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Abstract

Cellulose-based hydrogels are immensely important for tissue engineering. In this review, we attempt to document

the source, nature, and application of cellulose-based hydrogels as an extracellular matrix for tissue growth and

regeneration. Hydrogels can be prepared either from native cellulose, including both bacterial and plant sources or

from cellulose derivatives, such as methyl cellulose, carboxymethylcellulose, and hydroxypropylmethylcellulose or

even metal ions such as silver. Cellulose-polymer composite (polymers that include natural sources including

chitosan, starch, alginates, collagen, hyaluronic acid, and chitin) are an attractive, inexpensive, and advantageous

structural material that is easy to use. Cellulose-based scaffolding materials are widely used in the regeneration of

various tissues, such as bone, cartilage, heart, blood vessel, nerve, and liver, among others. In this review, we discuss

the most important applications of cellulosic hydrogels in tissue engineering based on their structural

compositions.
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Introduction
Cells communicate with each other either directly via

molecular interactions or through the secretion of differ-

ent hormones or mediators which systematically regulate

various cell functions. Growth factors are also secreted

during cellular crosstalk and may be pro-proliferative or

anti-proliferative in nature, being mainly involved in cell

differentiation, migration, adhesion, and gene expression.

Natural and synthetic materials may be used as bulking

agents for the binding of various growth factors by mim-

icking natural extracellular matrix (ECM) molecular

self-assembly via secondary forces, such as ionic or

hydrogen bonds, whereas chemical gels are result of co-

valent bonds [1–5].

Hydrogels have potential applications in various fields

such as agriculture, food, biomaterials, water purification,

biomedicine, and pharmaceuticals, among others. [6–8].

Hydrogels are primarily made up of natural living tissue

rather than synthetic biomaterials, as a result have a high

water content and a soft consistency similar to natural tis-

sues [9]. Moreover, the high water content of these

materials contributes to their biocompatibility. Thus,

hydrogels can be used as membranes for biosensors

[10, 11], in artificial heart and skin [12, 13], contact

lenses [14, 15], and drug delivery [3, 6, 16]. Cross-

linking synthetic polymer-based hydrogels have been

reported, including poly (ethylene glycol) [17, 18],

poly (vinyl alcohol) [18, 19], poly (amido-amine) [20],

poly (N-isopropylacrylamide) [21], polyacrylamide [18,

22], and poly (acrylic acid) [18, 23].

In tissue engineering, hydrogels are the most extensively

used biopolymer due to their highly swollen three- dimen-

sional (3D) environment, which is very similar to soft tis-

sues and allows for the diffusion of nutrients, growth

factors and cellular waste through the elastic network and

for the regeneration of damaged tissues [13, 18, 24, 25]. In

regenerative medicine, hydrogel used to repair and assist

regeneration of various soft and hard tissues, such as cartil-

age, bone and vascular tissues [26–28]. Natural hydrogels

include the bioprocessing of natural polymer-based mate-

rials such as proteins, including collagen, gelatin, and fibrin,

and polysaccharides, including alginate chitosan, hyaluronic

acid, dextran, and cellulose which are used as extracellular

matrices (ECM).

Cellulose is a fibrous, tough, water-insoluble substance,

found in the protective cell walls of plants, particularly in
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stalks, stems, trunks, and all woody portions. However, it

is also produced by some animals (e.g., tunicates), fungi

and a few bacteria [29–31]. Due to the presence of abun-

dant hydroxyl groups in the cellulose molecule, cellulose

can be used to prepare hydrogels with varying structures

and properties to act as a platform for advanced tissue en-

gineering and regenerative medicine. Cellulose-based mate-

rials represents a naturally occurring ‘nanomaterial’, and has

attracted the attention of researchers all over the world, as

shown by the increasing number of annual publications

appearing in ‘Science Direct’ with ‘cellulose-based hydrogels

for tissue engineering’ (Fig. 1) as the search item. However,

furthur studies are needed for the development and appli-

cation of cellulose-based hydrogels. This review highlights

the recent development and use of various cellulose-based

hydrogels as an ECM and their structural properties for ap-

plications in advanced tissue engineering.

Structure of cellulosic biomass
Cellulose is the most abundant biopolymer and is distrib-

uted throughout nature in plants, animals, algae, fungi, and

minerals. A major source of cellulose is plant fiber. Cellu-

lose is the main structural component of plants that pro-

vides them with their mechanical as well as structural

integrity as it contributes approximately 40% to the carbon

fraction in plants (Additional file 1: Table S1). Cellulose can

be found in its pure form in plants with hemicelluloses, lig-

nins, and other components [32]. Surprisingly, a large frac-

tion of cellulose is produced from trees (wood fiber) with a

global production of approximately 1,750,000 kt. Annual

plants such as bamboo, cotton linters, jute, flax, sisal, hemp,

and ramie also produces significant amount of cellulosic

biomass (Additional file 1: Figure S1) [33]. In addition,

some fungi and green algae produce cellulose (e.g. Valonia

ventricular, Glaucocystis) and some marine ascidians con-

tain cellulose in their outer cell membrane. Some bacterial

genera, such as, Gluconacetobacter, Agrobacterium, Pseudo-

monas, Rhizobium, and Sarcina are able to synthesize bac-

terial cellulose either from glucose or other carbon sources

[34–36]. Purified bacterial cellulose is highly crystalline and

possess a high degree of polymerization (DP). One of the

crucial features of cellulose is its micro-crystalline structure

and its synthesis in nature as individual molecules (linear

chain of glucosyl residues) which undergo self-assembly at

the site of biosynthesis [37].

