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Abstract. We establish a new class of functional central limit theorems for partial sum of certain
symmetric stationary infinitely divisible processes with regularly varying Lévy measures. The limit
process is a new class of symmetric stable self-similar processes with stationary increments, that
coincides on a part of its parameter space with a previously described process. The normalizing
sequence and the limiting process are determined by the ergodic theoretical properties of the flow
underlying the integral representation of the process. These properties can be interpreted as de-
termining how long is the memory of the stationary infinitely divisible process. We also establish
functional convergence, in a strong distributional sense, for conservative pointwise dual ergodic
maps preserving an infinite measure.

1. Introduction

Let X = (X1, X2, . . .) be a discrete time stationary stochastic process. A (functional) central

limit theorem for such a process is a statement of the type

(1.1)

 1

cn

⌈nt⌉∑
k=1

Xk − hnt, 0 ≤ t ≤ 1

⇒
(
Y (t), 0 ≤ t ≤ 1

)
.

Here (cn) is a positive sequence growing to infinity, (hn) a real sequence, and
(
Y (t), 0 ≤ t ≤ 1

)
is a non-degenerate (i.e. non-deterministic) process. Convergence in (1.1) is at least in finite

dimensional distributions, but preferably it is a weak convergence in the space D[0, 1] equipped

with an appropriate topology. Not every stochastic process satisfies a central limit theorem, and

for those that do, it is well known that both the rate of growth of the scaling constant cn and the

nature of the limiting process Y =
(
Y (t), 0 ≤ t ≤ 1

)
are determined both by the marginal tails

of the stationary process X and its dependence structure. The limiting process (under very minor

assumptions) is necessarily self-similar with stationary increments; this is known as the Lamperti

theorem; see Lamperti (1962).
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If, say, X1 has a finite second moment, and X is an i.i.d. sequence then, clearly, one can choose

cn = n1/2, and then Y is a Brownian motion. With equally light marginal tails, if the memory is

sufficiently short, then one expects the situation to remain, basically, the same, and this turns out

to be the case. When the variance is finite, the basic tool to measure dependence is, obviously,

the correlations, which have to decay fast enough. It is well known, however, that a fast decay of

correlations is alone not sufficient for this purpose, and, in general, certain strong mixing conditions

have to be assumed. See for example Rosenblatt (1956) and, more recently, Merlevéde et al. (2006).

If the memory is not sufficiently short, then both the rate of growth of cn can be different from

n1/2, and the limiting process can be different from the Brownian motion. In fact, the limiting

process may fail to be Gaussian at all; see e.g. Dobrushin and Major (1979) and Taqqu (1979).

If the marginal tails of the process are heavy, which, in this case, means that X1 is in the domain

of attraction of an α-stable law, 0 < α < 2, and X is an i.i.d. sequence then, clearly, one can choose

cn to be the inverse of the marginal tail (this makes cn vary regularly with exponent 1/α), and then

Y is an α-stable Lévy motion. Again, one expects the situation to remain similar if the memory

is sufficiently short. Since correlations do not exist under heavy tails, statements of this type have

been established for special models, often for moving average models; see e.g. Davis and Resnick

(1985), Avram and Taqqu (1992) and Paulauskas and Surgailis (2008). Once again, as the memory

gets longer, then both the rate of growth of cn can be different from that obtained by inverting

the marginal tail, and the limiting process will no longer have independent increments (i.e. be

an α-stable Lévy motion). It is here, however, that the picture gets more interesting than in the

case of light tails. First of all, in absence of correlations there is no canonical way of measuring

how much longer the memory gets. Even more importantly, certain types of memory turn out to

result in the limiting process Y being a self-similar α-stable process with stationary increments of

a canonical form, the so-called Linear Fractional Stable motion; see e.g. Maejima (1983) for an

example of such a situation, and Samorodnitsky and Taqqu (1994) for information on self-similar

processes. However, when the memory gets even longer, Linear Fractional Stable motions disappear

as well, and even more “unusual” limiting processes Y may appear. This phenomenon may qualify

as change from short to long memory; see Samorodnitsky (2006).

In this paper we consider a functional central limit theorem for a class of heavy tailed stationary

processing exhibiting long memory in this sense. It is particularly interesting both because of the

manner in which memory in the process is measured, and because the limiting process Y that

happens to be an extension of a very recently discovered self-similar stable process with stationary

increments. Specifically, we will assume that X is a stationary infinitely divisible process (satisfying

certain assumptions, described in details in Section 2). That is, all finite dimensional distributions
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of X are infinitely divisible; we refer the reader to Rajput and Rosiński (1989) for more information

on infinitely divisible processes and their integral representations we will work with in the sequel.

The class of central limit theorems we consider involves a significant interaction of probabilistic

and ergodic theoretical ideas and tools. To make the discussion more transparent, we will only

consider symmetric infinitely divisible processes without a Gaussian component (but there is no

doubt that results of this type will hold in a greater generality as well). The law of such a process

is determined by its (function level) Lévy measure. This is a (uniquely determined) symmetric

measure κ on RN satisfying

κ
(
x = (x1, x2, . . .) ∈ RN : xj = 0 for all j ∈ N

)
= 0

and ∫
RN

min(1, x2j )κ(dx) <∞ for each j ∈ N,

such that for each finite subset {j1, . . . , jk} of N, the k-dimensional Lévy measure of the infinitely

divisible random vector
(
Xj1 , . . . , Xjk

)
is given by the projection of κ on the appropriate coordinates

of x. See Maruyama (1970).

Because of the stationarity of the process X, its Lévy measure µ is invariant under the left shift

θ on RN,

θ(x1, x2, x3, . . .) = (x2, x3, . . .) .

It has been noticed in the last several years that the ergodic-theoretical properties of the shift

operator with respect to the Lévy measure have a profound effect on the memory of the stationary

process X. The Lévy measure of the process is often described via an integral representation

of the process, and in some cases the shift operator with respect to the Lévy measure can be

related to an operator acting on the space on which the integrals are taken. Thus, Rosiński and

Samorodnitsky (1996) and Samorodnitsky (2005) dealt with the ergodicity and mixing of stationary

stable processes, while Roy (2008) dealt with general stationary infinitely divisible processes. The

effect of the ergodic-theoretical properties of the shift operator with respect to the Lévy measure

on the partial maxima of stationary stable processes was discussed in Samorodnitsky (2004).

In the present paper we consider stationary symmetric infinitely divisible processes without a

Gaussian component given via an integral representation described in Section 2. This representation

naturally includes a measure-preserving operator on a measurable space, and we related its ergodic-

theoretical properties to the kind of central limit theorem the process satisfies. We consider the

so-called conservative operators, that turn out to lead to non-standard limit theorems of the type

that, to the best of our knowledge, have not been observed before.
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We describe our setup in Section 2. In Section 3 we introduce the limiting symmetric α-stable

(henceforth, SαS) process self-similar processes with stationary increments and discuss its proper-

ties. In Section 4 we present the ergodic-theoretical notions that we use in the paper. The exact

assumptions in the central limit theorem are stated in Section 5. In this section we also present

the statement of the theorem and several examples. The proof of the theorem uses several dis-

tributional ergodic-theoretical results we present and prove in Section 6. These results may be of

independent interest in ergodic theory. Finally, the proof of the central limit theorem is completed

in Section 7.

2. The setup

We consider infinitely divisible processes of the form

(2.1) Xn =

∫
E
fn(x)dM(x), n = 1, 2, . . . ,

where M is an infinitely divisible random measure on a measurable space (E, E), and the functions

fn, n = 1, 2, . . . are deterministic functions of the form

(2.2) fn(x) = f ◦ Tn(x) = f
(
Tnx

)
, x ∈ E, n = 1, 2, . . . ,

where f : E → R is a measurable function, and T : E → E a measurable map. The (independently

scattered) infinitely divisible random measure M is assumed to be a homogeneous symmetric infin-

itely divisible random measure without a Gaussian component, with control measure µ and local

Lévy measure ρ. That is, µ is σ-finite measure on E, which we will assume to be infinite. Further,

ρ is a symmetric Lévy measure on R, and for every A ∈ E with µ(A) <∞, M(A) is a (symmetric)

infinitely divisible random variable such that

(2.3) EeiuM(A) = exp

{
−µ(A)

∫
R

(
1− cos(ux)

)
ρ(dx)

}
u ∈ R.

It is clear that, in order for the process X to be well defined, the functions fn, n = 1, 2, . . . have

to satisfy certain integrability assumptions; the assumptions we will impose below will be sufficient

for that. Once the process X is well defined, it is, automatically, symmetric and infinitely divisible,

without a Gaussian component, with the function level Lévy measure given by

(2.4) κ = (ρ× µ) ◦K−1 ,

with K : R×E → RN given by K(x, s) = x
(
f1(s), f2(s), . . .

)
, s ∈ E, x ∈ R. For details see Rajput

and Rosiński (1989).

