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Abstract

Background: The NCI-60 is a panel of 60 diverse human cancer cell lines used by the U.S. National Cancer Institute to screen
compounds for anticancer activity. In the current study, gene expression levels from five platforms were integrated to yield
a single composite transcriptome profile. The comprehensive and reliable nature of that dataset allows us to study gene co-
expression across cancer cell lines.

Methodology/Principal Findings: Hierarchical clustering revealed numerous clusters of genes in which the genes co-vary
across the NCI-60. To determine functional categorization associated with each cluster, we used the Gene Ontology (GO)
Consortium database and the GoMiner tool. GO maps genes to hierarchically-organized biological process categories.
GoMiner can leverage GO to perform ontological analyses of gene expression studies, generating a list of significant
functional categories.

Conclusions/Significance: GoMiner analysis revealed many clusters of coregulated genes that are associated with
functional groupings of GO biological process categories. Notably, those categories arising from coherent co-expression
groupings reflect cancer-related themes such as adhesion, cell migration, RNA splicing, immune response and signal
transduction. Thus, these clusters demonstrate transcriptional coregulation of functionally-related genes.

Citation: Zeeberg BR, Reinhold W, Snajder R, Thallinger GG, Weinstein JN, et al. (2012) Functional Categories Associated with Clusters of Genes That Are Co-
Expressed across the NCI-60 Cancer Cell Lines. PLoS ONE 7(1): e30317. doi:10.1371/journal.pone.0030317

Editor: Ilya Ulasov, University of Chicago, United States of America

Received June 17, 2011; Accepted December 15, 2011; Published January 24, 2012

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for
any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Funding: This research was supported by the Intramural Research Program of the National Institutes of Health, National Cancer Institute, Center for Cancer
Research, Research and the Austrian Ministry of Science and Research, GEN-AU project Bioinformatics Integration Network. The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: zeebergb@mail.nih.gov

¤ Current address: Departments of Bioinformatics and Computational Biology and Systems Biology, M.D. Anderson Cancer Center, Houston, Texas, United States
of America

Introduction

The NCI-60 is a panel of 60 human cancer cell lines that has

been used by the Developmental Therapeutics Program (DTP) of

the U.S. National Cancer Institute to screen compounds plus

natural products since 1990 [1,2]. The NCI-60 panel includes cell

lines from colorectal (CO), renal (RE), ovarian (OV), prostate

(PR), lung (LC), breast (BR), and central nervous system (CNS)

cancer origin, as well as leukemias (LE) and melanomas (ME). We

and our many collaborators around the world have profiled the

NCI-60 more comprehensively at the DNA, RNA, protein,

mutation, functional, and pharmacological levels than any other

set of cells in existence [1,2,3,4,5,6]. The NCI-60 data have been

widely used in cancer research and bioinformatics, but the

multiple datasets may be most informative for the recognition of

complex ‘biosignatures.’ Such biosignatures may in turn lead to

increased understanding of cell phenotypes and pathway relation-

ships within the cell.

We previously developed GoMiner [7] and High-Throughput

GoMiner [8], applications that organize lists of ‘‘interesting’’ genes

(for example, under- and over-expressed genes from a microarray

experiment) for biological interpretation in the context of the Gene

Ontology [9,10]. GoMiner and related tools typically generate a

list of significant functional categories. In addition to lists and

tables, High-Throughput GoMiner can provide two kinds of

clustered image maps (CIMs) as graphical output. Integrative

categories versus experiments CIMs capture the relationships between

categories and multiple experiments; individual categories versus genes

CIMs capture the relationships between categories and genes.

Both types of CIMs are used to present the results in the present

work.

