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Abstract

Unsupervised categorization of objects is a fundamental

problem in computer vision. While appearance-based meth-

ods have become popular recently, other important cues like

functionality are largely neglected. Motivated by psycho-

logical studies giving evidence that human demonstration

has a facilitative effect on categorization in infancy, we pro-

pose an approach for object categorization from depth video

streams. To this end, we have developed a method for cap-

turing human motion in real-time. The captured data is then

used to temporally segment the depth streams into actions.

The set of segmented actions are then categorized in an un-

supervised manner, through a novel descriptor for motion

capture data that is robust to subject variations. Further-

more, we automatically localize the object that is manip-

ulated within a video segment, and categorize it using the

corresponding action. For evaluation, we have recorded a

dataset that comprises depth data with registered video se-

quences for 6 subjects, 13 action classes, and 174 object

manipulations.

1. Introduction

Challenging computer vision tasks like object detec-

tion [7] or action recognition [24] consist of recognizing

and localizing objects or motions of a specific class in im-

ages or videos. This means that the objects of interest are

already categorized and the instances within a class are as-

sumed to share a certain similarity, which is usually learned

from the appearance. What we propose is different from

such classic paradigm in two important ways: We believe

that the way objects are used should count at least as much

as their appearance for their categorization. As shown in

the literature, for applications like autonomous robotics, a

categorization based on functional similarity is more task-

relevant [29, 27, 16]. These approaches learn rather the af-

∗This research has been supported by funding from the EC projects

IURO and RADHAR and the SNF project NCCR IM2.

(a) (b)

Figure 1. Our approach extracts manipulated objects from video

data and categorizes them according to their functionality (a). To

this end, the motion of the subject is captured in real-time and

the video sequences are segmented and clustered in an unsuper-

vised manner. In this work, the processing is performed on low-

resolution depth data (b).

fordance [13] than the appearance of objects. Moreover, we

want to build a system that does not make use of prior infor-

mation about the objects, to achieve more generality. This

is inspired by unsupervised methods for object recognition,

also referred to as object discovery techniques [31], which

categorize objects from a set of unlabeled data, instead of

relying on a given categorization. While unsupervised cat-

egorization of objects using an appearance-based similarity

measure has been of particular interest in the last years [31],

categorizing based on functional similarity in an unsuper-

vised fashion, which is addressed in this work, has received

little attention.

Our approach is motivated by psychological studies that

give evidence that human demonstration has a facilita-

tive effect on categorization in infancy. In the study of

Booth [4], infants had to discriminate objects of two cat-

egories that were similar in appearance. When the manip-

ulator was visible, infants were more likely to learn to dif-

ferentiate between the two categories. They learned it also

more rapidly than infants that observed only static objects

or object manipulations without the additional cue of the

human agent.

In this work, we follow the concept of a human agent

as stimulus for object categorization as illustrated in Fig. 1.

To this end, we introduce a 3D upper body tracker that cap-
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tures the motion of the human agent automatically and in

real-time. As input data, we rely on depth streams which

are captured by a low-resolution depth sensor. Such sen-

sors are recently becoming widely available and inexpen-

sive. Based on the extracted motion of the agent, we tem-

porally segment the data, extract the manipulated objects,

and categorize the objects based on the segmented motions.

The categorization is performed in an unsupervised manner.

In this work, we present four main contributions:

• We propose an approach for unsupervised categoriza-

tion of objects based on depth data streams and ex-

tracted motion capture data.

• To capture the agent, we propose a novel depth-

based approach for real-time pose tracking that com-

bines the benefits of body part detection and efficient

skeleton-based pose estimation. In contrast to previous

work [12], our approach handles occlusions, which is

essential for observing object manipulations.

• For functional categorization, we introduce a novel

similarity measure for human motions. To this end,

we extract a set of key poses and transform each mo-

tion segment into a string of key poses. The human ac-

tions are then compared using a modified Levenshtein

distance [18] that takes the distance of key poses into

account. This measure is more robust to variations

among subjects than classical dynamic time warping

approaches [25] applied to motion data directly.

• We evaluate the approach for object categorization on a

newly recorded dataset that comprises depth and video

data of 6 subjects, 13 action classes, and 174 object

manipulations.1

The concept of categorizing objects based on the hu-

man motion observed during object manipulation has sev-

eral practical advantages. In autonomous robotics, home

assistance, or scene understanding, modeling all potential

categories a-priori exceeds the capacity of many platforms.