Molecular structure of cellulose

Cellulose mainly consist of D-glucopyranose ring units in

a 4C1 configuration, which exhibits the lowest energy con-

formation [38]. Each unit is linked by β-1, 4-glycosidic

linkage that results in an alternate turning of the cellulose

chain axis by 180° [39–41]. Within the cellulose chain,

three reactive hydroxyl groups (−OH) exist in each anhy-

droglucose unit (AGU). The –OH groups of the AGU, the

oxygen atoms of the D-glucopyranose ring, and the glyco-

sidic linkage interacts with each other within the chain or

another cellulose chain by intermolecular and intramo-

lecular hydrogen bonds [42]. The presence of hydrogen

bond provides stability to the cellulose molecule and al-

lows it to be a functionally active biomolecule (Additional

file 1: Figure S2).

X-ray diffraction studies revealed the crystalline struc-

ture of cellulose, and NMR experiments have confirmed

its dimorphic and polymorphic nature [43, 44]. Different

Fig. 1 Publications related to cellulose-based hydrogels for tissue engineering (science direct search system; ‘cellulose based hydrogel for tissue

engineering’ as search term; https://www.sciencedirect.com)
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polymorphs of cellulose are listed in Table 1. Solid-state
13C-NMR was used to identify different polymorphs, de-

noted as cellulose Iα and Iβ. Cellulose Iβ is naturally oc-

curring in plants, whereas cellulose produced by

primitive organisms crystallizes in the Iα form [55].

Cellulose chains are arranged in a basic fibrillary unit

or elementary fibrils with a length of 0.1 to 0.2 μm and

have a characteristic lateral dimension of 0.0015 μm to

0.0035 μm [56, 57]. Such fibrils are known as cellulose fi-

brils. These fibrils are further assembled into microfibrils

with a width of 0.1 μm and a length of 0.1 to 1 μm (Fig.

2a). This fibrillary architecture can be found in both na-

tive and man-made fibers [39].

Structure of plant cellulose (PC)

In the case of plant cell walls, a sheath of amorphous cellu-

lose surrounded by a hemicellulose layer covers the micro-

fibrils [33]. Fibers from different plants vary in morphology

and dimension. Additional file 1: Figure S3 clearly shows

the variations in the fiber morphologies of cotton (S3a),

spruce wood (S3b), and ramie plant (S3c). Surprisingly, all

three plants share a common internal structure made up of

multiple cell wall layers [58]. During the early growth

phase, plant fibers develop a primary cell wall (P layer) that

is much thinner than the secondary wall (S layer) formed

on its inner side. Inside the S wall, a tertiary cell wall (T

layer) is present, which is typically an open, hollow area or

lumen-like structure. The cell wall thickness and length of

the plant fiber are approximately 4–630 μm and 15–30 μm,

respectively. The swelling characteristics as well as their

physical and chemical properties are strongly influenced by

the configuration, composition, and structure of the P layer,

which contains microfibrils crisscrossed onto each other to

make a net-like helical structure (S3d-e). The secondary

layer is 3–5 μm in thickness and comprises three sublayers

(S1, S2, and S3) of which S2 is the thickest e (approximately

3–5 μm thickness) as shown in Additional file 1: Figure

S3d. The S2 layer contains microfibrils arranged in parallel

[58–60].

Structure of bacterial cellulose (BC)

Bacterial cellulose (BC) can be obtained in pure form.

Compared to PC, BC contains no hemicellulose or lignin

and only a very small amount of carbonyl and carboxyl

moieties are present [61]. BC possesses a high degree of

crystallinity (above 80%) with a good water retention

capacity, and an extraordinary mechanical strength, par-

ticularly under wet conditions. One important advantage

of using BC is its in-situ molding ability, i.e. shaping

during biosynthesis [62]. The culturing and production

of BC is the most important part, although it is also im-

portant to maintain the pH of the culture medium, since

a low pH can often led to the accumulation by-products,

such as of gluconic, acetic, or lactic acids [63]. Figure 2b

clearly shows the structure and formation of bacterial

cellulose in Acetobacter xylinum.

Role of extracellular matrix (ECM)
ECMs are used in tissue engineering and regenerative

medicine as a natural model for bioactive modifications.

Compared to other ECMs, hydrogels have provided op-

portunities for the use of a natural ECM as a model for

designing biomimetic scaffolds.

Structure and composition of ECM

The tissues of the human body contain a significant

amount of extracellular space, into which ECM molecules

are secreted by cells to form a large and complex network.

The ECM of the extracellular space provides tissue with

mechanical strength, organizes cells into specific tissues,

Table 1 Polymorphs of cellulose

Source Cellulose
polymorphs

Features References

Valonia ventricosa1

(bubble algae)
Acetobacter xylinum
(bacteria)
Microdictyon (green algae)
Halocynthia (tunicates)

Cellulose I Native cellulose, found in nature, interconvertible, stable. Crystalline forms are
termed as Iα and Iβ. Iα considered as primitive type, while higher plants possess Iβ.

Marchessault
and Sarko, 1967
[45]
[46]
[47]
[48]

Halicystis (green algae)2

Mutant strain of A. xylinum
Cellulose II Obtained from cellulose I, interconvertible, also found in nature. [49]

[50]
[51]
Kuga et al.,
1993 [52]

Chemical conversion of Valonia
cellulose I and cellulose II

Cellulose III Interconvertible and not found in nature. Two crystalline forms isolated as IIII and
IIIII respectively.

[49]
[50]

Chemical conversion and
heating of cellulose IIII and IIIII

Cellulose IV Interconvertible and not found in nature. Two crystalline forms isolated as IVI and
IVII respectively.

[53]
[54]

1highly crystalline cellulose obtained from Valonia
2naturally occurring cellulose II
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and controls cell behavior and cell differentiation. Two

crucial components of the ECM are proteins and glycans,

in particular fibrous proteins (e.g., collagen, laminin, and

elastin) and glycosaminoglycans (GAGs) [64, 65]. Fibrous

proteins act as a scaffold and provide adhesion to matrix

structure that are initially embedded in GAGs [65]. Thus,

cell-matrix adhesions mediate various physiological re-

sponses including cell growth, migration, differentiation,

survival, tissue organization and matrix remodeling [66].