In the past decade, systems biology has become increasingly

prominent as the numbers of analyzable genes and biological

parameters have increased, and is beginning to show their

functional relationships. A standard approach for studying systems

biology with genomic data is to cluster genes whose expression
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profiles co-vary either over a time course or across multiple

samples. For example, Garraway et al. [11] performed an

integrated supervised analysis of SNP array and gene expression

data to identify MITF as a lineage survival oncogene amplified in

malignant melanoma. A number of additional gene expression

microarray demonstrate the potential of gene co-expression

studies. For example, Prieto et al. [12] used the Affymetrix

HGU133A platform to identify co-expression networks in a

diversity of human tissue samples. Their network revealed a map

of coexpression clusters organized in well-defined functional

constellations. Two major regions in this network corresponded

to genes involved in nuclear and mitochondrial metabolism. That

study is not directly relevant to cancer, though, since no cancer

tissues were included in the study. Choi et al. [13] did study cancer

tissues, but had unfortunately culled published data from what

would now be considered to be outdated (Affymetrix U95A) or

unreliable (cDNA) platforms. Also, the data obtained on different

platforms needed to be reconciled, and the date of the studies

preceded the availability of reliable resources like AffyProbeMiner

[14] and SpliceCenter [15]. Nevertheless, Choi was able to detect

functional differences between normal growth and cancer in terms

of gene coexpression changes in broad areas of physiology: energy

metabolism, the cell cycle, immune activation and collagen

production.

Other studies have been focused on tissue-specific genes. Cho

et al. [16] revealed many pathways related to the pathophysiology

of lung cancer: Cytokine Network and TNF/Stress Related

Signaling pathway pair; thrombin signaling and protease-activated

receptors pathway; Cell Cycle: G1/S Check Point and Inhibition

of Cellular Proliferation by Gleevec. Likewise, the studies of Lai et

al. [17] were restricted to prostate cancer and developed a

statistical method for identifying differential gene–gene co-

expression patterns in different cell states. For a gene of interest,

other genes are selected that have differential gene–gene co-

expression patterns with this gene in different cell states. By using

the tumor suppressor genes TP53, PTEN and RB1 as the gene of

interest, selected genes included hepsin, GSTP1 and AMACR.

The present study was undertaken to test the hypothesis that

genes from similar functional categories tend to exhibit compa-

rable patterns of expression across cell lines from a broad tissue of

origin spectrum (i.e, the NCI-60 cell lines). This hypothesis was

generated in the course of our recent study showing that the

nuclear-encoded mitochondrial genes are coregulated among each

other and with the MYC gene across the NCI-60 [18,19]. The

present analysis was performed with the enhanced expression data

in CellMiner (http://discover.nci.nih.gov/cellminer) [20,21].

Those data are of superior quality, since they are obtained by

compilation of five microarray platforms (see details in Method

section). They also address the generality of the coregulation

processes since the NCI-60 comprises a particularly rich set of

samples from 9 tissue types with high reproducibility.

Results and Discussion

Global overview of the strategy and process flow
A flow diagram (Figure 1) provides a global overview of the

process flow. We first performed standard hierarchical clustering

on the gene expression profiles across the NCI-60 cell lines. We

then cut the resulting cluster tree to achieve 4 levels of cuts,

requesting (from lowest to highest resolution) 20, 40, 80, or 160

gene clusters (resulting in a total of 20+40+80+160 = 300 gene

clusters). This scheme generated families of clusters such that a

cluster of the 20-cut was a parent of a child cluster in the 40-cut,

and so on. A cluster of the 20-cut may have one or more such

children, but each child has only one parent. Thus, each cluster

family could be uniquely designated by the cluster number of its

160-cut. The gene sets for each of the 300 clusters were submitted

to High-Throughput GoMiner (HTGM) to determine the

significant Gene Ontology Consortium (GO) categories associated

with each gene set. The GO categories that were present across all

4 cuts of a cluster family were deemed to be robust categories

associated with that family. The significance of robustness is that a

robust category is independent of the particular degree of

resolution used for cutting the gene cluster tree. Thus, the robust

categories are more focused and reliable than non-robust

categories that are significant for some particular cut, but not for

all cuts.

Gene clustering based on co-expression
Using this strategy and processing flow, we set out to examine

the whole dataset for the 16,821 genes in CellMiner with high

quality expression data across the multiple mRNA expression

platforms in the NCI-60 cell lines. Hierarchical clustering of the

gene expression profiles was explored at 4 levels of resolution by

requesting cuts containing 20-, 40-, 80-, or 160-clusters.