In our approach, a-priori knowledge is required only for

the human agent in terms of the human motion capture ap-

proach. Additional objects are extracted and categorized

according to their relevance which is inferred from the cap-

tured agent.

2. Related Work

Markerless Motion Capture Recent surveys [19] reveal

that markerless motion capture is a very active field of re-

search. Our tracking approach is mostly related to the work

1The dataset is publicly available at http://www.vision.ee.

ethz.ch/˜gallju/projects/dyncat/dyncat.html.

of Bregler et al. [5] where the kinematic chain is repre-

sented by twists. We also use twists since they can be el-

egantly linearized for pose estimation. Since the original

work [5] relies on local optimization and optical flow as

feature, it is prone to tracking errors. To overcome these

limitations, a multi-layer approach [11] has been proposed.

While the first layer uses a global optimization technique

for pose estimation that is related to [6], the second layer

refines the silhouette and the pose using local optimization

and twists. Although the approach performs very well on

the HumanEva benchmark [28], it is not suitable for real-

time applications.

Recently a few techniques for pose estimation from time-

of-flight (TOF) cameras have been proposed. In [17, 35],

variants of the iterative closest point algorithm have been

used for upper body estimation. While these works rely

on local optimization, which makes them prone to errors,

Ganapathi et al. [12] propose using body part detectors [23]

for full body motion capture. The detectors make the ap-

proach robust to local minima but it is assumed that the per-

son is not occluded. Since the algorithm is implemented on

a GPU, framerates around 5 frames per second are achieved.

Our approach combines local optimization with twists [5]

and body parts detectors. In contrast to [12], a triangulation

of the surface is not needed and the detections can be sparse.

This is very important in the context of object manipulation

where body parts like hands are frequently occluded.

Another important point is that the use of key poses has

already been suggested in the human tracking literature [9,

26]. They have mostly been used to improve and initialize

the tracking algorithm, while in our case they are adopted

as action descriptors. A related idea has also been presented

in [32], where 3D exemplars have been used to generate 2D

sequences used for supervised action recognition.

Functional Similarity Functional similarity has been al-

ready proposed in the 90’s for object recognition [29, 27],

where objects are modeled in terms of functional parts.

While [29] associates functionality with specific shape

primitives, recent approaches extract features that are rel-

evant for functionality from video data.

When the video sequences are already labeled with the

object class and the motion class that are involved in object

manipulation, motion and appearance cues can be combined

to improve object and action recognition [20, 14, 8]. Differ-

ently than in our case, in [16] it is assumed that objects and

actions of interests are already categorized, whereas the re-

lations between the two types of categories are unknown.

The relations are inferred from video data and represented

as pairs between action and object classes like “drink-cup”

or “drink-glass”. The learned relations can then be used for

object and action recognition.

There are only few works that have addressed ob-

http://www.vision.ee.ethz.ch/~gallju/projects/dyncat/dyncat.html
http://www.vision.ee.ethz.ch/~gallju/projects/dyncat/dyncat.html


(a) Detections (b) Depth discontinuities (c) Human contours (d) Correspondences (e) Estimated Pose

Figure 2. Pose estimation from depth data. (a) Depth image with detections. While the face (blue) can be reliably detected, the hand

detections (red) are sparse due to occlusions and previously unobserved object contact. (b) Depth discontinuities extracted from depth

data. (c) Contours of the model. The contours and the depth discontinuities are matched to obtain correspondences. (d) Correspondences

obtained from depth matching along projection rays (yellow), contour matching (green), and the body part detectors (red). (e) Estimated

pose overlaid on the intensity image.

ject clustering based on functional similarity. In [21],

appearance-based categorization is applied to video data

where tracked feature points are segmented and used as fea-

tures for categorization. While this approach categorizes

moving objects like a car or a tram directly from observed

motion patterns, the works described in [22, 30, 1, 33] are

more in the spirit of categorization based on agent-produced

motions. In [22], human trajectories in an office environ-

ment are used to segment the camera views into regions

where similar human behaviors have been observed. This

concept has been extended to street scenes to categorize and

label elements like roads or sidewalks that are very similar

in appearance [30]. In [1], a rule-based approach is pro-

posed to extract scene graphs that represent spatio-temporal

correlations between objects. It is assumed that all the rele-

vant objects can be segmented and the scene graphs model

whether the regions are visible, connected, or occlude each

other. This approach, however, does not generalize to real-

world data since it takes any segmented region into account

and does not distinguish between relevant and irrelevant re-

gions. In [33], activities are inferred from the used objects

that are observed and identified by video and RFID sensors.

