various 

asymptotic behaviours of the system emerge as scale-dependent 
collective phenomena. What particular behaviour, out of the 

many possible ones, is attained by the system under the action of 
coarse graining depends on the initial parameter values' location 

within the basins of attraction of the fixed points. Power-law and 

hierarchical structure are two of the classes of asymptotic 
behaviours that can emerge as an out-of-equilibrium system is 

coarse-grained [ 118].  
The renormalization flow helps representing the various 

observable network configurations as the phase space of a 
dynamical system, i.e. the abstract space of all possible states 

brain activity can take, bridging the gap between functional 
networks at scales as far apart as those of perceptual phenomena, 

of brain plasticity or aging, and even of evolution. The 
renormalization group approach can be seen as a natural method 

to tackle the problems of describing, modelling, and in some 
sense even predicting multiscaleness in the brain. 

Renormalization theory helps relating models of the same 

system at different scales or grouping models of different 

systems exhibiting the same large scale behaviour.  
While the standard renormalization procedure looks at the 

evolution of effective parameters and, as it were, at the 

information conserved by the flow, quantifying the information 

lost as the look it progressively zoomed out of the system helps 
characterizing mesoscale properties, which tend to vanish for 

diverging time and network size, but are observable at the spatial 

and time scales typical of functional brain activity [ 53, 121]. 

(ii) Topology – dynamics 
While nodes are generally taken to be static objects, it is possible 

to endow them with some evolution rule [ 5]. Given the typically 
oscillatory nature of brain activity, networks reconstructed from 

brain activity boil down to a set of oscillators (weakly) coupled 
according to a certain topology.  

Adding dynamics allows resorting to the rich repertoire of 
tools of nonlinear time series analysis [ 122]. For instance, one 

can derive properties of the dynamics such as equilibria and their 
stability, as well as other fundamental dynamical and 

geometrical properties of the phase space associated with the 

dynamics, and the bifurcations it may undergo as some control 
parameter is being varied. This naturally leads to the definition 

of a dynamical robustness and vulnerability. Contrary to 
topological robustness, where typically one assesses the 

evolution of the largest connected component, as nodes or links 

are deleted using some strategy, when considering dynamical 

robustness, the critical variable is a dynamical network property, 
such as synchronization. An important difference is that both 

perturbing fields and their consequences can be continuous and 

smooth are therefore endowed with more general and better 

defined properties than the all-or-none lesioning considered in 
topological robustness studies. 

Dynamics can also be introduced in a slightly different way. 

Complex networks have an irregular wiring that naturally lends 

itself to a statistical description. The equilibrium statistics of 
networks can be described by a partition function defined as a 

sum over all graphs with a fixed number of vertices and links, 

from which the potentials describing the system's 

thermodynamics [ 123]. Network properties can be used as order 
parameters, the behaviour of which can be monitored as the 

value of a variable controlling the system, e.g. some network 
variable or a cognitive task, is being manipulated. Critical 

phenomena such as structural phase transitions or the emergence 
of scale-free architectures can then be assessed [ 124]. 

Furthermore, one can study the interplay between the 
dynamics of nodes of the network and that of the network 

topology, which can itself be regarded as a dynamical system 
[ 125]. For instance, the temporal structure, e.g. burstiness and 

intermittency, influences the spreading of information in a 

network [ 126], and the relative time scale of topology, 
intermittency and of its exponential tail influence the relaxation 

time of the underlying process to its stationary distribution [ 127]. 
How observed dynamical properties of nodes (which can take 

any spatial and temporal scale) relate to the topological network 
properties at all scales, and how both translate into observed 

function (e.g. the proficiency level in the performance of a given 
task) constitute research avenues in their own right, which 

demand to be explored.  

(iii) Beyond isolated networks: interacting and competing 
networks 

Networks do not live in isolation. Instead they generally interact 

with other networks. It is then interesting to study previously 
separated networks that become interdependent as links uniting 

them are formed. While to some extent surrendering their 
independence as a result of interaction, each of these networks 

retains its own identity.  

Networks-of-networks [ 128] present a very rich and 

surprising phenomenology, often running counter the intuitions 

afforded by results obtained for isolated networks, for robustness 
[ 129], centrality [ 130] or synchronization [ 131]. For example, 

the evaluation of the importance of a node in a network has 

traditionally been quantified by means of the eigenvector 

centrality [ 76, 132- 134], a measure based on the spectral 
properties of the functional network. However, it has recently 

been shown that the existence of interacting sub-networks (or 

modules) and the way they interact strongly determine the 

distribution of centrality within the whole network [ 130]. This 
ultimately means that the reorganization within a sub-network 

affects the importance of nodes belonging to other sub-networks. 
Similarly, recent results show that the way network modules are 

interconnected also determines the ability of the whole network 
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to synchronize [ 135], a fact that influences the analysis of 

functional networks.  
Clearly, this reformulation has to be translated to brain 

functional networks, where it is crucial to understand how 
functional sub-networks subserving different cognitive functions 

interact and compete between each other, how their efficiency is 

altered or diminished as a result of interaction, and how 

processes such as synchronization are favoured under certain 
connectivity patterns. 