GO categories associated with each co-expression cluster
We ran High-Throughput GoMiner (HTGM) on the gene sets

in all 300 clusters, and asked whether there would be any GO

categories present across all 4 levels of cuts of a cluster family. That

result was best visualized by a novel type of ‘‘categories versus

experiments’’ CIM (Figures 2A, S1A,B). Only the rows were

clustered, since the columns had already been pre-arranged in a

special sort order: starting with one of the clusters from the 20-cut,

we linked that cluster with the cluster(s) of the 40-cut that are the

‘‘children’’ of the 20-cut. That process was applied recursively to

all 4 cuts. To facilitate visualization of the cuts, we took advantage

of a new feature of the Genesis clustering program to assign a

distinct color scale to each cut. We outlined the same groups of

categories that were statistically significant and that had mutually-

related biological functionality within the NCI-60 clusters (white

rectangles in Figures 2A and S1B). The cluster family numbers

and functional designations appear adjacent to each encircled

group. At the right of Figure 2A is a scale indicator showing the

height occupied by 10 rows of categories. The coordinates of

clusters in Figure 2 are given in Table 1, and the robust categories

depicted in Figure 2A are given in Table S1.

Figure 2A clearly shows well-defined cluster families that arise

from the convergence of coherent gene expression and coherent

biological processes with an overriding GO category. That

convergence is especially clear for several cluster families (the

cluster number for the 160-cut component of the family is given in

parentheses): cell migration (52), signal transduction (11), repro-

duction (51), cell adhesion (132), collagen (72), immune system

(68), RNA processing (137), RNA splicing (69) and DNA

replication (154). Thus, each cluster was defined by a specific

gene expression profile and a specific and unifying GO

categorization.

We were gratified to find that we could identify 64 robust

categories (Table S1), comprising 15 generalized GO functional-

ities, all of which (with the exception of eye pigmentation) are

closely related to cancer. To better illustrate the operational

definition and concept of robustness, we have constructed a

blowup (Figure 2B) of the cluster 52 family grouping outlined in

yellow in Figure 2A. The cluster 52 family grouping consists of the

descendants of cluster 10 of the 20-cut, as tabulated in the panel

‘‘Determine which clusters are parents of other clusters’’ in the

flow diagram (Figure 1). That panel shows that the path to cluster

Gene Co-Expression across the NCI-60 Cancer Cells
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52 of the 160-cut includes cluster 30 of the 40-cut and cluster 42 of

the 80-cut. In Figure 2B, note that 4 different color scales

differentiate the 4 cuts (e.g., green, blue, lavender, and red

designate 20-, 40-, 80-, and 160-cuts, respectively). For example,

HTGM analysis showed that GO:0051674_localization_of_cell

was statistically significant in clusters 10, 30, 42, and 52 of the 20-,

40-, 80-, and 160-cuts, respectively. Thus, GO:0051674_localiza-

tion_of_cell was designated as being a robust category. In contrast,

GO:0048468_cell_development was significant only in cluster 52

of the 160-cut, and was thus not designated as robust. Note that

the panel in the flow diagram shows 7 family groupings derived

from cluster 10 of the 20-cut. The present figure shows that none

of the family groupings other than 10/30/42/52 contains a robust

category, although some contain significant categories (e.g., 10/11/

36/43 contains GO:0051674_localization_of_cell as a significant

but not robust category).

The robust categories for the cluster family corresponding to

cluster 52 of the 160-cut are listed in the bottom panel of the flow

diagram in Figure 1. Those robust categories focus on cell

migration, whereas the (robust plus non-robust) significant

categories are more diverse, generally reflecting neuron develop-

ment, immune response, and epithelial-mesenchymal transition

(EMT) in addition to cell migration (see ‘‘Categories versus genes’’

CIMs below).

Figure 1. Flow diagram illustrating the process of determining robust functional categories of coregulated genes across the NCI-60.
doi:10.1371/journal.pone.0030317.g001

Gene Co-Expression across the NCI-60 Cancer Cells
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Public database to allow exploration of the results in
Figure 2A

To facilitate future research using the clustering and functional

categorization results reported here, we provide a public database.