We will assume that the measurable map T preserves the control measure µ. It follows imme-

diately from (2.4) and the form of the functions (fn) given in (2.2) that the Lévy measure κ is

invariant under the left shift θ and, hence, the process X is stationary. We intend to relate the
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ergodic-theoretical properties of the map T to the dependence properties of the process X and,

subsequently, to the kind of central limit theorem the process satisfies. We refer the reader to

Aaronson (1997) for more details on the ergodic-theoretical notions used in the sequel. A short

review of what we need will be given in Section 4 below.

Our basic assumption is that the map T is conservative. This property has already been observed

to be related to long memory in the process X; see e.g. Samorodnitsky (2004) and Roy (2008).

We will quantify the resulting length of memory by assuming, further, that the map T is ergodic

and pointwise dual ergodic, with a regularly varying normalizing sequence. We will see that the

exponent of regular variation plays a major role in the central limit theorem.

The second major “player” in the central limit theorem is the heaviness of the marginal tail of

the process X. We will assume that the local Lévy measure ρ has a regularly varying tail with

index −α, 0 < α < 2. That is,

(2.5) ρ(·,∞) ∈ RV−α at infinity.

With a proper integrability assumption on the function f in (2.2), the process X has regularly

varying marginal (and even finite-dimensional) distributions, with the same tail exponent −α; see
Rosiński and Samorodnitsky (1993). That is, all the finite-dimensional distributions of the process

are in the domain of attraction of a SαS law.

This leads to a rather satisfying picture, in which the kind of the central limit theorem that holds

for the process X depends both on the marginal tails of the process and on the length of memory

in it, and both are clearly parametrized.

In fact, in order to obtain the central limit theorem for the processX, we will need to impose more

specific assumptions on the map T . We will also, clearly, need specific integrability assumptions on

the kernel in the integral representation of the process. These assumptions are presented in Section

5.

We proceed, first, with a description of the limiting process we will eventually obtain.

3. The limiting process

In this section, we will introduce a class of self-similar SαS processes with stationary increments.

These processes will later appear as weak limits in the central limit theorem. We will see this

process is an extension (to a wider range of parameters) of a class recently introduced by Dombry

and Guillotin-Plantard (2009). Before introducing this process we need to some preliminary work.

For 0 < β < 1, let
(
Sβ(t), t ≥ 0

)
be a β-stable subordinator, i.e. a Lévy process with increasing

sample paths, satisfying Ee−θSβ(t) = exp{−tθβ} for θ ≥ 0 and t ≥ 0; see e.g. Chapter III of Bertoin
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(1996). Define its inverse process by

(3.1) Mβ(t) = S←β (t) = inf
{
u ≥ 0 : Sβ(u) ≥ t

}
, t ≥ 0 .

Recall that the marginal distributions of the process
(
Mβ(t), t ≥ 0

)
are the Mittag-Leffler distri-

butions, with the Laplace transform

(3.2) E exp{θMβ(t)} =

∞∑
n=0

(θtβ)n

Γ(1 + nβ)
, θ ∈ R;

see Proposition 1(a) in Bingham (1971). We will call this process the Mittag-Leffler process. This

process has a continuous and non-decreasing version; we will always assume that we are working

with such a version. It follows from (3.2) (or simply from the definition) that the Mittag-Leffler

process is self-similar with exponent β. Further, all of its moments are finite. Recall, however, that

this process has neither stationary nor independent increments; see e.g. Meerschaert and Scheffler

(2004).

We are now ready to introduce the new class of self-similar SαS processes with stationary incre-

ments announced at the beginning of this section. Let 0 < α < 2 and 0 < β < 1, and let (Ω′,F ′, P ′)
be a probability space. We define

(3.3) Yα,β(t) =

∫
Ω′×[0,∞)

Mβ

(
(t− x)+, ω

′)dZα,β(ω
′, x), t ≥ 0,

where Zα,β is a SαS random measure on Ω′× [0,∞) with control measure P ′× ν, with ν a measure

on [0,∞) given by ν(dx) = (1 − β)x−β dx, x > 0. Here Mβ is a Mittag-Leffler process defined on

(Ω′,F ′, P ′). The random measure Zα,β itself and, hence, also the process Yα,β, are defined on some

generic probability space (Ω,F , P ). We refer the reader to Samorodnitsky and Taqqu (1994) for

more information on integrals with respect to stable random measures.

In Theorem 3.1 below we prove that the process
(
Yα,β(t), t ≥ 0

)
is a well defined self-similar

SαS processes with stationary increments. We call it the β-Mittag-Leffler (or β-ML) fractional SαS

motion.

Theorem 3.1. The β-ML fractional SαS motion is a well defined self-similar SαS processes with

stationary increments. It is also self-similar with exponent of self-similarity H = β + (1− β)/α.

Proof. By the monotonicity of the process Mβ we have, for any t ≥ 0,∫
[0,∞)

∫
Ω′
Mβ((t− x)+, ω

′)αP ′(dω)ν(dx) ≤ tβE′Mβ(t)
α <∞ ,
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which proves that the process
(
Yα,β(t), t ≥ 0

)
is well defined. Further, by the β-self-similarity of

the process Mβ, we have for any k ≥ 1, t1 . . . tk ≥ 0, and c > 0, for all real θ1, . . . , θk,

E exp

i
k∑

j=1

θjYα,β(ctj)

 = exp

−
∫ ∞
0

E′
∣∣∣ k∑
j=1

θjMβ((ctj − x)+)
∣∣∣α(1− β)x−βdx


= exp

−
∫ ∞
0

E′
∣∣∣ k∑
j=1

θjc
HMβ((tj − y)+)

∣∣∣α(1− β)y−βdy

 = E exp

i
k∑

j=1

θjc
HYα,β(tj)

 ,

which shows the H-self-similarity of the β-ML fractional SαS motion.

For the proof of stationary increment property, it suffices to check that

E exp

i
k∑

j=1

θj
(
Yα,β(tj + s)− Yα,β(s)

) = E exp

i
k∑

j=1

θjYα,β(tj)


for all k ≥ 1, t1 . . . tk ≥ 0, s ≥ 0, and θ1 . . . θk ∈ R. This is equivalent to verifying the equality in∫ ∞

0
E′
∣∣∣ k∑
j=1

θj{Mβ((tj + s− x)+)−Mβ((s− x)+)}
∣∣∣αx−βdx

=

∫ ∞
0

E′
∣∣∣ k∑
j=1

θjMβ((tj − x)+)
∣∣∣αx−βdx .

Changing variable by r = s−x in the left hand side and rearranging the terms shows that we need

to check the equality in

(3.4)

∫ s

0
E′
∣∣∣ k∑
j=1

θj(Mβ(tj + r)−Mβ(r))
∣∣∣α(s− r)−βdr

=

∫ ∞
0

E′
∣∣∣ k∑
j=1

θjMβ((tj − x)+)
∣∣∣α(x−β − (s+ x)−β)dx.

Let δr = Sβ
(
Mβ(r)

)
− r be the overshoot of the level r > 0 by the β-stable subordinator(

Sβ(t), t ≥ 0
)
related to

(
Mβ(t), t ≥ 0

)
by (3.1). The law of δr is known to be given by

(3.5) P (δr ∈ dx) =
sinβπ

π
rβ(r + x)−1x−β dx, x > 0 ;

see e.g. Exercise 5.6 in Kyprianou (2006). Further, by the strong Markov property of the stable

subordinator we have (
Mβ(t+ r)−Mβ(r), t ≥ 0

) d
=
(
Mβ((t− δr)+), t ≥ 0

)
,

with the understanding that Mβ and δr in the right hand side are independent. We conclude that

(3.6)

∫ s

0
E′|

k∑
j=1

θj(Mβ(tj + r)−Mβ(r))|α(s− r)−βdr
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=
sinβπ

π

∫ ∞
0

∫ s

0
E′|

k∑
j=1

θjMβ((tj − x)+)|αrβ(r + x)−1x−β(s− r)−βdrdx.

Using the integration formula∫ 1

0

(
t

1− t

)β 1

t+ y
dt =

π

sinβπ

[
1−

(
y

1 + y

)β
]
, y > 0 ,

given on p. 338 of Gradshteyn and Ryzhik (1994), shows that (3.6) is equivalent to (3.4). This

completes the proof. �

Recall that, when 0 < β ≤ 1/2, the Mittag-Leffler process of (3.1) is distributionally equivalent

to the local time at zero of a symmetric stable Lévy process with index of stability β̂ = (1− β)−1.