3. Pose Estimation

Pose estimation is performed on depth data (see Fig. 2).

In our setup, we acquire the data with a low-resolution depth

sensor. Such sensors are becoming widely available and

are already part of consumer products like video game con-

soles. However, any source of depth data, e.g., acquired

by a stereo setup, could be used as well. For tracking,

we rely on a skeletal model of the human body with 10

degrees-of-freedom for the joints and 6 additional param-

eters for the rotation and translation of the torso. The pa-

rameters are denoted by Θ. The skeleton is surrounded by

a 3D triangle surface mesh that is generated from a statisti-

cal body model [15]. To this end, we use the rough height

(±5cm) and the gender of the person to morph the model.

Currently, gender and height are provided, but it would be

also feasible to estimate such parameters directly from the

depth data, e.g., as in [2]. Finally, skinning weights wki

are computed [3] that specify the influence of a bone k

on a vertex Vi, i.e., a mesh transformation is obtained by

V ′

i =
∑

k wki
Tk(Θ)Vi, where Tk(Θ) is the transformation

matrix for bone k obtained from the pose parameters Θ.

Since the camera is calibrated, each depth value can be

expressed as a 3D point X . Having the vertices of the model

Vi associated to some 3D point Xi, we can solve for the

human pose using the twist representation exp(θξ̂) ≈ I+θξ̂

for the transformations T (Θ) [5] by minimizing
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where the vertex Vi on limb ki is influenced by nki
joints

according to the kinematic chain. Due to the linearization

of the twists, i.e., exp(θξ̂) ≈ I + θξ̂, we can efficiently

optimize over all pose parameters.

Correspondences (Xi, Vi) are established by searching

for the closest point of each visible vertex Vi in the depth

image. This can be done very efficiently by following the

projection ray of Vi. When a depth value z is on the ray,

we take the closest 3D point X among all the depth values

within a 12x12-pixel neighborhood of z. This only matches

the model to the data, but the data should also explain the

model. Hence, we match the edge pixels extracted from the

depth image with the edge pixels extracted from the pro-

jected surface. This can be efficiently performed by com-

puting a distance field in the image domain. For each edge

pixel that matches a projected vertex, we get a correspon-

dence. Due to occlusions and to the presence of objects,

the matching can lead to correspondences with wrong depth

values. To reduce wrong correspondences, we reject them

when the Euclidean distance or the depth distance between

the two 3D points is larger than 200 mm or 50 mm, re-

spectively. The extraction of correspondences is shown in

Fig. 2(b-d).

Since local optimization is prone to errors, we integrate

detectors for the head and the hands; see Fig. 2(a). To this

end, we trained two object detectors [10], one for hands and

one for heads. As features, we use the raw depth data and



(a) (b) (c)
Figure 3. Similarity matrix for all the actions in our training dataset, ordered by action class (low values are red). (a) Using the dynamic

time alignment proposed in the ACA algorithm does not give good results for similar actions performed by different subjects. (b) The key

pose based representation gives a good clustered representation of all the actions in the dataset, which cannot be achieved if consecutive,

identical key poses are not merged together (c).

the intensity image. For training, we captured around 2500

examples with a depth camera. While heads can be reli-

ably detected, hands are more difficult to detect and very

often occluded during object manipulation. Having a detec-

tion of a body part in the depth image, we establish corre-

spondences between the vertices of the body part and the

detection. Since our method is mainly driven by the local

optimization, temporal sparse detections are sufficient to re-

cover from tracking errors. Hence, we set very high detec-

tion thresholds, namely 2.5 for the hands and 2 for the face,

to achieve low recall and high precision for the detectors.

For initialization, we use the detected head for an initial

estimate of the global translation and rotation. We then es-

timate the torso using Eq. (1), and the full pose in a second

step. After initialization, the pose parameters Θt are esti-

mated for each frame where the previously estimated pa-

rameters Θt−1 are used to initialize the optimization. For

estimation, we iterate the two steps of computing correspon-

dences and optimization using Eq. (1) several times. In our

experiments, we used 10 iterations.