Several pre-constructed MySQL queries can be issued to retrieve

information from a database containing the results in Figure 2A

and its expanded version Figure S1B. A typical query might

involve retrieving the list of genes within a specified cluster that

map to a specified GO category. A graphical user interface (GUI)

for issuing the desired query is provided at URL http://discover.

Figure 2. GO categories versus ordered hierarchical clusters CIM. (A) Compact version. The full version is available as Figures S1A, B. Only
categories with FDR,0.10 for at least one cut are represented. The coordinates of the clusters (e.g., R1, C1) are shown in Table 1. The HTGM FDR for
the GO categories for the 20-, 40-, 80-, and 160-cuts are given in green, blue, pink, and red, respectively. A bright shade corresponds to high
correlation (i.e. a low FDR), and a darker shade corresponds to an FDR close to the threshold of 0.10. The cluster numbers for the 160-cuts are shown
at the right of each encircled grouping. (B) Blowup of the cluster 52 family grouping derived from Figure 2A.
doi:10.1371/journal.pone.0030317.g002
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nci.nih.gov/NCI60/menu.table.html. The URL contains a con-

venient table of clickable queries and examples of the correspond-

ing input and output parameters (Figure 3). A PowerPoint tutorial

for using the database is available from Supplementary Materials

(Powerpoint S1).

‘‘Categories versus genes’’ CIMs
To illustrate one type of biological information that can be

gleaned from the clustering strategy that we used, we delineate the

relationship between genes and functional categories for cluster 52

of the 160-cut, by constructing a ‘‘categories versus genes’’ CIM for

the significant categories (Figure 4A) and for the robust categories

(Figure 4B). Further details are presented in the Methods.

The significant categories CIM is a superset of the robust

categories CIM with respect to both genes and categories. As

mentioned above, the robust categories focus strongly on cell

migration, whereas the significant categories of cluster 52 of the

160-cut are more diverse, generally reflecting neuron develop-

ment, immune response, and EMT in addition to cell migration.

The statistics for the two CIMs are summarized in Step numbers 4

and 5 in Table 2.

For the robust categories CIM (Figure 4B), in some instances

there is substantial overlap between the genes in categories, such as

occurs for the bottom 7 categories (the ‘‘cell migration’’ group) in

the CIM. In this situation, we interpret those categories as being

largely redundant with respect to one another. A more informative

situation occurs when there is not complete redundancy, but

rather when there is only partial overlap between (groups of)

categories, such as the above-mentioned cell migration group, and

the top four categories in the CIM. Such partial overlap may

Table 1. Coordinates of clusters in Figures 2A and S1A, B.

Generalized functionality Cluster number within the 160-cut Row Column

immune system 68 7 4

CNS 132 6 1

adhesion 132 6 1

collagen 72 6 4

RNA processing 137 5 2

RNA splicing 69 5 4

DNA replication 154 4 4

signal transduction 11 3 3

cell migration 52 2 3

reproduction 81 1 4

Rows and columns were divided so as to result in a single cluster family per area, when possible.
doi:10.1371/journal.pone.0030317.t001

Figure 3. Screenshot of the front end of the database consisting of a convenient table of clickable queries and examples of the
corresponding input and output parameters.
doi:10.1371/journal.pone.0030317.g003
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reveal ‘‘cross-talk’’ among various biological functionalities. The

category relationships may reflect the participation of cell

migration components, such as cytoskeleton and integrins.

For the significant categories (Figure 4A), TGFB2 mediates

cross-talk between the neuron differentiation and the cell

migration groups of categories. More striking is the separation of

the bulk of the cell migration-related (i.e., TGFB1I1, MYH9,

VCAM, ADAM9, DLC1, FGF2, CLIC4, NEXN, and VCL) and

neuron-related genes (i.e., IL6, INHBA, KCNMA1, DBN1, FEZ2,

ROBO3, and NOG). Thus, for the most part, different sets of

genes correlate with those 2 functionalities, and the reason for

their appearing in the same cluster family 52 of the 160-cut (by

virtue of highly correlated gene expression profiles) indicates an

intimate relationship between cell migration and neuron develop-

ment that requires future investigation.