Function of ECM

The ECM components undergo self-assembly to form a

complex 3D network [18]. Figure 3 shows the role of

ECMs in various cellular responses. Cell receptors bind

both soluble and tethered signaling cues from the ECM

environment. In turn, these receptor-ligand interactions

trigger complex cascades of intracellular enzymatic reac-

tions that regulate gene and protein expression and de-

fine the fate of a cell in a specific tissue [18, 66]. Cell can

also transmits a signal to actively construct and degrade

their microenvironment. Thus, the ECMs acts as both a

space-filling mechanical scaffold and a bioactive and

dynamic environment to mediate cellular functions

[64, 65]. However, natural ECMs also provide cellular

adhesion, proteolytic degradation and growth factor

(GF)- binding [18].

Basic properties of hydrogels
Hydrogels are a type of polymer biomaterials with vari-

ous properties. In the field of pharmaceutical and bio-

medical engineering, hydrogels are very important due

to their in-vivo swelling properties, mechanical strength

Fig. 2 Structure of cellulose and bacterial cellulose. a structure of cellulose fibrils (0.2 μm) and microfibrils (1 μm); b SEM images of Acetobacter

xylinum and formation of bacterial cellulose [53] SEM: Scanning electron micrograph
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and compatibility with biological tissues, facilitating

binding (Fig. 4) [68–70].

Mechanical properties

The mechanical properties of hydrogels are significant from

both a pharmaceutical and biomedical point of view [68].

The optimum mechanical strength of a hydrogel is an es-

sential requirement for its successful implementation as a

drug delivery system. The excellent mechanical properties

of hydrogels allows its physical integrity to be maintained

until the cargo molecules are released at a predetermined

rate for a predetermined time. The optimum degree of

cross-linking may lead to a hydrogel with a suitable mech-

anical strength. However, by increasing the degree of

cross-linking, a stronger form of the hydrogel can be pre-

pared, such as brittle hydrogel that exhibits a decreased

percentage of elongation [68, 71].

Swelling properties

Hydrogels are polymer-based biomaterials developed by the

physical or chemical linking of polymers. When hydrogels

are exposed to water, they can absorb the water or aqueous

Fig. 3 Schematic representation of the extracellular matrix (ECM). In a natural environment, cells (green) use specific markers (pink) to bind to a

mechanical support matrix of polysaccharides or hydrogel (yellow) and fibrous proteins (blue). Dissolved proteins like growth factors (purple)

enable communication between the cells and matrix-degrading enzymes (black), thus remodeling the matrix [67]

Fig. 4 Advantages of the use of cellulose-based hydrogels for tissue engineering
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fluids without dissolving. This swelling continues until

there is an equilibrium between the water and the polymer

is established. On the other hand, the elasticity of this bio-

material results from the polymer-polymer interactions that

prevent the water flux inside the hydrogel resulting in a

state known as “equilibrium swelling” [72].

Biocompatibility

In the case of tissue engineering and regenerative medicine,

hydrogels must be compatible and non-toxic. Biocompati-

bility is a process that deals with the ability of a hydrogel to

perform an appropriate host response in a specific applica-

tion. Biosafety and bio-functionality are the two keys factors

regulating biocompatibility [73]. Polysaccharide-based

hydrogels are strikingly important among the polymer

hydrogels due to the variety of chemical structures and

functional properties [74, 75]. Hydrogels also act as revers-

ible gels with enlargements, such as ionic, H-bonding, or

hydrophobic forces which play a crucial role in forming the

network [76–78]. The extensive use of hydrogels in the bio-

medical field is a direct result of their capacity to hold high

amount of water, elasticity, biocompatibility, and non-toxi-

city, among others. The swelling properties of hydrogels re-

sults from the presence of hydrophilic groups, such as,

−OH, −COOH, −CONH2, and -SO3H in polymer chains

[79]. Swelling is a crucial property of hydrogels for use in

biomedical applications, such as in wound dressings [80].

Cellulose-based hydrogel production
The production of cellulose and cellulose-based hydrogel

has many advantages in the biomedical and pharmaceut-

ical industries [76]. In addition to plant cellulose (PC)

production, microbial cellulose (MC; also known as bac-

terial cellulose or BC) production is of great importance

and is normally carried out using Gram-negative bac-

teria, such as Acetobacter xylinum [81]. Other bacteria

used to produces cellulose are listed in Table 2. Bacterial

cellulose is produced using either static or shaking cul-

ture methods. However, the shaking culture method is

more effective than the static culture method; due to the

increased growth of bacteria and the high cellulose yield

(Fig. 5) [90]. One of the essential features of bacterial

cellulose (BC) is the presence of a fine microfibrillar

structure that is entirely responsible for its high tensile

strength, high crystallinity index, and high degree of

polymerization. A previous study found that a hydrogel

obtained from BC (0.8%) had a good biocompatibility

for use in tissue remodeling[91]. The study also showed

the high degree of crystallinity of BC around 89% [92], a

high degree of polymerization [93], and a high specific

surface area (37 m2/g) [94]. Again, BC also showed a

large surface area, high aspect ratio, and low bulk dens-

ity, as well as hydrophilicity [76]. For this reason, BC is

widely used in healthcare and medicinal research [95].

Processing of cellulose-based hydrogels
Various methods have been employed for the production

and processing of hydrogels based on cellulosic mate-

rials. Hydrogels can be obtained either directly from na-

tive cellulose or from cellulose derivatives [96]. A list of

cellulose derivatives, and their solvents, and processing

methods is presented in Table 3.