Specifically, let
(
Wβ̂(t), t ≥ 0

)
be a symmetric β̂-stable Lévy process, such that EeirWβ̂(t) =

exp{−t|r|β̂} for r ∈ R and t ≥ 0. This process has a jointly continuous local time process,

Lt(x), t ≥ 0, x ∈ R; see e.g. Getoor and Kesten (1972). Then

(3.7)
(
Mβ(t), t ≥ 0

) d
=
(
cβLt(0), t ≥ 0

)
for some cβ > 0; see Section 11.1.1 in Marcus and Rosen (2006). Therefore, in the range 0 < β ≤
1/2, the β-ML fractional SαS motion (3.3) can be represented in law as

(3.8) Yα,β(t) = cβ

∫
Ω′×[0,∞)

L(t−x)+
(
0, ω′

)
dZα,β(ω

′, x), t ≥ 0,

where
(
Lt(x)

)
is the local time of a symmetric β̂-stable Lévy process defined on (Ω′,F ′, P ′). Recall

also the β̂-stable local time fractional SαS motion introduced in Dombry and Guillotin-Plantard

(2009) (see also Cohen and Samorodnitsky (2006)). That process can be defined by

(3.9) Ŷα,β(t) =

∫
Ω′×R

Lt

(
x, ω′

)
dẐα(ω

′, x), t ≥ 0,

where Ẑα is a SαS random measure on Ω′ × R with control measure P ′ × Leb. We claim that, in

fact, if 0 < β ≤ 1/2,

(3.10)
(
Yα,β(t) t ≥ 0

) d
= c

(1)
β

(
Ŷα,β(t) t ≥ 0

)
,

for some multiplicative constant c
(1)
β . Therefore, one can view the ML fractional SαS motion as an

extension of the β̂-stable local time fractional SαS motion from the range 1 < β̂ ≤ 2 to the range

1 < β̂ <∞. It is interesting to note that the central limit theorem in Section 5 is of a very different

type from the random walk in random scenery situation of Cohen and Samorodnitsky (2006) and

Dombry and Guillotin-Plantard (2009).

To check (3.10), let

Hx = inf
{
t ≥ 0 : Wβ̂(t) = x

}
, x ∈ R .



FUNCTIONAL CENTRAL LIMIT THEOREM FOR INFINITELY DIVISIBLE PROCESSES 9

Since 1 < β̂ ≤ 2, Hx is a.s. finite for any x ∈ R; see e.g. Remark 43.12 in Sato (1999). Further, by

the strong Markov property, for every x ∈ R, the conditional law of
(
LHx+t(x), t ≥ 0

)
given F ′Hx

,

coincides a.s. with the law of
(
Lt(0), t ≥ 0

)
. We conclude that for any k ≥ 1, t1 . . . tk ≥ 0, and real

θ1, . . . , θk,

− logE exp
{ k∑
j=1

θj Ŷα,β(tj)
}
=

∫
R
E′
∣∣∣ k∑
j=1

θjLtj (x)
∣∣∣α dx

=

∫
R

∫ ∞
0

E′
∣∣∣ k∑
j=1

θjL(tj−y)+(0)
∣∣∣α Fx(dy) dx ,

where Fx is the law of Hx. Using the obvious fact that Hx
d
= |x|β̂H1, an easy calculation shows that

the mixture
∫
R Fx dx is, up to a multiplicative constant, equal to the measure ν in (3.3). Therefore,

for some constant c
(1)
β ,

− logE exp
{ k∑
j=1

θjc
(1)
β Ŷα,β(tj)

}
= − logE exp

{ k∑
j=1

θjYα,β(tj)
}
,

and (3.10) follows.

Remark 3.2. It is interesting to observe that, for a fixed 0 < α < 2, the range of the exponent of

self-similarity H = β + (1 − β)/α of the β-ML fractional SαS motion, as β varies between 0 and

1, is a proper subset of the feasible range of the exponent of self-similarity of stationary increment

self-similar SαS processes, which is 0 < H ≤ max(1, 1/α); see Samorodnitsky and Taqqu (1994).

It was shown in Dombry and Guillotin-Plantard (2009) that the stable local time fractional SαS

motion is Hölder continuous. We extend this statement to the ML fractional SαS motion.

Theorem 3.3. The β-ML fractional SαS motion satisfies, with probability 1,

sup
0≤s<t≤1/2

∣∣Yα,β(t)− Yα,β(s)
∣∣

(t− s)β
∣∣log(t− s)

∣∣1−β <∞

if 0 < α < 1, and

sup
0≤s<t≤1/2

∣∣Yα,β(t)− Yα,β(s)
∣∣

(t− s)β
∣∣log(t− s)

∣∣3/2−β <∞

if 1 ≤ α < 2.

Proof. The statement of the theorem follows from Lemma 3.4 and the argument in Theorem 5.1

in Cohen and Samorodnitsky (2006); see also Theorem 1.5 in Dombry and Guillotin-Plantard

(2009). �



10 TAKASHI OWADA AND GENNADY SAMORODNITSKY

The next lemma establishes Hölder continuity of the Mittag-Leffler process (3.1). The statement

might be known, but we could not find a reference, so we present a simple argument. In the case

0 < β ≤ 1/2 (most of) the statement is in Theorem 2.1 in Ehm (1981), through the relation with

the local time (3.7).

Lemma 3.4. For B > 0 let

K = sup
0≤s<t<s+1/2≤B

∣∣Mβ(t)−Mβ(s)
∣∣

(t− s)β
∣∣log(t− s)

∣∣1−β .
Then K is an a.s. finite random variable with all finite moments.

Proof. Because of the self-similarity of the Mittag-Leffler process it is enough to consider B = 1/2.

In the course of the proof we will use the notation c(β) for a finite positive constant that may

depend on β, and that may change from one appearance to another. Recall the lower tail estimate

of a positive β-stable random variable:

(3.11) P
(
Sβ(1) ≤ θ

)
≤ exp

{
−c(β)θ−β/(1−β)

}
, 0 < θ ≤ 1 ;

see Zolotarev (1986). Let λ ≥ 1. We have

P (K > λ) ≤
∞∑
n=1

P
(

sup
0≤s<t≤1/2

2−(n+1)≤t−s≤2−n

Mβ(t)−Mβ(s) > c(β)λn1−β2−nβ
)
:=

∞∑
n=1

qn(λ) .

For n = 1, 2, . . . we use the following decomposition:

qn(λ) ≤ P
(
Sβ(λ log n) ≤ 1/2

)
+P
[
for some 0 < t ≤ λ log n, Sβ

(
t+ c(β)λn1−β2−nβ

)
− Sβ(t) ≤ 2−n

]
:= q(1)n (λ) + q(2)n (λ) .

Using (3.11) and self-similarity of the stable subordinator, we obtain
∞∑
n=1

q(1)n (λ) ≤ c(β)−1 exp
{
−c(β)λ1/(1−β)

}
.

On the other hand,

q(2)n (λ) ≤ P
(
Sβ

(
2−1(i+1)c(β)λn1−β2−nβ

)
−Sβ

(
2−1ic(β)λn1−β2−nβ

)
≤ 2−n, some i = 0, . . . ,Kn

)
,

with Kn ≤ 2c(β)−1nβ−12nβ logn. Switching to the complements, and using once again (3.11)

together with the independence of the increments and self-similarity of the stable subordinator, we

conclude, after some straightforward calculus, that for all λ ≥ λ(β) ∈ (0,∞),
∞∑
n=1

q(2)n (λ) ≤ c(β)−1 exp
{
−c(β)λ1/(1−β)

}
.

The resulting bound on the tail probability P (K > λ) is sufficient for the statement of the lemma.

�
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Recall that the only self-similar Gaussian process with stationary increments is the Fractional

Brownian motion (FBM), whose law is, apart from the scale, uniquely determined by the self-

similarity parameter H ∈ (0, 1); see Samorodnitsky and Taqqu (1994). This parameter of self-

similarity also determines the dependence properties of the increment process of the FBM, the

so-called Fractional Gaussian noise, with the case H > 1/2 regarded as the long memory case. In

contrast, the self-similarity parameter almost never determines the dependence properties of the

increment processes of stable self-similar processes with stationary increments; see Samorodnitsky

(2006). Therefore, it is interesting and important to discuss the memory properties of the increment

process

(3.12) V (α,β)
n = Yα,β(n+ 1)− Yα,β(n), n = 0, 1, 2, . . . , .

We refer the reader to Rosiński (1995) and Samorodnitsky (2005) for some of the notions used in

the statement of the following theorem.

Theorem 3.5. The stationary process
(
V

(α,β)
n

)
is generated by a conservative null flow and is

mixing.

Proof. Note that the increment process has the integral representation

V (α,β)
n =

∫
Ω′×[0,∞)

(
Mβ

(
(n+ 1− x)+, ω

′)−Mβ

(
(n− x)+, ω

′)) dZα,β(ω
′, x), n = 0, 1, 2, . . . .

Since for every x > 0, on a set of P ′ probability 1, by the strong Markov property of the stable

subordinator we have

lim sup
n→∞

Mβ

(
(n+ 1− x)+

)
−Mβ

(
(n− x)+

)
> 0 ,

we see that

∞∑
n=1

(
Mβ

(
(n+ 1− x)+, ω

′)−Mβ

(
(n− x)+, ω

′))α = ∞ P ′ × ν a.e..

By Corollary 4.2 in Rosiński (1995) we conclude that the increment process is generated by a

conservative flow.

It remains to prove that the increment process is mixing, since mixing implies ergodicity which,

in turns, implies that the increment process is generated by a null flow; see Samorodnitsky (2005).