4. Functional Categorization

Dataset Using the outcome of the tracking algorithm, we

have built a dataset. This dataset includes 6 subjects who

perform a set of actions using several objects of different

appearances and functionalities. The possible actions are

“Pour liquid in a cup”, “Drink with the left hand”, “Drink

with the right hand”, “Use a brush”, “Use a remote con-

trol”, “Use a roller”, “Use a puncher”, “Use a calculator”,

“Make a phone call”, “Wear headphones”, “Play with a

videogame”, “Take a picture”, “Use a pen”. We asked the

subjects to perform about 30 actions, therefore some ac-

tions are repeated using objects with the same functionality

but with a different appearance. Then each action has been

manually labeled with an action label, to provide an evalu-

ation testbed for the clustering and classification phases.

Temporal Segmentation The collected sequences are

then initially segmented using Aligned Cluster Analysis

(ACA) [34], a very powerful technique for segmenting mo-

tion capture data. It allows to decompose an arbitrary mo-

tion capture stream by a single subject into a set of dis-

jointed segments, each of which is corresponding to one out

of a set of possible actions, in a semi-supervised way. In fact

only few parameters, like the total number of actions k and

their length range need to be provided. We chose to adopt

this algorithm because it has a couple of very useful prop-

erties: 1) It works even if actions have an arbitrary and not

pre-defined length and 2) it is robust to noise and to speed

variation in the actions. Thanks to this pre-processing step,

all the training data are split into single actions, which will

form the basis of our functional categorization algorithm.

Categorization Although ACA works very well for split-

ting actions performed by a single subject, its similarity

measure based on dynamical time alignment is not pow-

erful enough to evaluate the similarity between actions per-

formed by different subjects. This can be better evaluated

by analyzing Fig. 3(a), where we show the similarity matrix

computed on all the actions in our dataset, performed by 6

different subjects and ordered by class. Hence, we propose

an algorithm that can better handle this situation in order to

model actions in a subject-independent way, which is a key

component to achieve an unsupervised action clustering.

To this end, we studied an action descriptor which can

cope very well with variations among subjects and allows

to compute similarities between different segments in a fast

and principled way. What we propose is to cluster all the

input poses, which once concatenated build the different ac-

tions, into a set of N key poses. To do this, we adopt the K-

means algorithm, using as distance between poses the Eu-

clidean distance of the normalized direction vectors of the

limbs. In our experiments, the vector representation per-

formed slightly better than twists or joint angles.



A B C

WD (B,2) = min(d(A,B), d(B,C))

A B

C

WI (C,2) = min(d(A,C), d(B,C))

A B

C

A C

WS (C,2) = d(B,C)

Insertion Deletion Substitution

Figure 4. Illustration of the insertion, deletion, and substitution

operation weights WI, WD, and WS.

Each pose in the sequence is then substituted by the cor-

responding key pose, which in our case is the mean of the

cluster which the pose belongs to. To have a short represen-

tation which is still consistent with the action but indepen-

dent of its duration (e.g., a phone call can last 10 seconds

or 5 minutes, but anyway should belong to the same class),

we merge all the consecutive poses which are represented

by the same key pose into a single one. Also this choice

can be better motivated by analyzing the similarity matri-

ces shown in Fig. 3(b,c). The matrices clearly show that

merging consecutive key poses helps in achieving a better

distinction between different actions.

An action is therefore represented as an L-dimensional

vector A of key poses, where 1 ≤ L < ∞ and Ai 6= Ai+1

for all 1 ≤ i ≤ L − 1. We can now introduce the concept

of distance between actions, which we formulate as a varia-

tion of the Levenshtein distance [18]. The Levenshtein dis-

tance between two strings is defined as the minimum num-

ber of edits needed to transform one string into the other,

with the allowable edit operations being insertion, deletion,

or substitution of a single character. What we propose in

our case is to consider actions as strings of key poses and

give a weight WI, WD, or WS to the operations depending

on the distance between the key poses that they involve. We

define then:

WI(P, i) =











d(P,A1) if i = 1,

min(d(P,Ai−1), d(P,Ai)) if 2 ≤ i ≤ L,

d(P,AL) if i = L + 1

WD(P, i) =











d(P,A2) if i = 1,

min(d(P,Ai−1), d(P,Ai+1)) if 2 ≤ i < L,

d(P,AL−1) if i = L

WS(P, i) = d(P,Ai),

where P is the key pose we need to insert, delete, or substi-

tute at position i in the action string A, and d indicates the

Euclidean distance between poses. The weights and corre-

sponding operations are illustrated in Fig. 4.