Conclusions
The comprehensive nature of the NCI-60 gene expression

dataset, together with the broad range of tissue of origin

represented, allowed us to gain insight into the systems biology

Figure 4. Categories versus genes CIMs for the significant categories in cluster 52 of the 160-cut and the 48 genes of Step 4 in
Table 2 (A), and for the robust categories of the cluster family containing cluster 52 of the 160-cut and the 26 genes of Step 5 in
Table 2 (B).
doi:10.1371/journal.pone.0030317.g004
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of cancer cells by identifying multiple clusters of genes that co-vary

across the 60 cell lines.

To further characterize the genes within each cluster, we used

the Gene Ontology (GO) Consortium database in conjunction

with the GoMiner tool to determined functional associations.

GoMiner analysis revealed that the genes in many clusters are

associated with coherent GO biological process categories, such as

cell migration, signal transduction, reproduction, cell adhesion,

collagen, immune system, RNA processing, RNA splicing, and

DNA replication.

The novel features of our approach are (1) co-expression

analysis of the high-quality gene expression profiles afforded by the

recently-available composite transcriptome profile based on the

integrated gene expression levels from five platforms, (2) the use of

GO categorization to find robust categories that do not depend on

choosing a particular level of resolution for cutting the cluster

dendrogram, and (3) using the genes in selected clusters to

generate future research directions, such as the cell migration

genes in cluster 52 of the 160-cut (Kohn et al., manuscript in

preparation). To our knowledge, none of these features have been

studied/implemented previously.

One type of new insight is the elucidation of novel gene

connections based on the dual criteria of co-expression and co-

ordinated functional categorization. This connection can be

visualized by examining the genes in those GO categories having

partial overlap using the gene versus categories type of HTGM

CIM (see for example TGFB2 cross-talk between the neuron

differentiation and the cell migration categories in Figure 4A).

A second type of new insight is the elucidation of the most

highly co-regulated pathways, with confirmation by related

functional categorization of the genes in the pathway. For

example, many of the genes in cluster 52 of the 160-cut are

involved in a highly coordinated cell migration pathway (Kohn

et al., manuscript in preparation).

Materials and Methods

CellMiner
NCI-60 transcript expression. Gene transcript expression

was determined using probes from five platforms. These include,

from Affymetrix (Affymetrix Inc., Sunnyvale, CA), the ,60,000

feature Human Genome U95 Set (HG-U95) [5], the ,44,000

feature Human Genome U133 array (HG-U133) [5], the ,47,000

feature Human Genome U133 Plus 2.0 Arrays (HG-U133 Plus

2.0); and the ,5,500,000 feature GeneChip Human Exon 1.0 ST

array (GH Exon 1.0 ST) [19]. Also included from Agilent (Agilent

Technologies, Inc., Santa Clara, CA) was the ,41,000 feature

Whole Human Genome Oligo Microarray [3]. All Affymetrix

platforms were normalized by Guanine Cytosine Robust Multi-

array Analysis, or GCRMA [22]. Agilent mRNA probes were

normalized based on their detection in at least 10% of the cell

lines, using GeneSpring GX by i) setting any gProcessedSignal

value less than 5 to 5, ii) transforming the gProcessedSignal or

gTotalGeneSignal to Logbase 2, and iii) normalizing per array to

the 75th percentile [3]. Our relational database, CellMiner, at

,http://discover.nci.nih.gov., can be used to access data from

the HG-U95, HG-U133, HG-U133 Plus 2.0 and Agilent Whole

Human Genome Oligo Microarrays.

Probes (Agilent) or probe sets (Affymetrix) were then passed

through the following quality control criteria prior to their use in

determining relative gene expression levels. First, average probe

set intensity ranges (meant to include Agilent probes in the

following text) were determined. Probe sets with an intensity

ranges,or equal to 1.2 log2 were dropped. The probe sets number

for a gene that passed this criteria was determined, and 25% of

that number calculated. Pearson’s correlations were determined

for all possible combinations of the remaining probe sets (for each

gene). Each probe set’s average correlation was determined as

compared to all others (for a single gene). Next, those probe sets

with average correlations of less than 0.30 were removed.