By Theorem 5 of Rosiński and Żak (1996), it is enough to show that for every ϵ > 0,

(P ′ × ν){(ω′, x) :Mβ((1− x)+, ω
′) > ϵ, Mβ((n+ 1− x)+, ω

′)−Mβ((n− x)+, ω
′) > ϵ}

→ 0 as n→ ∞.
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However, an obvious upper bound on the expression in the left hand side is∫ 1

0
P ′
(
Mβ(n+ 1− x)−Mβ(n− x) > ϵ

)
(1− β)x−β dx

=

∫ 1

0
P ′
(
Mβ((1− δn−x)+) > ϵ

)
(1− β)x−β dx ,

where for r > 0, δr is a random variable, independent of the Mittag-Leffler process, with the

distribution given by (3.5). Since δr converges weakly to infinity as r → ∞, by the dominated

convergence theorem, the above expression converges to zero as n→ ∞. �

Remark 3.6. Two extreme cases deserve mentioning. A formal substitution of β = 0 into (3.2)

leads to a well-defined process M0(0) = 0 and M0(t) = E, the same standard exponential random

variable for all t > 0. This process is no longer the inverse of a stable subordinator. It can, however,

be used in (3.3). It is elementary to see that the resulting SαS process Yα,0 is, in fact, a SαS Lévy

motion.

On the other hand, a formal substitution of β = 1 into (3.2) leads to the degenerate process

M1(t) = t for all t ≥ 0 (which can be viewed as the inverse of the degenerate 1-stable subordinator

S1(t) = t for t ≥ 0.) Once again, this process can be used in (3.3), if one interprets the measure ν

as the unit point mass at the origin. The resulting SαS process Yα,1 is now the degenerate process

Yα,1(t) = tYα,1(1) for all t ≥ 0, where Yα,1(1) is a SαS random variable.

Both limiting cases, Yα,0 and Yα,1, are processes of a very different nature from the β-ML frac-

tional SαS motion with 0 < β < 1.

4. Some Ergodic Theory

In this section we present some elements of ergodic theory used in this paper. The main reference

for these notions is Aaronson (1997); see also Zweimüller (2009).

Let
(
E, E , µ

)
be a σ-finite measure space. We will often use the notation A = B mod µ for

A,B ∈ E when µ(A△B) = 0.

Let T : E → E be a measurable map that preserves the measure µ. When the entire sequence

T, T 2, T 3, . . . of iterates of T is involved, we will sometimes refer to it as a flow. The map T is

called ergodic if the only sets A in E for which A = T−1A mod µ are those for which µ(A) = 0 or

µ(Ac) = 0. The map T is called conservative if

∞∑
n=1

1A ◦ Tn = ∞ a.e. on A

for every A ∈ E with µ(A) > 0. If T is ergodic, then the qualification “on A” above is not needed.
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The dual operator T̂ is an operator L1(µ) → L1(µ) defined by

T̂ f =
d(νf ◦ T−1)

dµ
,

with νf a signed measure on
(
E, E

)
given by νf (A) =

∫
A f dµ, A ∈ E . The dual operator satisfies

the relation

(4.1)

∫
E
T̂ f · g dµ =

∫
E
f · g ◦ T dµ

for f ∈ L1(µ), g ∈ L∞(µ). For any nonnegative measurable function f on E a similar definition

gives a nonnegative measurable function T̂ f , and (4.1) holds for any two nonnegative measurable

functions f and g.

An ergodic conservative measure preserving map T is called pointwise dual ergodic if there is a

sequence of positive constants an → ∞ such that

(4.2)
1

an

n∑
k=1

T̂ kf →
∫
E
f dµ a.e.

for every f ∈ L1(µ). If the measure µ is infinite, pointwise dual ergodicity rules out invertibility of

the map T ; in fact no factor of T can be invertible, see p. 129 of Aaronson (1997).

Sometimes the convergence of the type described in the definition (4.2) of pointwise dual er-

godicity is uniform on certain sets. Let A ∈ E be a set with 0 < µ(A) < ∞. We say that A is

a Darling-Kac set for an ergodic conservative measure preserving map T if for some sequence of

positive constants an → ∞,

(4.3)
1

an

n∑
k=1

T̂ k1A → µ(A) uniformly, a.e. on A

(that is, the convergence in (4.3) is uniform on a measurable subset B of A with µ(B) = µ(A)).

By Proposition 3.7.5 of Aaronson (1997), existence of a Darling-Kac set implies pointwise dual

ergodicity of T , so it is legitimate to use the same sequence (an) in (4.2) and (4.3).

Given a set A ∈ E , the map φ : E → N∪{∞} defined by φ(x) = inf{n ≥ 1 : Tnx ∈ A}, x ∈ E is

called the first entrance time to A. If T is conservative and ergodic (in addition to being measure

preserving), and µ(A) > 0, then φ <∞ a.e. on E. It is natural to measure how often the set A is

visited by the flow (Tn) by the wandering rate sequence

wn = µ

(
n−1∪
k=0

T−kA

)
, n = 1, 2, . . . .
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There are several alternative expressions for the wandering rate sequence, the last two following

from the fact that T is measure preserving.

(4.4) wn =
n−1∑
k=0

µ(Ak) =
n−1∑
k=0

µ
(
A ∩ {φ > k}

)
=
∞∑
k=1

min(k, n)µ
(
A ∩ {φ = k}

)
.

Here A0 = A and Ak = Ac ∩ {φ = k} for k ≥ 1. If µ is an infinite measure, T is conservative and

ergodic, and 0 < µ(A) <∞, then it follows from (4.4) that

(4.5) wn ∼ µ(φ < n) as n→ ∞ .

Let T be a conservative ergodic measure preserving map. If a set A is a Darling-Kac set, then

there is a precise connection between the return sequence (wn) and the normalizing sequence (an)

in (4.3) (and, hence, also in (4.2)), assuming regular variation. Specifically, if either (wn) ∈ RV1−β

or (an) ∈ RVβ for some β ∈ [0, 1], then

(4.6) an ∼ 1

Γ(2− β)Γ(1 + β)

n

wn
as n→ ∞ .

Proposition 3.8.7 in Aaronson (1997) gives one direction of this statement, but the argument is

easily reversed.

We will also have an opportunity to use a variation of the notion of a Darling-Kac set. Let T be

an ergodic conservative measure preserving map. A set A ∈ E with 0 < µ(A) < ∞ is said to be a

uniform set for a nonnegative function g ∈ L1(µ) if

(4.7)
1

an

n∑
k=1

T̂ kg →
∫
E
g dµ uniformly, a.e. on A.

If g = 1A, then a uniform set is just a Darling-Kac set.

5. Central Limit Theorem Associated with Conservative Null Flows

In this section we state and discuss a functional central limit theorem for stationary infinitely

divisible processes generated by certain conservative flows. Throughout, T is an ergodic conserva-

tive measure preserving map on an infinite σ-finite measure space
(
E, E , µ

)
, and M a symmetric

homogeneous infinitely divisible random measure on (E, E) with control measure µ and local Lévy

measure ρ, satisfying the regular variation with index −α, 0 < α < 2 at infinity condition (2.5).

We will impose an extra assumption on the lower tail of the local Lévy measure: for some p0 < 2

(5.1) xp0ρ(x,∞) → 0 as x→ 0.
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Let f : E → R be a measurable function. We will assume that f is supported by a set of finite

µ-measure, and has the following integrability properties:

(5.2) f ∈

 L1∨p(µ) for some p > p0 if 0 < α < 1
L∞(µ) if α = 1
L2(µ) if 1 < α < 2

.

We will, further, assume that

(5.3) µ(f) =

∫
E
f(s)µ(ds) ̸= 0 .

We consider a stochastic process X =
(
X1, X2, . . .

)
of the form (2.1) - (2.2). The integral is well

defined under the condition ∫
E

∫
R
min

(
1, x2fn(s)

2
)
ρ(dx)µ(ds) <∞ .

It is not difficult to verify that this condition holds due to the assumptions on the Lévy measure

ρ and the integrability conditions (5.2) on f . Therefore, the process X is a well defined infinitely

divisible stochastic process. It is automatically stationary. The Lévy measure of each Xn is given

by νmarg = (ρ× µ) ◦H−1, where H : R×E → R is given by H(x, s) = xf(s). The assumptions on

the Lévy measure ρ and the integrability conditions (5.2) on f imply that

νmarg(λ,∞) ∼
(∫

E
|f(s)|α µ(ds)

)
ρ(λ,∞)

as λ→ ∞. It follows that the marginal tail of the process itself is the same:

P (Xn > λ) ∼
(∫

E
|f(s)|α µ(ds)

)
ρ(λ,∞)

as λ→ ∞; see Rosiński and Samorodnitsky (1993). In particular, the marginal distributions of the

process X are in the domain of attraction of a SαS law; its memory is determined by the operator

T through (2.2).

We will assume that the operator T has a Darling-Kac set A (recall (4.3)), and that the nor-

malizing sequence (an) is regularly varying with exponent β ∈ (0, 1). We will also assume that the

function f is supported by A. We will add an extra assumption on the set A. We will assume that

there exists a measurable function K : E → R+ such that, in the notation of (4.4),

(5.4)
T̂n1An

µ(An)
→ K uniformly, a.e. on A.