Hydrogels obtained from native cellulose

A cellulose-based hydrogel can be obtained from a cellu-

lose solution through physical cross-linking. Due to the

presence of hydroxyl groups in cellulose, it can easily form

cross-linking through hydrogen bonding. The highly ex-

tended hydrogen-bonded structure of cellulose results in a

compact such that it is not easily dissolved in common

solvents [113]. Various solvents have been used to dissolve

cellulose. Nowadays, new solvents, such as N-methylmor-

pholine-N-oxide (NMMO), ionic liquids (ILs), and alkali/

urea (or thiourea) aqueous systems have been developed

to dissolve cellulose, with important applications in hydro-

gel research. However, certain bacterial species are in-

volved in the processing of nearly-pure cellulose hydrogels

[96]. Many solvent systems are used to obtain hydrogels

Table 2 List of some bacteria producing cellulose

Type of bacteria Example Application References

Gram-negative Acetobacter xylinum Tissue repair material, human tissue substitute or artificial skins; wound dressing [81]; [82]; [83]; [84]

Gluconacetobacter hansenii Medical pads, artificial skins [85]

Acetobacter pasteurianus Medical pads, membranes [86]; [87]

Rhizobium sp. Tissue repair material [82]; [88]

Agrobacterium sp. Tissue repair material [82]; [88]

Aerobacter sp. Tissue repair material [88]

Azotobacter sp. Tissue repair material [88]

Salmonella sp. Tissue repair material [88]

Achromobacter sp. Tissue repair material [88]

Gram-positive Sarcina ventriculi Cell culture, tissue engineering, regenerative medicine [82]; [88]; [89]
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from native cellulose. One such systems involves the use

of LiCl/DMAc which consists of a mixture of 3 to 15%

lithium chloride/LiCl (w/w), dimethylacetamide/DMAc,

and 1-methyl-2-pyrrolidinone under specific temperature

conditions (normally less than 150 °C) [114]. Cellulose is

then dissolved in amide and LiCl in the absence of any

polar medium other than amide to obtain hydrogels.

However, [99] described the processing of cellulose hydro-

gels in bead form via the dropwise addition of cellulose so-

lution into DMAc and LiCl to azeotropic methanol or

isopropanol as a non-solvent (Fig. 6a). The size of the

beaded hydrogels obtained from this method may varies

from 100 to 1500 μm [99]. In the LiCl/DMAc system, the

cellulose concentration has been determined to be 7 wt%.

The presence of water in the cellulose solution is a critical

factor for hydrogel production [96]. There have been re-

ports of the rapid dissolution of cellulose at room

temperature (around 25 °C) using solvent system with a

mixture of dimethylsulfoxide/tertrabutylaluminium fluor-

ide trihydrate (DMSO/TBAF) [116]. Due to its ability to

form hydrated dipoles in aqueous solution, TBAF is con-

sidered as a suitable solvents for cellulose.

The NMMO solvent system also provides a method

for the production of regenerated cellulose fibers, films,

food casings, membranes, sponges, and beads, among

others without the formation of hazardous byproducts

Fig. 5 Schematic representation of strategy for BC production [73] BC: bacterial cellulose

Table 3 Summary of some cellulose derivatives and its corresponding hydrogel processing methods

Cellulose/cellulose derivatives Nature of solvents Solvent
systems

Corresponding hydrogels preparation methods References

Cellulose form wood Polar solvents NMMO Solution polymerization at 85 °C [97]

Cellulose from cotton pulp Polar solvents LiCl/DMAc Solution polymerization at 75–90 °C [98]; [99]; [100]

Filter paper Ionic solvents [Amim]Cl Solution polymerization at 70 °C, 2 h ([101]; [102])

Tunicate cellulose Alkali aqueous
systems

Alkali/urea Polymerization at −12 to −10 °C, 5–10 min [103]

Cotton linter Alkali aqueous
systems

Alkali/
thiourea

Polymerization at −5 °C, 2–10min [104]

Carboxymethylcellulose
(CMC)

Polar solvents H2O Solution polymerization, In situ polymerization [105]; [106];
[107]

Methyl cellulose (MC) Polar solvents DCM/DMSO Solution polymerization, In situ polymerization [106]; [108];
[109]

Hydroxyethyl cellulose (HEC) Polar solvents H2O Solution polymerization, cryogenic treatment [106]; [110]

Hydroxypropyl methyl cellulose
(HEMP)

Polar solvents H2O/ethanol Solution polymerization, inverse-phase suspension
polymerization

[106]; [111]

Cellulose acetate (CA) Polar solvents Acetone/H2O Chemical cross-linking [112]

NMMO N-methylmorpholine-N-oxide, LiCl/DMAc Lithium chloride/dimethylacetamide, [Amim] Cl 1-allyl-3-methylimidazolium chloride, H2O water, DCM/DMSO

Dichloromethane/dimethyl sulfoxide
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from cellulose solution [115]. Fiber formation occurs in

a dry jet-wet spinning process, taking into account sev-

eral physical factors (e.g. nozzle and air-gap dimensions,

drew-down ratio, take-up speed) and dopinge character-

istics (cellulose DP and concentration, temperature,

modifiers) which influence the shaping process and the

final fibers properties. Tertiary amine oxides are also

capable of dissolving up to 10% cellulose [117]. A novel

method has been developed which produces highly con-

centrated cellulose, up to 23%, by treating cellulose with

NMMO and water [118]. The cellulose fibers generated

using the NMMO system are of two types: NMMO fiber

and viscose fiber. The NMMO fiber is typically round/

oval, homogenous/dense, highly amorphous, and crystal-

line, as shown in Fig. 6b. On the other hand, viscose fi-

bers are lobate, less homogenous, and more or less

amorphous, as indicated in Fig. 6c [119].

Ionic liquids (ILs) also served as a suitable solvent for

cellulose and cellulosic materials. Hydrophilic ILs, such as

1-butyl-3-methylimidazolium chloride (BMIMCl) and

1-allyl-3-methylimidazolium chloride (AMIMCl) are com-

monly used to dissolve cellulose at room temperature

(around 25 °C) [120, 121]. After treatment with AMIMCl,

regenerated cellulose exhibited excellent mechanical prop-

erties. Thus, room temperature ILs represents a new and

versatile platform for the comprehensive utilization of cel-

lulose resources and the manufacturing of novel

cellulose-based materials with unique properties [121].