Following this step, probe sets with the lowest average correlations

,0.60 were dropped. The remaining probe set/probe set

correlations combinations were then recalculated. The lowest

average correlation probe set continued to be dropped, and the

average recalculated until either all average correlations were$to

0.60, or until we reached the 25% level of the original probe set

number (calculated above).

These procedures yielded accurate transcript intensity values

that were highly reproducible and internally consistent. Addition-

ally contributing to the high quality of the data, we think, were the

following: (1) Cell growth, harvesting and quality control were

done primarily by one person (W. Reinhold). (2) Quality control of

individual probe sets were based on a minimum intensity range of

,1.2 log2 and pattern correlation of .0.60. This provides

protection against sporadically bad probe sets. (3) Transformation

of the data into z scores [23] by subtraction of the 60 cell line

means and division by the standard deviations provided protection

against single-platform anomalies, and allowed comparison of all

probe set data. Z scores averages were determined for all available

(18,412) genes for each cell line. Details of the z-score computation

are provided in the Supplemetary Materials (Document S1). These

calculations were done in Java.

Each step in the process of extracting genes from CellMiner

[21], and selecting those that match both HUGO Gene

Nomenclature Committee symbols (HGNC) [24] symbol as well

Table 2. Number of genes and categories surviving each processing step for cluster 52 of the 160-cut.

Step
number Process

Corresponding step
in Figure 1

Number
of genes

Fraction of
CellMiner

Number of
GO categories

1 Total set of human genes represented in CellMiner NA 16,821 1.00000 NA

2 Genes having HGNC symbol and mapping
to the Biological Process branch of GO

‘‘Standard hierarchical clustering…’’ 6,477 0.38505 NA

3 Genes in cluster 52 of the 160-cut ‘‘High resolution (160-cut)…’’ 83 0.00493 NA

4 Genes in cluster 52 of the 160-cut mapping
to a (statistically) significant GO category

‘‘HTGM provides lists…’’ 48 0.00285 58

5 Genes in cluster 52 of the 160-cut mapping
to a robust GO category

‘‘Significant categories that
are present in all 4 cuts…’’

26 0.00154 11

doi:10.1371/journal.pone.0030317.t002
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as a GO database annotation, results in a ‘‘loss’’ of genes. The

degree of loss in each step is summarized in Table S2. For

instance, 29,017 and 16,821 genes are represented in HGNC and

the five-platform transcript expression analysis, respectively. The

subset of genes represented in HGNC is 11,767/16,821 = 69.9%.

That figure is higher than the overall percentage of approximately

55% of all human genes that are represented by HGNC (Zeeberg

et al., unpublished). The subset of HGNC genes represented in the

Biological Process ontology of GO (under the conditions specified

in Table S2) comprises a somewhat disappointing 7,654/

29,017 = 26.4%. The overall yield of five-platform genes that

have both HGNC and GO Biological Process annotations is

6,477/11,767 = 55.0%.

Downloading and pre-processing genes from CellMiner
A special request was made to the system administrator for the

complete set of gene expression profiles. That download would

have been too large to perform through the standard web

interface. The values for each gene were based on a consensus of

five microarray platforms, and are expressed as Z-scores, as

detailed in the Supplementary Materials and as described

previously [19].

The data were pre-processed by pre-selecting only those genes

that have both an HGNC symbol and annotation in the GO

Biological Process ontology. Each gene profile vector was scaled to

zero mean and unit variance.

Gene clustering based on co-expression
An R language (http://www.R-project.org) [25] script was

developed to perform hierarchical clustering of the gene

expression profiles across the NCI-60. Since genes may function

positively or negatively within a network, we wanted genes that

were highly correlated and highly anti-correlated to be assigned to

the same cluster, so we specified a distance metric of 1-

abs(cor(t(mat)))/2. We also specified complete linkage clustering.