This condition is an extension of the property shared by certain operators T , the so-called Markov

shifts (see Chapter 4 in Aaronson (1997)), to a more general class of operators. See examples 5.5

and 5.6 below.
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Let ρ←(y) = inf
{
x ≥ 0 : ρ(x,∞) ≤ y

}
, y > 0 be the left continuous inverse of the tail of the

local Lévy measure. The regular variation of the tail implies that ρ← ∈ RV1/α at infinity. Define

(5.5) cn = Γ(1 + β)C−1/αα an ρ
←(1/wn), n = 1, 2, . . . ,

where Cα is the α-stable tail constant (see Samorodnitsky and Taqqu (1994)), (an) is the normal-

izing sequence in the Darling-Kac property (4.3) (or, equivalently, in the pointwise dual ergodicity

property (4.2)), and (wn) is the wandering rate sequence for the set A (related to the sequence (an)

via (4.6)). It follows immediately that

(5.6) cn ∈ RVβ+(1−β)/α.

The sequence (cn) is the normalizing sequence in the functional central limit theorem below. We

will see that under the conditions of that theorem we have the asymptotic relation

(5.7) ρ (cn/an,∞) ∼ Cα

(
Cα,β/Γ(1 + β)

)α|µ(f)|αaαn
(∫

E
|

n∑
k=1

f ◦ T k(x)|αµ(dx)

)−1
as n→ ∞ ,

with

(5.8) Cα,β = Γ(1 + β)
(
(1− β)B(1− β, 1 + αβ)E (Mβ(1))

α
)1/α

.

Here B is the standard beta function, and Mβ the Mittag-Leffler process defined in (3.1). The

following is our functional central limit theorem.

Theorem 5.1. Let T be an ergodic conservative measure preserving map on an infinite σ-finite

measure space
(
E, E , µ

)
, possessing a Darling-Kac set A whose normalizing sequence (an) is regu-

larly varying with exponent β ∈ (0, 1). Assume that (5.4) holds. LetM be a symmetric homogeneous

infinitely divisible random measure on (E, E) with control measure µ and local Lévy measure ρ, sat-

isfying the regular variation with index −α, 0 < α < 2 at infinity condition (2.5). Assume, further,

that (5.1) holds for some p0 < 2.

Let f be a measurable function supported by A and satisfying (5.2) and (5.3). If 1 < α < 2,

assume further that either

(i) A is a uniform set for |f |, or
(ii) f is bounded.

Then the stationary infinitely divisible stochastic process X =
(
X1, X2, . . .

)
given by (2.1) and (2.2)

satisfies

(5.9)
1

cn

⌈n·⌉∑
k=1

Xk ⇒ |µ(f)|Yα,β in D[0,∞) ,

where (cn) is defined by (5.5), and {Yα,β} is the β-Mittag-Leffler fractional SαS motion defined by

(3.3).
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Remark 5.2. The type of the limiting process obtained in Theorem 5.1 is an indication of the long

memory in the process X. On the other hand, the Darling-Kac assumption (4.3) and the duality

relation(4.1) imply that

1

an

n∑
k=1

µ(A ∩ T−kA) = 1

an

n∑
k=1

∫
E
1A · 1A ◦ T k dµ =

∫
A

1

an

n∑
k=1

T̂ k1A dµ→ µ(A)2 ∈ (0,∞)

as n→ ∞. Since an = o(n), and f is supported by A, we see that for every ϵ > 0,

1

n

n∑
k=1

µ
{
x ∈ E : |f(x)| > ϵ, |f ◦ T k(x)| > ϵ

}
≤ 1

n

n∑
k=1

µ(A ∩ T−kA) → 0,

and it follows immediately, e.g. from Theorem 2 in Rosiński and Żak (1997), that the process X is

ergodic.

Under certain additional assumptions on the map T , one can check that the process X is, in

fact, mixing. We skip the details. See, however, examples 5.5 and 5.6 below.

Remark 5.3. The statement of Theorem 5.1 makes sense in the limiting cases β = 0 and β = 1

of Remark 3.6 (in the case β = 1 the constant Cα,1 needs to be interpreted as C
1/α
α ). Most of the

argument in the proof of Theorem 5.1 automatically works in these cases. The limiting processes

would then turn out to be, correspondingly, a SαS Lévy motion and the straight line process; see

Remark 3.6. This case β = 0 corresponds to short memory in the process X, while the case β = 1

corresponds to extremely long memory.

Remark 5.4. When 0 < α < 1, the argument we will use in the proof of Theorem 5.1 can be

used to establish a “positive” version of the theorem. Specifically, assume now that the local Lévy

measure ρ is concentrated on (0,∞), and that the function f is nonnegative. Then

(5.10)
1

cn

⌈n·⌉∑
k=1

Xk ⇒ µ(f)Y +
α,β in D[0,∞) ,

where {Y +
α,β} is a positive β-Mittag-Leffler fractional α-stable motion defined as in (3.3), but with

SαS random measure Zα,β replaced by a positive α-stable random measure with the same control

measure.

We finish this section with two examples of different situations where Theorem 5.1 applies. The

first example is close to the heart of a probabilist.

Example 5.5. Consider an irreducible null recurrent Markov chain with state space Z and tran-

sition matrix P = (pij). Let {πj , j ∈ Z} be the unique invariant measure of the Markov chain that

satisfies π0 = 1. We define a σ-finite measure on (E, E) =
(
ZN,B(ZN)

)
by

µ(·) =
∑
i∈Z

πiPi(·) ,
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with the usual notation of Pi(·) being the probability law of the Markov chain starting in state

i ∈ Z. Since
∑

j πj = ∞, µ is an infinite measure.

Let T : ZN → ZN be the left shift map T (x0, x1, . . . ) = (x1, x2, . . . ) for {xk, k = 0, 1, . . . } ∈ ZN.

Obviously, T preserves the measure µ. Since the Markov chain is irreducible and null recurrent,

the flow {Tn} is conservative and ergodic; see Harris and Robbins (1953).

Consider the set A =
{
x ∈ ZN : x0 = 0

}
and the corresponding first entrance time φ(x) =

min{n ≥ 1 : xn = 0}, x ∈ ZN. Assume that

(5.11)

n∑
k=1

P0(φ ≥ k) ∈ RV1−β

for some β ∈ (0, 1). Since µ(φ = k) = P0(φ ≥ k) for k ≥ 1 (see Lemma 3.3 in Resnick et al.

(2000)), we see that µ(φ ≤ n) ∈ RV1−β and, hence, by (4.5), the wandering rates (wn) have the

same property,

(5.12) wn ∈ RV1−β .

In this example,

T̂ k1A(x) = P0(xk = 0), constant for x ∈ A;

see Section 4.5 in Aaronson (1997). In particular, the set A is a Darling-Kac set, and by (5.12) and

(4.6), we see that the corresponding normalizing sequence (an) is regularly varying with exponent

β. The assumption (5.4) is easily seen to hold in this example. Indeed, applying the explicit

expression for the dual operator given on p. 156 in Aaronson (1997) to the function

f(x0, x1, . . .) = 1
(
xj ̸= 0, j = 0, . . . , n− 1, xn = 0

)
,

we see that

T̂n1An

(
x0, x1, . . .

)
= 1

(
x0 = 0

)∑
i0 ̸=0

πi0
∑
i1 ̸=0

pi0i1 . . .
∑

in−1 ̸=0

pin−2in−1pin−10

is constant on A and vanishes outside of A. Therefore, the ratio in (5.4) is identically equal to 1

on A.

We conclude that Theorem 5.1 applies in this case if we choose any measurable function f

supported by A and satisfying the conditions of the theorem.

It is easy to see that the stationary infinitely divisible process X in this example is mixing.

Indeed, by Theorem 5 of Rosiński and Żak (1996) it is enough to check that

µ
{
x : |f(x)| > ϵ, |f ◦ Tn(x)| > ϵ

}
→ 0

for every ϵ > 0. However, since f vanishes outside of A, null recurrence implies that as n→ ∞,

µ
{
x : |f(x)| > ϵ, |f ◦ Tn(x)| > ϵ

}
≤ µ(A ∩ T−nA) = P0(xn = 0) → 0.
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The next example is less familiar to probabilists, but is well known to ergodic theorists.

Example 5.6. We start with a construction of the so-calledAFN-system, studied in, e.g., Zweimüller

(2000) and Thaler and Zweimüller (2006). Let E be the union of a finite family of disjoint bounded

open intervals in R and let E be the Borel σ-field on E. Let λ be the one-dimensional Lebesgue

measure.

Let ξ be a (possibly, infinite) collection of nonempty disjoint open subintervals (of the intervals

in E) such that λ
(
E \

∪
Z∈ξ Z

)
= 0. Let T : E → E be a map that is twice differentiable on (each

interval of) E. We assume that T is strictly monotone on each Z ∈ ξ.

The map T is further assumed to satisfy the following three conditions, (A), (F ), and (N),

(giving rise to the name AFN-system).

(A) Adler’s condition:

T ′′/(T ′)2 is bounded on
∪
Z∈ξ

Z .

(F ) Finite image condition:

the collection Tξ = {TZ : Z ∈ ξ} is finite.