Similar to ILs, a cellulose solvent with fast dissolution

was developed using a mixture of precooled (− 12 °C) 7

wt% NaOH and 12 wt% urea aqueous solution [[103,

122, 123] in]. Native cellulose dissolved within 2 min in

NaOH/urea solution. Thus, this alkali/urea solvent sys-

tem provides a rapid and convenient method for the

rapid-rate dissolution of cellulose.

Hydrogels obtained from cellulose derivatives

Water-soluble cellulose derivatives are generally biocom-

patible, and can therefore be used as thickening agents,

binding agents, emulsifiers, film formers, suspension aids,

surfactants, lubricants, and stabilizers, and in particular as

additives in the food, pharmaceutical, and cosmetic indus-

tries. Selective cellulose derivatives, including methyl

cellulose (MC), hydroxypropyl cellulose (HPC), hydroxy-

propylmethyl cellulose (HPMC), and carboxymethyl cellu-

lose (CMC) have been used to fabricate cellulose-based

hydrogels through physical and chemical cross-linking. In

the case of physically cross-linked gels, no covalent bond-

ing formation or breakage takes place, and the cross-

linked network is formed through ionic bonding, hydro-

gen bonding, or an associative polymer- polymer inter-

action [96]. On the other hand, chemical cross-linked

hydrogels are prepared through cross-linking two or more

kinds of polymer chains either with a functionalized

cross-linker [124] or under UV irradiation [125]. Physic-

ally cross-linked hydrogels are widely used in different

biomedical fields, including as scaffolds for cell cultures,

in cartilage models, and as implants in bone defects [126].

Silated-hydroxypropylmethyl cellulose (Si-HPMC)

hydrogels are generally developed for use as scaffold in

3D cultures of osteogenic cells, and are suitable for both

in vivo injection and in vitro culturing. However, a previ-

ous study presented the use of Si-HPMC hydrogels in

osteoblastic survival, proliferation, and differentiation

when used as a new scaffold and provided a new treat-

ment technique after bone replacement surgery [127].

MC hydrogels are widely used to mount the surface of

polystyrene dishes and are used to cultivate human em-

bryonic stem cells (hESCs) for the formation of embry-

onic bodies (EBs) in liquid suspension cultures [96, 128,

129]. The EBs developed from the hESCs are shown to

express molecular markers specific for representative

cells from the three embryonic germ layers, indicating

the use of MC-coated dish for the large-scale production

of EBs from hESCs as shown in Fig. 7a-c.

Mixed hydrogels

The mixing or blending of different polymers, such as, a

cellulose-polymer composite is a desirable, inexpensive

and advantageous method for obtaining novel structural

materials [6]. Cellulose (or its derivatives) blended with

natural biodegradable polymers, such as chitin, chitosan

Fig. 6 a Cellulose hydrogel beads with an average size of 467 μm [99], b NMMO fibers, c Viscose fibers [115]

NMMO: N-methylmorpholine-N-oxide
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[130], starch [131, 132], alginates [133, 134], and hyalur-

onic acid [135], has been used to created novel materials

for specific applications. Some examples include the

blending of a cellulose-polymer composite with chitosan

for the removal of heavy metals, with starch for the food

industry, and with alginates for tissue engineering

[Chang, 2011].

Cellulose-chitosan hydrogel beads areprepared by

blending cellulose powder to chitosan solution [136].

Chitosan is perviously blended with a highly concen-

trated carboxymethylated cellulose solution to form

physical hydrogels, which is then cross-linked by irradi-

ation [137]. This cellulose-chitosan duplex has been

shown to exert non-diffusible antibacterial properties

[128, 129]. A novel microporous hydrogel produced by

mixing of cellulose with sodium alginate (SA) solution

and then cross linking with epichlorohydrin. The final

cellulose/SA hydrogels were characterized by solid--

state, 13C NMR, wide-angle X-ray diffraction (WXRD),

thermo-gravimetric analysis (TGA), scanning electron

microscopy (SEM), rheological measurement, dynamic

mechanical analysis (DMA), and swelling test analyses

to evaluate the structure and morphology of the hydro-

gels (Fig. 8a-c) [138].

Currently, polymeric-inorganic hybrid compounds

have been widely used in various fields, such as elec-

trical, optical, magnetic, and biological fields, among

others [138]. A novel method for the incorporation of

inorganic materials and cellulose hydrogels has been

studied in New Zealand white rabbits with critically-

sized bone defects in the distal femoral epiphyses [139].

In the experimental process, the researchers used an in-

jectable and self-cross-linkable bone substitute (IBS2)

composed of Si-HPMC viscous solution (3 wt%) in alka-

line medium, supplemented with biphasic calcium phos-

phate (BCP) ceramic particles. The diameter of the BCP

particles ranged from 40 to 80 μm. After a number of

weeks, centripetal bone formation was observed near the

defects, with a yield strength that was significantly

higher than that of the host trabecular bone tissue.

Fig. 7 MC-coated hydrogel dishes for hESCs differentiation. a Original photograph s of the MC Hydrogel-coated in a polystyrene dish at distinct

temperatures; b Photograph of a water drop on the surface of the MC hydrogel coated in a polystyrene dish in the dried or hydrated state; c

Photomicrographs of the hESCs cultivated by different methods for distinct periods (magnification 40x). MC: methyl cellulose; hESCs: human

embryonic stem cells; HDC: hanging drop culture; LSC-PS: liquid suspension culture in polystyrene dish; LSC-ULAP: liquid suspension culture in

the Corning Ultralow Attachment plate; LSC-MC/PS: liquid suspension culture in the MC-coated polystyrene dish. Scale bars, 1.0 mm [124, 134]
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Figure 9a-c shows how bone regeneration occurs after

the application of Si-HPMC/BCP materials. The use of

BC from Gluconacetobacter hansenii along with a novel

composite material composed of calcium-deficient hy-

droxyapatite (CdHAP) for orthopedic use has been well

characterized and described by [140]. On the other hand,

[141] reported the use of heparin/cellulose/charcoal

composites to understand the mechanism and crosstalk

among cells. To study intracellular drug delivery systems

and cellular proliferation, single-walled carbon nano-

tubes (SWCNTs) wrapped with cellulose have been ob-

served in HeLa cells [101, 102]. Researchers developed

SWCNTs with a cellulose solution, dissolved in ionic li-

quid 1-butyl-3-methylimidazolium bromide (Fig. 9d-e).