(b) Generalizing the use of network representations  

Functional brain activity is typically represented in a space 

isomorphic to the anatomical one, with nodes reflecting 
anatomically-related units, and links a connectivity metrics. 

However, network theory could be used to describe functional 
brain activity in rather different ways. This may in part be 

motivated by the fact that connectivity may not be the best 
descriptor of functional activity. Function may for instance 

emerge from a collective property independent of connectivity 
[ 89].  

Network representations of functional brain activity need not 
be isomorphic to the topology of the brain. Network theory may 

be used to describe the phase space. One way to achieve this is 
to conceive of brain activity as a random walk in a high-

dimensional space, and to use network theory to model the way 

the space is being visited by the dynamics. Brain dynamics has 

been shown to be weakly non-ergodic [ 136], a condition where 
the whole phase space is still accessible, but the time to visit 

certain regions may be much longer than typical experimental 

ones [ 137]. Because complex networks are strongly disordered 

systems, where fluctuations of structural characteristics may far 
exceed their mean values [ 124], the inhomogeneity of functional 

brain activity's phase space could be endowed with a network 

representation, with microscopic dynamics restricted to nodes 

and links [ 138]. The effects of cognitive tasks or brain damage 
may then be gauged in terms of changes in macroscopic 

topological and dynamical properties of the functional space.  

More generally, the space of functional brain activity may 
take arbitrarily complex forms, comprising information with 

heterogeneous dimensionalities and possibly incommensurable 

natures. Imagine for instance that available data would document 

different aspects of activity of a given subject. These data may 
come in the form of a time series (e.g. an EKG recording), but 

also of static scalar vectors (e.g. blood tests; or behavioural 

neuropsychological scores), or a matrix mapping different values 

in space (e.g. a CT scan imaging). While these tests account for 
a unitary underlying system, from a data analysis view-point, 

understanding this information set as a system may represent an 

challenging step. Overcoming this "perceptual" stumbling block 

would allow generalizing graph theory to a class of contexts that 
are usually not thought of as systems. In [ 139] it was shown how 

such systems can be represented as networks, called parenclitic 

networks, where nodes represent features, and links quantify 

deviations between two features and their typical relationship 
within a population. The information on the structure of this 

generalized functional space is ultimately embedded in the 
topology of the reconstructed network.  

Finally, networks may be thought of as a rich convenient 
space onto which time series and other data formats can be 

transformed, the mapping being bijective under rather general 
conditions [ 140]. Thus, network analysis can be used to 

distinguish different dynamic regimes in time series. Conversely, 

time series analysis can map the system's network statistics into 

dynamical properties.  

(c) A neuroscience-inspired graph theory 

While showing a certain degree of universality and 

independence [ 33], each system may possess idiosyncratic 
properties. On the other hand, complex network theory is a 

branch of applied physics: its tools and the quantities it measures 

are bound to somehow reflect some of the specific 
characteristics of the system it is meant to describe. Historically, 

complex network theory was developed to model systems in 

many ways qualitatively different from biological systems in 

general and from the brain in particular. 
Some fundamental elements of neural function, viz. 

inhibitory connectivity and feedback loops, have not yet been 
incorporated in the standard toolkit of functional network 

description. While generally difficult to capture with standard 
non-invasive neuroimaging techniques, and not mapped in 

straightforward way by negative links [ 9], inhibition should 
nonetheless be incorporated into network models of functional 

brain activity. A similar remark befits feedback loops. 
For complex network theory and neuroscience to meet each 

other's needs a few other adjustments seem desirable. For one 
thing, it would be useful to integrate the fact that the brain 

possesses qualitatively different nodes, be they neurons or entire 

brain regions. For other basic concepts, e.g. that of distance, 

neuroscience should promote alternative definitions, at least 
when considering a functional space isomorphic to the 

anatomical one (as opposed to a phase space representation). 

Likewise, community structure should be redefined in such a 

way as to account for the possibility for a given neural assembly 
to pertain to different communities, possibly at different spatial 

and temporal scales.  