(N) A possibility of non-uniform expansion: there exists a finite subset ζ ⊆ ξ such that each Z ∈ ζ

has an indifferent fixed point xZ as one of its end points. That is,

lim
x→xZ ,x∈Z

Tx = xZ and lim
x→xZ ,x∈Z

T ′x = 1.

Moreover, we suppose, for each Z ∈ ζ,

either T ′ decreases on (−∞, xZ) ∩ Z, or T ′ increases on (xZ ,∞) ∩ Z ,

depending on whether xZ is the left endpoint or the right endpoint of Z. Finally, we assume that

T is uniformly expanding away from {xZ : Z ∈ ζ}, i.e. for each ϵ > 0, there is ρ(ϵ) > 1 such that

|T ′| ≥ ρ(ϵ) on E \
∪
Z∈ζ

((
xZ − ϵ, xZ + ϵ

)
∩ Z

)
.

If the conditions (A), (F ), and (N) are satisfied, the triplet (E, T, ξ) is called an AFN-system,

and the map T is called an AFN-map. If T is also conservative and ergodic with respect to λ, and

the collection ζ is nonempty, then the AFN-map T is said to be basic; we will assume this property

in the sequel. Finally, we will assume that T admits nice expansions at the indifferent fixed points.

That is, for every Z ∈ ζ there is 0 < βZ < 1 such that

(5.13) Tx = x+ aZ |x− xZ |1/βZ+1 + o
(
|x− xZ |1/βZ+1

)
as x→ xZ in Z,

for some aZ ̸= 0.
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It is shown in Zweimüller (2000) that every basic AFN-map has an infinite invariant measure

µ≪ λ with the density given by dµ/dλ(x) = h0(x)G(x), x ∈ E, where

G(x) =

{
(x− xZ)

(
x− (T |Z)−1(x)

)−1
if x ∈ Z ∈ ζ,

1 if x ∈ E \
∪

Z∈ζ Z ,

and h0 is a function of bounded variation bounded away from both 0 and infinity. We view T as a

conservative ergodic measure-preserving map on the infinite measure space (E, E , µ).
An example of a basic AFN-map is Boole’s transformation placed on E = (0, 1/2) ∪ (1/2, 1),

defined by

T (x) =
x(1− x)

1− x− x2
, x ∈ (0, 1/2), T (x) = 1− T (1− x), x ∈ (1/2, 1) .

It admits nice expansions at the indifferent fixed points xZ = 0 and xZ = 1 with βZ = 1/2 in both

cases. The invariant measure µ satisfies

dµ

dλ
(x) =

1

x2
+

1

(1− x)2
, x ∈ E .

See Thaler (2001).

Let T be a basic AFN-map. We put

A = E \
∪
Z∈ζ

((
xZ − ϵ, xZ + ϵ

)
∩ Z

)
for some ϵ > 0 small enough so that the set A is non-empty. Since λ(∂A) = 0 and A is bounded

away from the indifferent fixed points {xZ : Z ∈ ζ}, it follows from Corollary 3 of Zweimüller (2000)

that A is a Darling-Kac set. Moreover, the corresponding normalizing sequence (an) is regularly

varying with exponent β = minZ∈ζ βZ in the notation of (5.13); see Theorems 3 and 4 in Zweimüller

(2000). The assumption (5.4) also holds; see (2.6) in Thaler and Zweimüller (2006).

Once again, Theorem 5.1 applies if we choose any measurable function f supported by A and

satisfying the conditions of Theorem 5.1. Note that, by Theorem 9 in Zweimüller (2000), Riemann

integrability of |f | on A suffices for the uniformity of the set A for |f |.
The stationary infinitely divisible process X in this example is also mixing. Indeed, the basic

AFN-map T is exact, i.e. the σ-field ∩∞n=1T
−nB is trivial; see e.g. p. 1522 in Zweimüller (2000) .

The exactness of T implies that

µ(A ∩ T−nA) =
∫
A
T̂n1A dµ→ 0

as n → ∞; see p. 12 in Thaler (2001). Now mixing of the process X follows from the fact that f

is supported by A, as in Example 5.5.
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6. Distributional Results in Ergodic Theory

In this section we prove two distributional ergodic theoretical results that will be used in the

proof of Theorem 5.1. These results may be of interest on their own as well. We call our first result

a generalized Darling-Kac theorem, because the first result of this type was proved in Darling

and Kac (1957) as a distributional limit theorem for the occupation times of Markov processes

and chains under a certain uniformity assumption on the transition law. The limiting law is the

Mittag-Leffler distribution described in (3.2). Under the same setup and assumptions, Bingham

(1971) extended the result to weak convergence in the space D[0,∞) endowed with the Skorohod

J1 topology, and the limiting process is the Mittag-Leffler process defined in (3.1).

The result of Darling and Kac (1957) was put into ergodic-theoretic context by Aaronson (1981)

who established the one-dimensional convergence for abstract conservative infinite measure pre-

serving maps under the assumption of pointwise dual ergodicity, i.e. dispensing with a condition of

uniformity. Furthermore, Aaronson proves convergence in a strong distributional sense, a stronger

mode of convergence than weak convergence. The same strong distributional convergence was es-

tablished later in Thaler and Zweimüller (2006), with the assumption of pointwise dual ergodicity

replaced by an averaged version of (5.4). The latter assumption was further weakened in Zweimüller

(2007a). Our result, Theorem 6.1 below, extends Aaronson’s result to the space D[0,∞), under

the assumption of pointwise dual ergodicity.

We start with defining strong distributional convergence. Let Y be a separable metric space,

equipped with its Borel σ-field. Let
(
Ω1,F1,m

)
be a measure space and

(
Ω2,F2, P2

)
a probability

space. We say that a sequence of measurable maps Rn : Ω1 → Y , n = 1, 2, . . . converges strongly

in distribution to a measurable map R : Ω2 → Y if P1 ◦ R−1n ⇒ P2 ◦ R−1 in Y for any probability

measure P1 ≪ m on
(
Ω1,F1

)
. That is,∫

Ω1

g(Rn) dP1 →
∫
Ω2

g(R) dP2

for any such P1 and a bounded continuous function g on Y . We will use the notation Rn
L(m)⇒ R

when strong distributional convergence takes place.

Theorem 6.1. (Generalized Darling-Kac Theorem)

Let T be an ergodic conservative measure preserving map on an infinite σ-finite measure space(
E, E , µ

)
. Assume that T is pointwise dual ergodic with a normalizing sequence (an) that is regularly

varying with exponent β ∈ (0, 1). Let f ∈ L1(µ) be such that µ(f) ̸= 0, and denote Sn(f) =∑n
k=1 f ◦ T k, n = 1, 2, . . .. Then

(6.1)
1

an
S⌈n·⌉(f)

L(µ)⇒ µ(f)Γ(1 + β)Mβ(·) in D[0,∞) ,
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where Mβ is the Mittag-Leffler process, and D[0,∞) is equipped with the J1 topology.

Proof. It is shown in Corollary 3 of Zweimüller (2007b) that proving weak convergence in (6.1) for

one fixed probability measure on
(
E, E

)
, that is absolutely continuous with respect to µ, already

guarantees the full strong distributional convergence. We choose and fix an arbitrary set A ∈ E
with 0 < µ(A) <∞, and prove weak convergence in (6.1) with respect to µA(·) = µ(· ∩A)/µ(A).

It turns out that we only need to consider one particular function f = 1A and to establish the

appropriate finite-dimensional convergence, i.e. to show that

(6.2)

(
1

an
S⌈nti⌉(1A)

)k

i=1

⇒ (µ(A)Γ(1 + β)Mβ(ti))
k
i=1 in Rk

for all k ≥ 1, 0 ≤ t1 < · · · < tk, when the law of the random vector in the left hand side is computed

with respect to µA.

Indeed, suppose that (6.2) holds. By Hopf’s ergodic theorem (also sometimes called a ratio

ergodic theorem; see Theorem 2.2.5 in Aaronson (1997)), the finite-dimensional convergence imme-

diately extends to the corresponding finite-dimensional convergence with any function f ∈ L1(µ)

such that µ(f) ̸= 0. Next, write f = f+ − f−, the difference of the positive and negative parts.

Since the process
(
S⌈nt⌉(f+), t ≥ 0

)
has, for each n, nondecreasing sample paths, Theorem 3 in

Bingham (1971) tells us that the convergence of the finite-dimensional distributions, and the con-

tinuity in probability of the limiting Mittag-Leffler process already imply weak convergence, hence

tightness, of this sequence of processes. Similarly, the sequence of the processes
(
S⌈nt⌉(f−), t ≥ 0

)
,

n = 1, 2, . . . is tight as well. Since both converge to a continuous limit, their sum,
(
S⌈nt⌉(f), t ≥ 0

)
,

n = 1, 2, . . ., is tight as well, because in this case the uniform modulus of continuity can be used

instead of the J1 modulus of continuity; see e.g. Billingsley (1999).

This will give us the required weak convergence and, hence, finish the proof of the theorem.

It remains to show (6.2). We will use a strategy similar to the one used in Bingham (1971).