Another study showed that long cellulose/SWCNT scaf-

folds could promote the growth of HeLa cells, whereas

short cellulose/SWCNT were found to only have a small

effect on cell proliferation of HeLa cells (Fig. 9f-h).

Healthy cells have a green nucleus, uniform chromatin,

and an intact cell membrane, whereas necrotic cells or

late apoptotic cells have red nuclei with damaged cell

membranes. Cells cultured on a composite scaffold and

a glass slide are healthy with a green nucleus (Fig. 9f and

h), however, some cells culture on purified SWCNTs are

in the late apoptotic stage (Fig. 9g). Thus, inorganic-

based cellulosic hydrogels provide a wide range of appli-

cations in the biomedical and tissue engineering field.

Application of cellulose hydrogels in tissue
engineering
Cellulose-based hydrogels are used in different fields re-

lated to tissue engineering. Patterned macroporous (PM)

with a diameter larger than 100 μm were introduced to

pristine 3D nanofibrous BC scaffolds using infrared (IR)

micromachining techniques to create an in vitro culture

model for breast cancer cells (BCs) [142]. PM-BC scaffolds

were found to be promote cellular adhesion, growth, pro-

liferation, and infiltration of BCs. A. xylinum BC also pro-

motes wound healing as it maintains the wound moist by

controlling the wound exudates and also heals severe

second-degree burns [143, 144]. Hydroxyethylcellulose

(HEC) and carboxymethyl cellulose sodium salt (CMCNa)

cross-linked with hyaluronic acid allow for the prolifera-

tion of keratinocytes in an in vitro culture [144]. Bacterial

nanocellulose (BNC) has great potential for use as a scaf-

fold in tissue engineering, since BC is more effective than

PC, which accounts for BC being the first choice in med-

ical and tissue engineering applications.

BC hydrogels in biomedical applications

BC has promising features due to the similar of its nano-

structure and morphology to collagen making BC an at-

tractive choice for use in the support and immobilization

of cells. The architecture of BC materials can be engi-

neered at range of scales, ranging from the nano to mac-

roscale by controlling the biofabrication process. BC fibers

are solid and, when used in combination with other bio-

compatible materials, produce nanocomposites particu-

larly suitable for use in human and veterinary medicine

[76]. The applications of BC composite hydrogels in bio-

medicine and tissue engineering are listed in Table 4. BC

composites can also be used in cornea formation after cor-

nea surgical treatment, as well as heart and vascular tissue

regeneration [148].

Bioactive cartilage implantation

Since, BC gels are free from the action of proteolytic en-

zymes and reactive oxygen species (ROS), they protects

the body from carcinogenesis and prevents the appearance

of inflammation. Some examples of cartilage implants

composed of BC are septum implants, ear implants, and

intervertebral discs, among others [176]. Now a days, the

use of bio-mimicking scaffolds has led to the exploration

of BC as a potential scaffolding material. A previous study

showed that BC did not induce the activation of pro- in-

flammatory cytokines during in vitro macrophage screen-

ing, but rather stimulated the biogenesis of collagen type

II with chondrocytes seeded on BC membranes, indicating

the suitability of BC as bio-mimicking scaffold [177]. An-

other more recent study showed the synthesis of

modified bacterial cellulose (MBC) from metabolically

engineered Gluconacetobacter xylinus with a high

Fig. 8 Original photograph (a), SEM image (b), and compressive stress-strain curve (c) of cellulose/SA hydrogel [139] SEM: scanning electron

microscopy; SA: sodium alginate
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proliferation level of human mesenchymal stem cells

(hMSCs) compared to native cellulose. This material

was reported to be a novel in vivo degradable scaffold

for chondrogenesis [178, 179].

Blood vessel prototypes

Artificial blood vessel-like structures composed of BC

are almost 5–25 cm long, which are stable, mechanic-

ally strong and resistant to water, aqueous liquids, ions,

and small particles, among others. Such vessel-like

structure are often used as main platforms for neuro-

transmitters. Natural BNC has promising mechanical

properties, including tear resistance and shape-

retention properties, such that it is better suited for use

as biological vessels [176].

Wound dressing materials

BC has been successfully used as wound dressing ma-

terial since the 1980s. BC composite materials are

used in medicine due to their biocompatible, sterile,

porous, and flexible nature. The use of BC sheets al-

lows for wounds to breathe, and prevent the forma-

tion of scabs and scars. On the other hand, the use

of BC in dressing materials also reduces the amount

of pain, protects the skin from infections, and reduces

the loss of body fluids. As such, BC composite mate-

rials are an ideal candidate for the treatment of

wounds and burns [180]. Some examples of commer-

cially available BC composite gels are listed in Table 5.

A novel type of BC-based wound dressing, which is

impregnated with superoxide dismutase and poviargol,

Fig. 9 TEM of IBS2-filled bone defects after 8 weeks (a-c). a The image clearly showed the mature bone tissue (B) containing the osteocytes (Os);

b The vacuole containing the Si-HPMC polymer solution (H) around the microporous BPC granules (G) are visible; c The precipitation of the

biological apatite (Ap) between the BPC crystals, collagen fibers (C), and the nucleus of osteoblastic cells can also be observed. [135]; d FE-SEM

image of purified SWCNTs; e IR spectra of purified SWCNTs, cellulose and C/S-C; f-h. FM images of HeLa cells cultured for 24 h on the C/S-C (f),

the SWCNTs (g), and a glass slide (h) [100, 138]. TEM: transmission electron microscopy; Si-HPMC: silated-hydroxypropylmethyl cellulose; BPC:

biphasic calcium phosphate; FE-SEM: scanning electron microscopy; SWCNTs: single-walled carbon nanotubes; IR: infrared spectra; C/S-C:

cellulose/SWCNTs complex
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was found to stimulate the healing of thermal skin

burns resulting from acute radiation disease [183].