We used the R function cutree() to cut the resulting hierarchical

cluster tree into 20, 40, 80, and 160 clusters. Those clusters had

two important properties:

N The total set of genes in the cluster tree was divided

(completely and without duplication) among the clusters. That

is, each gene in the original set appeared in exactly one cluster.

N The clusters of the 40-cut were nested within the clusters of the

20-cut. That is, each cluster of the 40-cut was a subset of a

single cluster of the 20-cut. That pattern was maintained

recursively through all levels of cuts.

The gross distribution of genes for all 300 (i.e., 20+40+80+160)

clusters is shown in Table S3. Each cluster was subsequently

analyzed by GoMiner (see next section). We performed multiple

cuts because we wanted to prioritize those GO categories that

were independent of the particular cutting pattern (see the

Methods section ‘‘Scoring GO categories’’).

The relationship between the clusters in successive cuts (e.g., 20

and 40, 40 and 80, or 80 and 160) was delineated by a table

generated by the sequence of R calls exemplified for 20 and 40 as:

g40 20v{cutree hc,k~c 40,20ð Þð Þ
tblv{table g40 20 ,004000½ �,g40 20 ,002000½ �ð Þ

The resulting table showed which cluster(s) in the 40-cut arose

from each cluster in the 20-cut. Cluster families could be defined by

starting with one of the clusters in the 20-cut, and using the 20-

and 40-cut table to determine all of the 40-cut clusters that were

derived from that 20-cut cluster. That process was repeated in turn

for those 40-cut clusters by using the 40- and 80-cut table, and so

forth. The set of the selected 20-cut cluster plus a single derived

cluster from each of the 40-, 80-, and 160-cuts constituted a cluster

family.

High-Throughput GoMiner (HTGM)
GoMiner [7] is a tool for biological interpretation of ‘omic’ data,

including data from gene expression microarrays and state of the

art sequencing technologies. It leverages the Gene Ontology (GO)

to identify ‘‘biological processes,’’ ‘‘molecular functions,’’ and

‘‘cellular components’’ represented in a list of genes. High-

Throughput GoMiner (HTGM) [8], which was used for many of

the analyses reported here, is an enhancement of GoMiner that

efficiently performs the computationally-challenging task of

automated batch processing of an arbitrary number of such gene

lists.

A GO category is enriched if the number of changed genes that

HTGM assigned to it is statistically significantly greater than the

number expected by chance. A category is considered significant if

its Fisher’s Exact p-value and its false discovery rate (FDR) are

both less than or equal to a user-selected threshold (typically 0.10;

on rare occasion, the p-value can exceed the threshold although

the FDR is below the threshold, and we usually want to reject such

instances). See [7,8] for detailed discussions of GoMiner and

HTGM, including calculations of statistical significance.

We ran all clusters derived from the cuts for 20-, 40-, 80-, and

160-cut clusters, a total of 300 input files, in a single HTGM run.

The parameters used in all of the HTGM analyses are listed in

Table S4.

The average genes/cluster at the 160-cut level was approxi-

mately 40, which we would usually consider to be too few genes to

submit to GoMiner. However, in this instance, as shown below, we

do find many significant and functionally consistent GO clusters.

Thus, the prior hierarchical clustering of the genes based on

expression appears to have pre-focused the genes in a functionally

coherent manner so as to compensate for the low statistical power

of a small set.

The gross distribution of GO categories that results from

running GoMiner on the 300 clusters comprising the 20-, 40-, 80-,

and 160-cuts is shown in Table S5. Thus, similarity of gene

expression profiles sometimes, but not always, implies coherence of

biological function. The fraction of clusters with at least one

significant category decreased modestly from 0.55 (for the 20-cut)

to 0.41 (for the 160-cut).

Sorting clusters within cluster families
Cluster families are defined in the Methods section ‘‘Gene

profile-based hierarchical clustering.’’ We devised an algorithm for

sorting the clusters within a cluster family for eventual display as a

CIM image. The algorithm uses tables generated by R code (see

‘‘Gene profile-based hierarchical clustering’’) to provide the proper

global ordering of clusters derived from one another in different

cuts for 20-, 40-, 80-, and 160-cut clusters. Briefly, a cluster family

consists of a given 20-cut, and the 40-cut(s) derived from that 20-

cut, and so forth.