Now that a dissimilarity measure between actions has

been defined, it can be used to discover, in an unsuper-

vised way, the data structure. Given the complete dis-

similarity matrix that can be computed using our modified

Levenshtein distance, clustering the training data becomes

straightforward. We chose to adopt the hierarchical ag-

glomerative clustering algorithm, using weighted average

linkage, but many other techniques could have been used.

The clustering results at this point only depend on the num-

ber of key poses that have been adopted and on a thresh-

old, namely the cutoff, that is basically a stopping criterion

for the clustering algorithm. An additional implementation

choice that we made is to discard all the clusters that contain

less than 3 elements, because they would not be descriptive

enough. In case of our training data, we know the true data

structure and we can use it to quantitatively evaluate the re-

sults obtained by the clustering algorithm (Sec. 6).

5. Object Localization

After temporal segmentation and clustering of the data,

we use the estimated pose to localize the object that is ma-

nipulated within a segment. To this end, we evaluate the

variance of the hand positions as trajectories in the 3D space

and assume that the hand with the highest variation manip-

ulates the object. We mask then all depth values that are

within a distance of 250 mm of the active hand and not part

of the human. After filtering the mask, we extract connected

components and compute the bounding box. In order to ob-

tain the object in a rather static state without motion blur,

we discard elements with depth variations in a temporal

neighborhood. The object localization is directly inferred

from the human poses and additional scene knowledge is

not used. In our implementation, we take currently only the

first 30 frames of each segment into account.

6. Experiments

Setup To collect our dataset, we synchronized and cali-

brated a TOF camera and a standard RGB one (which is

used only for visualization purposes). Data has then been

collected by asking the subjects to perform a set of actions

using the objects we provided. One important characteristic

of our set of objects is that it contains objects with similar

appearance and different functionality, e.g., cell phone and

videogame, and objects with different appearance and very

similar functionality, e.g., cell phone and landline phone.

The set of possible actions has already been described in

Sec. 4.

Tracking For evaluating the markerless motion capture

approach proposed in Sec. 3, we have annotated the head

and the hands for 2 sequences of our recorded dataset. The

3D ground truth is obtained by manually annotating every

10th depth image. For a sequence without occlusions (2113

frames), we get an error of 84.3 ± 9.0 mm. A few frames

of the sequence are shown in Fig. 5. For a sequence with

occlusions (462 frames), the error is 85.8 ± 7.9 mm. The



current implementation runs at 12 fps2. It requires 25 msec.

for the face and hand detections, while the optimization in-

cluding computing correspondences takes 60 msec. Higher

frame rates can be achieved by parallelizing the detectors

and speeding-up the closest point search for optimization.

Categorization As explained in Sec. 4, we cluster the

training data using a hierarchical agglomerative clustering

algorithm based on our modified Levenshtein distance. This

approach depends on two parameters: The number of key

poses used to describe the input sequences has an influ-

ence on the similarity matrix and therefore on the clustering.

A lower number of key poses will increase the similarity

between different actions and therefore generate few large

clusters. On the other hand, a larger number of key poses

will differentiate more the activities and bias the algorithm

towards many small clusters. Another parameter is the cut-

off threshold of the clustering algorithm, which indicates

until which level of the hierarchy smaller clusters should

be merged, and therefore also has an impact on the cluster

sizes. To evaluate the effects of these parameters and the

quality of the resulting clustering, we computed the condi-

tional entropy of the outcome when varying the number of

key poses and the cutoff threshold, as shown in Fig. 6(a).

To compute the entropy value, we used the manual label-

ing of the training dataset, so that it basically measures how

much uncertainty remains in the true class given the esti-

mated clusters.

Obviously, we cannot use such measure for setting the

parameters of our approach, since this would imply know-

ing the true class labels. Instead, we impose a fixed cutoff

threshold and state that not more than 20% of the input data

should have been removed. The amount of removed se-

quences depends on the clustering fragmentation, because

all the sequences belonging to clusters made of less than 3

elements are not considered. The number of removed se-

quences can be better evaluated in Fig. 6(b), and leads us to

choose K = 30 key poses for all our experiments.