Surprisingly, BC/collagen type I composite was found

to promote the reduction of protease, interleukins,

and ROS activity in an in vitro culture study [184].

Surgical implants

BCs and BNCs can be used in the form of tracheotomy

tubes for reconstructive surgery, such as for artificial heart

valves, and as blood vessels in the form of nanotubes or

neurotubes for the regeneration of coronary blood vessel

Table 4 Uses of plant cellulose (PC), microbial cellulose (MC) and bacterial cellulose (BC) composite hydrogels in tissue engineering

Sl.
No.

Hydrogel composite Applications References

1 Plant cellulose (PC) purified Tissue engineering and regenerative medicine [145]; Liu et al., 2014 [146]

2 Algal cellulose (AC) Bone tissue and cartilage engineering [147]

3 Bacterial cellulose (BC) purified Bone tissue engineering, cornea treatment, heart and vascular muscle
regeneration

[148]

4 Carboxymethyl cellulose (CMC) Drug loading and controlled release of drugs, nucleus pulposus [149]; [148]

5 Polyvinylpyrrolidone (PVP) Soft-tissue replacement wound management [149]

6 Gelatin Wound dressing, tissue regeneration [80]; [150], [151]

7 Starch Reinforcement agent for bionanocomposites [152]

8 Alginate, sodium alginate High strength hydrogel preparation [153]

9 Acrylic acid Burn wound healing [154]

10 Graphene oxide (GO) Biomedicine [155]

11 Vaccarin Cell growth carrier wound dressing [156]

12 Hyaluronic acid (HA) Wound dressing, tissue engineering [157]

13 Chondroitin sulfate (CS) Dental material scaffold Opera et al., 102

14 Calcium phosphate (CP) Bone substitute [158]

15 Ca2+ activated cellulose, cellulose/
lactide

Bone tissue engineering [148]

16 2-hydroxyethyl methacrylate
(PHEMA)

Contact lenses and optic component for biosensors [159]

17 Polyacrylamide Cartilage replacement [160] & [161]

18 Gellan gum High strength hydrogel for synthetic connective tissue [153]

19 L-carrageenan High strength hydrogel for synthetic connective tissue [153]

20 Hydroxyapatite Bone scaffold substitute, bone tissue engineering [162]; [163]; [164]; [165];
[166]

21 Nanohydroxyapatite Bone tissue engineering

22 Polyvinyl alcohol (PVA) Cardiovascular soft tissue replacement, artificial cornea biomaterials ([167]; [168]); [169]; ([170];
[171])

23 Polylacitide and glycidyl
methacrylate

Skin repair material [172]

24 Collagen Wound dressing for skin regeneration [173]; [148]

20 Silver Antimicrobial wound dressing [174]; [175]

Table 5 Commercially available hydrogel wound dressing contains cellulose or its sodium salt. Most dressings are available in two

forms, either as sheets or as amorphous gels. Products containing silver ions show antimicrobial property

The hydrogel wound dressing (producer) Composition References

IntraSite™ Gel (Smith and Nephew) Carboxymethycellulose sodium (CMCNa), propylene glycol and water

GranuGel™ (ConvaTec) Carboxymethycellulose sodium (CMCNa), Propylene glycol, pectin and water [181], [182]

Purilon Gel™ (ColoPlast) Carboxymethycellulose (CMC), calcium alginate and water

Aquacel Ag™ (ConvaTec) Carboxymethycellulose sodium (CMCNa) and silver ions (1.2%)

Silvercel™ (Johnson and Johnson) Carboxymethycellulose (CMC), silver ions (8%) and calcium alginate
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and nerves. Previous studies have found new epithelial cell

layers to form over these artificial BC tubes, demonstrat-

ing the successful application of BC in tissue implantation

[185]. The use of PVA/BC nanocomposites for the re-

placement of cardiovascular tissues has also been re-

ported, since these would mimic the role of natural

collagen and elastin (a connective tissue protein that helps

skin to return to its original position [167, 168]

Potential drug delivery material

Transdermal systems can act as an entry gate for BCs into

the domain of drug delivery systems [186]. BC dry films

have been obtained after the successful immersion of

these in benzalkonium chloride (an antimicrobial agent).

Their subsequent drug loading capacity was found to be

0.116mg/cm2 (per unit surface area), and the effect of

drug was found to last for at least 24 h against Staphylo-

coccus aureus and Bacillus subtilis applied to the wounded

area [187]. Silver nanoparticle-coated BC fibers showed

99.99% antimicrobial activity against Escherichia coli and

S. aureus [164]. Despite these promising results, the appli-

cation of BC hydrogels involves certain clinical and

pharmacological limitations. However, despite these limi-

tations, the complex nanofibrillar structure of BC repre-

sents a suitable macromolecular support for the inclusion

of drugs, i.e. for use as a drug carrier [188].

Artificial grafting of cornea

Corneal disease is a serious health problem that can lead

to partial or complete blindness. An estimated 10 mil-

lion people have lost their eyesight due to corneal infec-

tion or similar diseases. With this in mind, researchers

around the world have developed biomaterials for the

treatment of defective corneas. The properties of bacter-

ial cellulose, including its nanoporous structure, and ex-

cellent mechanical properties, make it an ideal candidate

for use as an artificial cornea to help maintain the intra-

ocular pressure of the eye and re-establish ocular pellu-

cidity. The BC/polyvinyl alcohol (BC/PVA) hydrogel has

a water content and light transmittance comparable to

that of natural cornea and was successfully synthesized

and described by Wang et al. for this end.