Scoring GO categories
Each GO category that was significant in at least one

hierarchical cluster was scored according to its presence in clusters

of each of the 20-cut families. The score was represented as a bit

string exemplified, for example, as 1101, which indicates that the

category was present in a cluster derived from the 160-, 80-, and

20-cut, but not in any cluster from the 40-cut. The score of the

Gene Co-Expression across the NCI-60 Cancer Cells

PLoS ONE | www.plosone.org 8 January 2012 | Volume 7 | Issue 1 | e30317



category was taken as the maximal score over all 20-cut families

[There are, by definition, twenty 20-cut families. A given category

will have a score in each of the 20-cut families (i.e., twenty scores).

Most of those scores will be 0000]. The distribution of scores and a

listing of the categories according to score are given in Tables S6

and S7, respectively. The categories with a score of 1111 were

prioritized and designated as ‘‘robust’’ categories, as they were not

dependent on the particular type of cut that was used.

Clustered image maps
Clustered image maps (CIMs), first introduced for omic studies

in the mid-1990’s by members of our group [6], were produced

here with the Genesis program [26]. We selected the Euclidean

distance metric and average linkage for hierarchal clustering. To

facilitate visualization, we implemented a recently-added optional

feature of GoMiner to remove very large generic categories from

all CIMs.
Integrative ‘‘categories versus experiments’’ CIM. A

new feature of Genesis allows each column of the CIM to be

assigned one of six available color scales. Columns that are

conceptually related can all be assigned the same color scale, and

thus easily recognized visually after clustering. We used that

feature to identify columns that arose from the same instance of

cutting the hierarchical cluster tree. For instance, as described in

more detail in the Methods section ‘‘hierarchical clustering,’’ a

hierarchical cluster tree was cut into 20, 40, 80, and 160 clusters.

All clusters of the 20-cut were designated with green color scale,

and the others were designated as dark blue, lavender, and red,

respectively.
Individual ‘‘categories versus genes’’ CIM. To better

delineate the relationship between genes and functional

categorization, we constructed a ‘‘categories versus genes’’ CIM

for those categories having a score of 1111. The genes in the CIM

are taken from clusters that simultaneously met both of the

following two criteria:

N the clusters belong to the cluster family in which the category

achieves the score of 1111

N the category is a member of the cluster

Those restrictions take into account the following types of

situations:

N a category might be found in clusters belonging to two

different cluster families, but we do not want to contaminate

the CIM with genes that are associated with the category in the

suboptimal cluster family

N within the optimal cluster family, there are generally many

clusters that do not contain the category of interest, and we do

not want to contaminate the CIM with genes that are

associated with the clusters that do not include the category

of interest, even though the cluster is a member of the optimal

cluster family

Supporting Information

Figure S1 CIM of categories versus cluster groups. (A) Each

cluster group consists of a set of related clusters from the 20-, 40-,

80-, and 160-cut. The clusters are related by successive splittings

from the 20-cut cluster. Clusters from a given cut are representd

by a distinct color scale, as shown on the top of the figure. Robust

categories and functionally-related adjacent regions are designated

within a white rectangle. (B) Compacted version of CIM of

categories categories versus cluster groups. Only those rows and

columns containing robust categories were retained. The cluster

number for the 160-cut is shown at the right of each encircled

grouping.
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Table S1 Robust GO categories for all cluster families.

(DOC)

Table S2 Loss of genes in each step of the process of extracting

genes from CellMiner and selecting those that match both an

HGNC symbol and a GO database annotation.

(DOC)

Table S3 The gross distribution of genes submitted to GoMiner

for all 300 clusters.

(DOC)

Table S4 Parameters used in HTGM analyses.

(DOC)

Table S5 The gross distribution of GO categories resulting from

running GoMiner on all 300 clusters.
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Table S6 Distribution of scores.
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Table S7 Categories according to score.
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