Network properties should reflect the fact that the brain is a 

complex adaptive system. This requires a clear understanding of 
how functional networks respond to external stimuli at various 

spatial and temporal scales, or damaged brain networks adapt, 

after both permanent neurological damage and, at faster time 
scales, e.g. following epileptic seizures, and become active again 

[ 141]. Parameters measuring brain adaptiveness, including 

topology-dynamics interactions should be proposed. The 

evolvability of a network, i.e. the continued propensity to 
adaptive innovation [ 142], may be estimated by quantifying 

navigability within the network representation of the system's 

phase space, i.e. the system's ability to find any given region of 

its phase space starting from any other one [ 143].  
In addition, robustness should be defined in a functional, 

rather than structural way, accounting for the complex 

relationships between robustness, complexity, and evolvability. 

Nested time-scale dependent notions of robustness, defined for 
different levels of organisation, which allow reconciling the 

conflicting requirements for robustness and adaptability should 

be given a network translation [ 144].  

Finally, research should strive to bridge the gap between 
information encoded in the network, i.e. the information 

contained in the structure that is analysed, and that encoded by 
the network, i.e. the information actually treated or transferred 

by the brain [ 53]. The first step may consist in acknowledging 
that communication in brain networks can take place through 

many more routes than the shortest paths. To this end, several 
notions of communicability have been introduced [ 145]. These 

measures take into account all possible routes between two 
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nodes, assigning smaller weights to longer ones. More 

fundamentally, a representation is needed of the way the system 
stores and processes information. This requires going beyond the 

classical statistical mechanics approach, which derives 
macroscopic consequences of microscopic dynamics, but does 

not provide information on how the system stores and processes 

information, and adopting a computational mechanics one, 

producing causal models capable of generating the statistics of 
observed time series and therefore the underlying stochastic 

process [ 146].  

(d) Broadening objectives 

While complex network theory provides an impressively rich set 
of tools to characterize brain functional activity, neuroscientists' 

objectives go beyond the pure description level and would 
benefit from tools that are able to address some of their 

fundamental demands: classifying patients or experimental 
conditions, understanding the aetiology of observed connectivity 

patterns, modelling activity in as complete a way as possible, to 
eventually not only be able to forecast and control it, but also to 

steer it to desirable states. 

(i) From comparison to classification and categorization  
If network properties genuinely describe functional brain activity 

and its modulations under given conditions, e.g. cognitive tasks 
or neurological pathologies, it should be possible to use them to 

discriminate various activity regimes associated with these 
conditions.  

One principled way to overcome this limitation involves 
assessing what network properties optimize a given task, for 

instance classifying experimental samples corresponding to 

different experimental conditions. The amount of information 

codified in each network can be approximated by the success 

score achieved in a classification task, where a model is trained 
to identify subjects belonging to the two considered classes [ 94]. 

Not only does this strategy allow identifying the combinations of 
properties obtaining higher classification scores, but it also 

affords a quantitative assessment of the degree to which these 
properties actually discriminate between different experimental 

conditions. This strategy is by no means confined to 
classification tasks; for instance, it could conceivably be applied 

to modelling and predicting certain types of behaviour. 
Another strategy may consist in trying to define networks 

along some metrics that would allow calculating distances 
between them. For example, distances between pairs of 

networks, and ultimately network taxonomies, can be developed 

using the response function of community structure to changes 

with scale [ 147]. On the other hand, the definition of appropriate 
morphospaces, i.e. phenotype spaces with defining quantitative 

traits as axes [e.g.  148] should help refining the properties that 

are selectively modified by the experimental conditions under 

study and would allow comparing along common traits 
configurations associated with qualitatively different functional 

properties. 

Statistical mechanics techniques can be applied to brain 

networks to quantify the statistical significance of empirically 
observed properties [ 95]. For instance, an observed network can 

be thought of as a specific instance either of a particular network 

evolution, or of an ensemble of networks, subject to some (e.g. 

functional) constraint [ 149]. Networks can be characterized by 
considering a series of randomized network models, i.e. null 

models of real networks conserving some of their, e.g. degree 

distribution, or community structure. Network ensembles with a 

given sequence of values of a given property fall into the class of 
hidden variable models, where the hidden variable is represented 

by the elasticity of the topology to changes in the properties that 
are being optimized. The role of each structural feature in a 

given network can be measured by the network ensemble's 

entropy, i.e. the normalized logarithm of the total number of 

networks belonging to the ensemble. This may allow building 
pseudo-metrics and as a consequence measuring distances 

between different experimental conditions. 

 Network topologies [ 33] and, to some extent, network 

dynamics [ 150] present universal properties. Observed 
properties can be assigned to universality classes using the 

renormalization group theory [ 120]. Universality classes are the 

basins of attraction of fixed points of renormalization flows, the 

points within which have the same properties on large scales. 
Furthermore, the surface comprising the models flowing into the 

same fixed point separates the space into different phases. 

Because the functional space is not always easy to navigate, 

universality classes and renormalization flows are important 
tools for partitioning the phase space, thus lending an important 

hand in comparing and classifying observed networks. 