Dental implants

BC composite hydrogels were prepared from Acetobacter

hansenii by [189] for used in dental root canal treatment

(RCT) due to intracanal asepsis. Dental RCT is required

when dental caries progress to infection of the dental

pulp. From a materials point of view, BC has superior

properties compared to plant cellulose (paper points) for

the use in dental RCT. Moreover, research has demon-

strated the tissue regeneration of periodontal cells after

the application of BC hydrogels [190, 191].

Other applications

Biomimetic scaffolds are of great interest to tissue engin-

eering as they supports essential cell functions. BNC

scaffolds in combination with soluble collagen-I stimu-

late estrogenic differentiation of mesenchymal stem cells

(MSCs) [Vielreicher et al., 2018]. The use of cell-derived

ECM collagen-I holds good potential, particularly for the

tissue engineering of mechanically-challenged tissues.

An optimized method for the purification of nano- fibril-

lated cellulose (NFC) and hydrogel production from

wood cellulose was described for the development of a

wound dressing material [192]. Inflammation, autolytic

debridement, granulated tissue formation, and re- epi-

thelialization are the processes that generally occur dur-

ing wound healing. Wound dressings are designed to

promote healing while protecting the wounds from in-

fection. This is particularly important in cases of chronic

wounds (e.g., ulcers), which fail to heal properly. Since a

moist environment encourages rapid healing, hydrogels

are optimal candidates for the development of wound

dressings, either as sheets or in an amorphous form

[193]. Various types of hydrogel dressings have been pat-

ented so far and are currently commercially available

(Table 5), based on synthetic or natural polymers, or a

combination of these. Among the most recent patents, it

is worth citing those describing in situ forming gels (e.g.,

based on sprayable formulations [194] and on coalescing

nanoparticles [195]), and those exploring radiation

crosslinking as a stabilization technique, which allows to

obtain sterile and cross-linked hydrogel films in a sin-

gle-step process [196, 197].

Scaffold attempts to mimic natural ECMs. The most

common method of tissue engineering includes the use of

biodegradable scaffolds to support the growth and develop-

ment of cells into tissues or by injecting the isolated single

cell suspensions [5]. Cellulose-based scaffolding materials

are widely used to regenerate various tissues, such as bone,

cartilage, heart, blood vessel, nerve, and liver, among others.

However, the design of scaffolds often involves issues related

to the need requirement for adequate cell-cell adhesion,

cell-cell communication, and cell-ECM communication,

which are crucial features of tissue functioning [198]. To

overcome these problems, biodegradable scaffolds have

been developed. Since, natural polymers are biocompatible,

their use allows us to avoid stimulating chronic inflamma-

tion or immunological reactions or toxicity. Therefore,

hydrogels are used extensively in tissue engineering due to

their high swelling properties and their biocompatibility. As

a result, they can be incorporated the cells of soft tissues

and bioactive molecules via gelling process [199].

Conclusion and future directions
The current review clearly shows that based explicitly on

cellulose biopolymers, hydrogels are a diverse class of
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materials that have widespread applications in the field

of tissue engineering and regenerative medicine. In these

areas, scaffolds played a significant role and have been

developed to form temporary, artificial ECMs to support

cell attachment and three-dimensional (3D) tissue for-

mation. Due to their high mechanical strength and ther-

mostability, bacterial cellulose derivatives are widely used

for wound dressing and healing, providing a novel method

for the treatment of epidermal burns. Most interestingly,

the work of researchers across the globe in the fields of

cellulose hydrogel development and characterization seem

to indicate that hydrogels based on cellulosic biomaterials

could be potential candidates for applications in the field

of tissue engineering. However, the research outcomes ap-

pear somewhat different from the promising predictions.

For example, while using hydrogels in bioengineering ap-

plications, researchers have encountered a number of

problems. These include difficulties in the handling, main-

tenance, storage of hydrogels, for example, for hydrogels

designed using bioprinters, which are not as much mech-

anically strong as was theoretically determined. During in

vitro experiments it was more difficult to sterilize scaffold-

ing structures than, for example, the cell culture media.

Sterilizing by means of autoclaving can cause the func-

tional properties of cellulose-based hydrogels to change.

However, their sterilization is necessary since the use of

hydrogels without proper sterilization could be a large

source of contamination during in vivo and in vitro exper-

iments in laboratory. Researchers have also often encoun-

tered difficulties while loading hydrogels with drugs or

cells for controlled drug delivery. Further research into

hydrogels will be required for the development of new

methods and protocols in order to overcome these limita-

tions. Despite these issues, the use of BC hydrogels

compared to plant-derived or manmade hydrogels is cur-

rently on the rise due to the cost-effective production of

BC hydrogels using stirred-tank or static bioreactors.

However, more needs to be done to improve plant-derived

cellulosic gel production (PC hydrogels). The use of

cellulose-based hydrogels in tissue engineering has both

advantages and disadvantages, the latter of which will

need to be resolved before cellulosic hydrogels can be

more widely applied.

Researchers are also working to improve our under-

standing of the mechanism behind the molecular inter-

action involved in cellulose ECM materials so that, in

the future, materials that mimic natural ECMs in terms

of their composition, structural characteristics, and

mechanical properties can be developed. The proper

development of 3D scaffolding materials could be used

to replace conventional tissue engineering techniques to

a great extent. Cellulose- based hydrogels have import-

ant applications in tissue engineering due to their high

biocompatibility and environment- friendly properties.

Cellulose-based hydrogels have been recently modified

using a nontoxic cross-linking agent or cross-linking treat-

ments, to improve the yield of both the final product and

the manufacturing processes. However, further research is

needed to develop more advanced cellulose-based hydro-

gels for use in healthcare and medicine.
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