We start with defining a continuous version of the process
(
S⌈nt⌉(1A), t ≥ 0

)
given by the linear

interpolation

(6.3) S̃n(t) =
(
(i+ 1)− nt

)
Si(1A) + (nt− i)Si+1(1A) if

i

n
≤ t ≤ i+ 1

n
, i = 0, 1, 2, . . . .

With the implicit argument x ∈ E viewed as random (with the law µA), each S̃n defines a random

Radon measure on [0,∞). Therefore, for any k ≥ 1 the k-tuple product S̃k
n = S̃n × . . . × S̃n is a

random Radon measure on [0,∞)k. By Fubini’s theorem,

m̃(k)
n (B) =

∫
A
S̃k
n(B)(x)µA(dx), B ⊆ [0,∞)k, Borel,
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is a Radon measure on [0,∞)k. We define, similarly, Sn, S
k
n and m

(k)
n , starting with Sn(t) =

S⌈nt⌉(1A), t ≥ 0. Finally, we perform the same operation on the limiting process and define Mβ,A

by µ(A)Γ(1 + β)Mβ, and then construct Mk
β,A and m

(k)
β,A = EMk

β,A.

Note that m̃
(k)
n is absolutely continuous with respect to the k-dimensional Lebesgue measure,

and

dkm̃
(k)
n

dt1 . . . dtk
= nk

∫
A

k∏
j=1

1A ◦ T ij (x)µA(dx) on
ij
n

≤ tj <
ij + 1

n
, ij = 0, 1, . . . , j = 1, . . . , k .

We will prove that for all k ≥ 1, θ1, . . . , θk ≥ 0,

(6.4)
1

akn

∫ ∞
0
. . .

∫ ∞
0

e−
∑k

j=1 θjtj m̃(k)
n (dt1, . . . dtk) →

∫ ∞
0
. . .

∫ ∞
0

e−
∑k

j=1 θjtj m
(k)
β,A(dt1, . . . dtk)

as n→ ∞. We claim that this will suffice for (6.2).

Indeed, suppose that (6.4) holds. Convergence of the joint Laplace transforms implies that

a−kn m̃(k)
n

v→ m
(k)
β,A

(vaguely) in [0,∞)k. Since the rectangles are, clearly, compact continuity sets with respect to the

limiting measure m
(k)
β,A, we conclude that for every k = 1, 2, . . . and tj ≥ 0, j = 1, . . . , k, we have∫

A

k∏
j=1

a−1n S̃n(tj)(x)µA(dx) = a−kn m̃(k)
n

( k∏
j=1

[0, tj ]
)

→ m
(k)
β,A

( k∏
j=1

[0, tj ]
)
= E

[ k∏
j=1

µ(A)Γ(1 + β)Mβ(tj)
]

as n→ ∞. Since for every fixed ε > 0 and n > 1/ε,

S̃n(t) ≤ Sn(t) ≤ S̃n(t+ ε)

for each t ≥ 0, we conclude by monotonicity and continuity of the Mittag-Leffler process that

(6.5)

∫
A

k∏
j=1

a−1n Sn(tj)µA(dx) → E
[ k∏
j=1

µ(A)Γ(1 + β)Mβ(tj)
]
.

We claim that (6.5) implies (6.2). By taking linear combinations with nonnegative weights, we see

that it is enough to show that the distribution of such a linear combination,

k∑
j=1

θjMβ(tj), θj > 0, j = 1, . . . , k ,

is determined by its moments, and by the Carleman sufficient condition it is enough to check that

∞∑
m=1

(
1

E
(∑k

j=1 θjMβ(tj)
)m
)1/(2m)

= ∞ .
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A simple monotonicity and scaling argument shows that it is sufficient to verify only that

(6.6)

∞∑
m=1

(
1

E
(
Mβ(1)

)m
)1/(2m)

= ∞ .

However, the moments of Mβ(1) can be read off (3.2), and Stirling’s formula together with elemen-

tary algebra imply (6.6). Hence (6.2) follows.

It follows that we need to prove (6.4). Taking into account the form of the density of m̃
(k)
n with

respect to the k-dimensional Lebesgue measure, we can write the left hand side of (6.4) as∑
π

Fn,A(θπ(1) . . . θπ(k)) ,

where

Fn,A(θ1 . . . θk) =

(
n

an

)k ∫
· · ·
∫
0<t1<···<tk

e−
∑k

j=1 θjtjµA

 k∩
j=1

T−⌈ntj⌉A

 dt1 . . . dtk ,

and π runs through the permutations of the sets {1, . . . , k}. To establish (6.4), it is enough to verify

that

(6.7) Fn,A(θ1 . . . θk) →
(
µ(A)Γ(1 + β)

)k(
(θ1 + · · ·+ θk)(θ2 + · · ·+ θk) . . . θk

)−β
as n → ∞, because Lemma 3 in Bingham (1971) shows that summing up the expression in the

right hand side of (6.7) over all possible permutations (θπ(1) . . . θπ(k)) produces the expression in

the right hand side of (6.4).

Given 0 < ε < 1, we use repeatedly pointwise dual ergodicity and Egorov’s theorem to construct

a nested sequence of measurable subsets of E, with A0 = A, and for i = 0, 1, . . ., Ai+1 ⊆ Ai, and

µ(Ai+1) ≥ (1− ε)µ(Ai), while

(6.8)
1

an

n∑
k=1

T̂ k1Ai → µ(Ai) uniformly on Ai+1.

It is elementary to see that with v1 = θ1 + θ2 + · · ·+ θk, v2 = θ2 + · · ·+ θk, . . . , vk = θk,

(6.9) Fn,A(θ1 . . . θk) ∼
1

akn

∞∑
m1=0

. . .

∞∑
mk=0

e−n
−1

∑k
j=1 vjmjµA

 k∩
j=1

T−(m1+...+mj)A


=

1

akn

∫
A

( ∞∑
m1=0

T̂m11A e
−v1m1/n

)
k∏

j=2

 ∞∑
mj=0

1A ◦ Tm2+...+mj e−vjmj/n

 dµA
≥ 1

akn

∫
A1

(
· · ·
)
,

where the equality is due to the duality relation (4.1). Note that by (6.8) with i = 0,

∞∑
m1=0

T̂m11A e
−v1m1/n =

(
1− e−v1/n

) ∞∑
i=0

(
i∑

m1=0

T̂m11A0

)
e−v1i/n(6.10)
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∼ µ(A0)v1
n

∞∑
i=0

aie
−v1i/n

uniformly on A1 as n→ ∞. Therefore,

Fn,A(θ1 . . . θk) ≥
(
1− o(1)

) 1

akn

µ(A0)v1
n

∞∑
i=0

aie
−v1i/n

×

∫
A1

k∏
j=2

 ∞∑
mj=0

1A ◦ Tm2+...+mj e−vjmj/n

 dµA

=
(
1− o(1)

) 1

akn

µ(A0)v1
n

∞∑
i=0

aie
−v1i/n

×

∫
A

( ∞∑
m2=0

T̂m21A1 e
−v2m2/n

)
k∏

j=3

 ∞∑
mj=0

1A ◦ Tm3+...+mj e−vjmj/n

 dµA
≥
(
1− o(1)

) 1

akn

µ(A0)v1
n

∞∑
i=0

aie
−v1i/n

∫
A2

(
· · ·
)
.

Using now repeatedly (6.8) with larger and larger i, together with the same argument as in (6.10),

we conclude that

Fn,A(θ1 . . . θk) ≥
(
1− o(1)

) 1

akn

µ(A0)µ(A1)v1v2
n2

∞∑
i1=0

ai1e
−v1i1/n

∞∑
i2=0

ai2e
−v2i2/n

×

∫
A2

k∏
j=3

 ∞∑
mj=0

1A ◦ Tm3+...+mj e−vjmj/n

 dµA

≥ · · · ≥
(
1− o(1)

) 1

akn

∏k−1
j=0 µ(Aj)vj+1

nk

k∏
j=1

( ∞∑
i=0

aie
−vji/n

)
µ(Ak)

µ(A)

≥
(
1− o(1)

)
(1− ε)k(k+1)/2

(
µ(A)

nan

)k

(v1 . . . vk)

k∏
j=1

( ∞∑
i=0

aie
−vji/n

)
.

Extending the sequence (an) into a piece-wise constant regular varying function of real variable(
a(x), x > 0

)
and using Karamata’s Tauberian Theorem (see e.g. Section 3.6 in Aaronson (1997)),

we conclude that for every j = 1, . . . , k,

∞∑
i=0

aie
−vji/n ∼ Γ(1 + β)

n

vj
a(n/vj), n→ ∞ .

It follows that

Fn,A(θ1 . . . θk) ≥
(
1− o(1)

)
(1− ε)k(k+1)/2

(
µ(A)Γ(1 + β)

)k k∏
j=1

a(n/vj)

an
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→ (1− ε)k(k+1)/2
(
µ(A)Γ(1 + β)

)k k∏
j=1

v−βj

by the regular variation. Since this is true for every 0 < ε < 1, we have obtained the lower bound

(6.11) lim inf
n→∞

Fn,A(θ1 . . . θk) ≥
(
µ(A)Γ(1 + β)

)k(
(θ1 + · · ·+ θk)(θ2 + · · ·+ θk) . . . θk

)−β
.