(ii) Modelling and forecasting  
Arguably the first step into understanding the mechanistic 

properties of a given observed phenomenon is defining its 

aetiology. Although the notion that the topology of biological 

networks can provide insights into its functioning principles is 

debated [ 151, 152], different types of networks are likely to be 
generated by different mechanisms, and their topology may give 

clues as to the mechanisms that created them. Network topology 

may contain information on the design principles of biological 

networks and therefore provide some clues into the dynamical 
evolutionary processes that generated these networks [ 153].  

One may want to understand the selection forces shaping 

functional activity at evolutionary time scales, or the rules 

generating a given observed steady-state or a time-varying 
functional pattern at far shorter time scales [ 146]. The 

fundamental forces that shaped human brain network topology at 
evolutionary time scales remain poorly understood, and only few 

computational studies explored the role of factors including 
energetic costs, communication efficiency, and dynamic 

complexity [ 4]. A similar dearth plagues our current knowledge 
of functional activity at faster time scales [ 42, 43, 154, 155].  

Characterizing stylized facts, i.e. structural characteristics 
that would hold for a diverse collection of instruments, 

experimental conditions, and time scales may ultimately enable 
modelling observed time series for a range of scales, and for 

instance predicting the next steps for a given sequence of data. 

This in turn may supplement existing comparative statics 

approaches to the appraisal of the functional potential of brain 
systems for future learning [ 22], prior to or following brain 

damage.  

(iii) Controlling and targeting of functional brain properties  
So far, we have seen that the way the brain responds to an 

external field can be endowed with a network representation, for 

instance in terms of structural and dynamical vulnerability. 
Various recently proposed methods may help taking a step 

further, i.e. understanding how to perturb the system in desirable 
ways, typically by acting on a limited number of nodes.  

It is for instance possible to control a functional network 
[ 156], i.e. to stabilize the system within a dynamic regime it 
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would not naturally reach, or to target a desired dynamical state 

[ 157], i.e. to steer the system towards a goal dynamics which 
would naturally be achieved starting from a different initial 

condition. The former may for example be used to keep network 
dynamics away from a pathological range and to stabilize it 

within a healthy one.  

This may represent a qualitative advance in the treatment of 

various pathologies for which therapeutic strategies do not fully 
take into account the network structure used to represent them. 

One notable example is represented by the standard surgical 

treatment of pharmacologically intractable epilepsy. The 

standard surgical approach still consists in resecting or 
disconnecting epileptic foci. The fact that a significant minority 

of patients continue to experience seizures after surgery, 

particularly in the presence of multiple epileptic foci, suggests 

the inadequacy of this surgical strategy. While a network 
characterization of epileptogenesis has recently emerged [ 158], a 

surgical strategy based on such an understanding may help 

overcoming the current shortcomings.  

Importantly, the aetiology of a given pathology need not be 
network-like for network control to possibly be effective. For 

instance, while Parkinson's disease's causal factors originate in a 
well-identified and circumscribed brain region, its consequences 

affect the functioning of various circuits, and its surgical control 
via implanted stimulators could target a global network 

dynamics rather than a unique well-localized brain region.  
Targeting techniques could also find interesting applications 

in cognitive neuroscience. For example, as network-based 
descriptions of various learning processes get more accurate [ 22], 

it may become possible to shorten the learning path by targeting 

desired network dynamics. Transcranial magnetic stimulation, 
biofeedback, or pharmacological manipulation could represent 

experimentally viable non-invasive ways to drive brain 

dynamics or, at least, to study the ability/resistance of the brain 

to be driven.  
Finally, considering the adaptive self-organizing nature of 

brain activity, one riveting research avenue would imply 
engineering adaptive rules such that a given topology self-

organizes into a desired state, with desirable dynamical and 

functional properties. 

5. Conclusions 

Will complex network theory ever bring about a revolution in 

the field of neuroscience?  
We have tried to argue that there are strong reasons for that 

to occur, for not only has complex network theory got the 
potential for vastly increasing the ability to describe the brain as 

a complex biophysical system and to understand its basic 
organization principles, with respect to previous methods, but it 

may also provide appropriate tools for its targeted manipulation, 
with obvious applications in the clinical and cognitive domains.  

Exploiting complex network theory's full potential will 

suppose a few conceptual quantum leaps. The statistical 

mechanics assumptions representing the backbone of complex 
network theory and their conceptual and methodological 

implications will have to be interiorized. At the same time, some 

of its intrinsic limits will need to be acknowledged and 

overcome. Neuroscience will have to both resort to hitherto 
unexploited existing network tools, particularly accounting for 

dynamical aspects of brain activity, and to stimulate fresh 

theoretical effort, so as to produce network constructs better 

catering for its specific needs, instead of importing wholesale 
and readymade concepts originally meant to describe systems in 

many ways qualitatively different from the brain.  
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