Classification The categorization obtained on the training

data can also be used as a basis to perform action classi-

fication experiments. We have developed such classifica-

tion experiments in two different setups: In the first, the

subjects were asked to execute some actions chosen among

the ones that built the dataset, without physically using the

objects. In the second setup, we performed leave-one-out

cross validation where we used 1 subject for testing and the

other 5 for training. The classification score depends on the

relative frequency of a certain action class within a clus-

ter, which we denote by p(a|c), normalized by its maximal

value among all the clusters. More formally, we define the

2CPU: Intel Core2Quad 2.83GHz (single thread); Graphics Card:

NVIDIA GeForce 9800 GT.

(a) (b)
Figure 6. (a) Conditional entropy of the obtained clustering de-

pending on the number of key poses. Results are shown for dif-

ferent cutoff values, depicted in different line styles. (b) Num-

ber of sequences removed from the training data depending on the

adopted number of key poses. A larger number of key poses gen-

erates more smaller clusters which are removed if composed by

less than 3 elements.

score S of the classification of an action a to a cluster c as

S(c|a) =
p(a|c)

maxci∈C p(a|ci)
, (2)

where C is the set of all the clusters.

To classify a new sequence, we compute the average

modified Levenshtein distance from the sequence to all the

elements in each cluster, and then choose the cluster c for

which this average distance is lowest. Then, knowing from

the manual labeling the true class a of this sequence and of

the actions belonging to c, we can compute our classifica-

tion score S(c|a) as described by Eq. (2). The experimental

results are given in Tables 1 and 2. It is interesting to note

that the classification results for the leave-one-out experi-

ment are only slightly better than the ones obtained in the

testing sequences in which the objects were not used. The

same experiments have been carried on using ACA [34],

and the obtained recognition rates averaged over all the sub-

jects and all the actions are 16.2% for sequences without

physical objects and 9.7% for sequences with objects.

Object Localization and Categorization Finally, we

evaluate the object localization algorithm described in

Sec. 5. To this end, we annotated the manipulated objects

by a bounding box in the first frame of each action segment

of the dataset. We denote the object as correctly localized

when the ratio of intersection over union is greater than 0.5.

For our dataset, we obtained 75.6% for recall and 83.9% for

precision. By merging the outcome of the localization step

and the action clustering approach and by assigning each

object to the corresponding action, we obtain our unsuper-

vised object categorization. An overview of a subset of the

extracted and categorized objects is given in Fig. 7.

7. Conclusions

In this work, we have proposed an approach that auto-

matically extracts objects from depth data streams and cat-



Figure 5. Depth images and estimated poses projected onto the intensity images.

Subj Pour Drink R Brush Phone Remote Headph. Roller Calc. Puncher Play Pic Pen Drink L Avg

1 1.00 1.00 0.50 1.00 1.00 1.00 1.00 1.00 1.00 0.86 0.00 0.00 - 0.78

2 1.00 - 0.00 1.00 0.50 1.00 0.67 1.00 0.00 0.29 1.00 0.86 0.57 0.66

3 1.00 - 0.50 1.00 0.00 1.00 1.00 0.00 0.20 0.86 0.50 0.00 1.00 0.59

4 0.00 - 1.00 1.00 0.50 1.00 1.00 0.00 0.27 0.86 1.00 1.00 1.00 0.72

5 0.50 - 0.50 0.83 0.50 1.00 0.00 1.00 0.17 1.00 0.50 0.86 1.00 0.66

6 0.17 1.00 1.00 0.43 0.50 0.00 0.67 1.00 1.00 0.29 1.00 0.00 - 0.59

Avg 0.61 1.00 0.58 0.88 0.50 0.83 0.72 0.67 0.44 0.69 0.67 0.45 0.89 0.69

Table 1. Action classification results on testing sequences in which subjects were not using the physical objects. The maximum score of

1 is obtained if an action is assigned to the cluster in which the frequency of that action is the highest among all the clusters. The lowest

score of 0 is obtained when an action is assigned to a cluster in which that action is not represented.

egorizes them according to their functionality in an unsu-

pervised manner. The functionality is inferred from the

captured human motion observed during object manipula-

tion. Our experiments have shown that the categories ob-

tained by our method have a semantic interpretation. Our

current approach is limited by the detail of motion that is

captured. For instance, functionalities that differ in subtle

hand motions cannot be extracted from the low-resolution

depth data. However, this is not a principled limitation of

our approach, which can also be applied to high resolution

color data. In general, we regard functionality as a comple-

mentary cue to appearance for unsupervised object catego-

rization. The obtained functional categories can be further

processed to obtain finer categories based on appearance or

to infer the relation between functionality and appearance.
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