The lower bound (6.11) is valid for any measurable set A with 0 < µ(A) <∞. We will now show

that for any k ≥ 1 and 0 < θ < 1 there is a measurable set Ak,θ ⊆ A such that

(6.12) µ
(
Ak,θ

)
≥ (1− θ)µ(A) ,

and such that

(6.13) lim sup
n→∞

Fn,Ak,θ
(θ1 . . . θk) ≤

(
µ(Ak,θ)Γ(1 + β)

)k(
(θ1 + · · ·+ θk)(θ2 + · · ·+ θk) . . . θk

)−β
.

We know that (6.11) and (6.13) together imply (6.7), hence that (6.2) holds for the set Ak,θ. We

claim that this implies that (6.2) for every measurable A with 0 < µ(A) <∞.

Indeed, suppose that, to the contrary, (6.2) fails for some measurable A with 0 < µ(A) < ∞,

some k ≥ 1 and some 0 < t1 < . . . < tk. By the one-dimensional result of Aaronson (1981), the k

components in the left hand side of (6.2), individually, converge weakly. Therefore, the sequence

of the laws of the k-dimensional vectors in the left hand side of (6.2) is tight, and so there is a

sequence of integers nl ↑ ∞ and a random vector (Y1, . . . , Yk) with

(6.14) (Y1, . . . , Yk)
d
̸= µ(A)Γ(1 + β)

(
Mβ(t1) . . .Mβ(tk)

)
,

such that

(6.15)
1

anl

(
S⌈nlt1⌉(1A), . . . , S⌈nltk⌉(1A)

)
⇒ (Y1, . . . , Yk) ,

when the law of the random vector in the left hand side is computed with respect to µA. It follows

from (6.14) that there is a Borel set B ⊂ Rk such that, for each b > 0, bB is a continuity set for

both (Y1, . . . , Yk) and µ(A)Γ(1 + β)
(
Mβ(t1) . . .Mβ(tk)

)
and (abusing the notation a bit by using

the same letter P ),

(6.16) P
(
µ(A)Γ(1 + β)

(
Mβ(t1) . . .Mβ(tk)

)
∈ B

)
> (1 + ρ)P

(
(Y1, . . . , Yk) ∈ B

)
for some ρ > 0. In fact, since the law of a Mittag-Leffler random variable is atomless, such a B can

be taken to be either a “SW corner” of the type B =
∏k

j=1(−∞, xj ] for some (x1, . . . , xk) ∈ Rk, or

its complement.

Choose now 0 < θ < 1 so small that

(6.17) (1− θ)(1 + ρ) > 1 ,
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and consider the set Ak,θ. It follows from (6.15) and Hopf’s ergodic theorem that

1

anl

(
S⌈nlt1⌉(1Ak,θ

), . . . , S⌈nltk⌉(1Ak,θ
)
)
⇒

µ
(
Ak,θ

)
µ(A)

(Y1, . . . , Yk) ,

when the law of the random vector in the left hand side is still computed with respect to µA.

However, since (6.2) holds for the set Ak,θ, we see that

P
(
(Y1, . . . , Yk) ∈ B

)
= lim

l→∞
µA

( 1

anl

(
S⌈nlt1⌉(1Ak,θ

), . . . , S⌈nltk⌉(1Ak,θ
)
)
∈
µ
(
Ak,θ

)
µ(A)

B
)

=
µ
(
Ak,θ

)
µ(A)

lim
l→∞

µAk,θ

( 1

anl

(
S⌈nlt1⌉(1Ak,θ

), . . . , S⌈nltk⌉(1Ak,θ
)
)
∈
µ
(
Ak,θ

)
µ(A)

B
)

≥ (1− θ)P
(
µ(A)Γ(1 + β)

(
Mβ(t1) . . .Mβ(tk)

)
∈ B

)
> P

(
(Y1, . . . , Yk) ∈ B

)
,

where the last inequality follows from (6.16) and (6.17). This contradiction shows that, once we

prove (6.13), this will establish (6.2) for every measurable A with 0 < µ(A) <∞.

We call a nested sequence (A0, A1, . . .) of sets in (6.8) an ε-sequence starting at A0. Its finite

subsequence (A0, A1, . . . , Ak) will be called an ε-sequence of length k+1 starting at A0 and ending

at Ak. Let A be a measurable set with 0 < µ(A) < ∞. Fix 0 < θ < 1. Let 0 < r < 1 be a small

number, to be specified in the sequel. We construct a nested sequence of sets as follows.

Let B0 = A. Construct an r-sequence of length k + 1 starting at B0, and ending at some set

B1 ⊆ B0. Next, construct an r2-sequence of length k + 1 starting at B1, and ending at some set

B2 ⊆ B1. Proceeding this way we obtain a nested sequence of measurable sets A = B0 ⊇ B1 ⊇
B2 ⊇ . . ., such that

µ(Bn) ≥
n∏

i=1

(1− ri)k µ(A), n = 1, 2, . . . .

The sets (Bn) decrease to some set Ak,θ with

µ(Ak,θ) ≥
∞∏
i=1

(1− ri)k µ(A) .

Notice that, by choosing 0 < r < 1 small enough, we can ensure that (6.12) holds. Note, further,

that by construction, for every d = 1, 2, . . .,

µ(Ak,θ) ≥ fd µ(Bd), with fd =
∞∏

i=d+1

(1− ri)k .

Clearly, fd ↑ 1 as d→ ∞. Starting with the first line in (6.9), we see that

Fn,Ak,θ
(θ1 . . . θk) ≤

(
1 + o(1)

) 1

akn

∞∑
m1=0

. . .

∞∑
mk=0

e−n
−1

∑k
j=1 vjmjµBd

 k∩
j=1

T−(m1+...+mj)Bd

 µ(Bd)

µ
(
Ak,θ

)
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≤
(
1+o(1)

) 1
fd

1

akn

∫
Bd

( ∞∑
m1=0

T̂m11Bd−1
e−v1m1/n

)
k∏

j=2

 ∞∑
mj=0

1Bd
◦ Tm2+...+mj e−vjmj/n

 dµBd
.

Using repeatedly uniform convergence as in (6.10) above, we conclude, as in the case of the corre-

sponding lower bound calculation, that

Fn,Ak,θ
(θ1 . . . θk) ≤

(
1 + o(1)

) 1
fd

1

akn

µ
(
Bd−1

)
v1

n

∞∑
i=0

aie
−v1i/n

×

∫
Bd

( ∞∑
m2=0

T̂m21Bd−1
e−v2m2/n

)
k∏

j=3

 ∞∑
mj=0

1Bd
◦ Tm3+...+mj e−vjmj/n

 dµBd

≤ · · · ≤
(
1 + o(1)

) 1
fd

(µ(Bd−1)

nan

)k(
v1 . . . vk

) k∏
j=1

( ∞∑
i=0

aie
−vji/n

)

≤
(
1 + o(1)

) 1

fdf
k
d−1

(µ(Ak,θ)

nan

)k(
v1 . . . vk

) k∏
j=1

( ∞∑
i=0

aie
−vji/n

)
.

As in the case of the lower bound, Karamata’s Tauberian theorem shows that

Fn,Ak,θ
(θ1 . . . θk) ≤

(
1 + o(1)

) 1

fdf
k
d−1

(
µ(Ak,θ)Γ(1 + β)

)k k∏
j=1

a(n/vj)

an

→ 1

fdf
k
d−1

(
µ(Ak,θ)Γ(1 + β)

)k k∏
j=1

v−βj

as n→ ∞. Since this is true for every d ≥ 1, we can let now d→ ∞ to obtain (6.12), and the proof

of the theorem is complete. �

Remark 6.2. It follows immediately from Theorem 6.1 and continuity of the limiting Mittag-Leffler

process that for the continuous process (S̃n) defined in (6.3), strong distributional convergence as

in (6.1) also holds, either in D[0,∞) or in C[0,∞).

We use the strong distributional convergence obtained in Theorem 6.1 in the following proposi-

tion.

Proposition 6.3. Under the assumptions of Theorem 6.1, let A be a measurable set with 0 <

µ(A) <∞, such that (5.4) is satisfied, and suppose that the function f is supported by A. Define a

probability measure on E by µn(·) = µ(· ∩ {φ ≤ n})/µ({φ ≤ n}), where φ is the first entrance time

of A. Let 0 ≤ t1 < · · · < tH , H ≥ 1, and fix L ∈ N with tH ≤ L. Then under µnL, the sequence(
S⌈nth⌉(f)/an

)H
h=1

converges weakly in RH to the random vector
(
µ(f)Γ(1+β)Mβ(th−T

(L)
∞ )+

)H
h=1

,

where T
(L)
∞ is a random variable independent of the Mittag-Leffler process Mβ, with P

(
T
(L)
∞ ≤ x

)
=

(x/L)1−β, 0 ≤ x ≤ L.
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Proof. Since T preserves measure µ, for the duration of the proof we may and will modify the

definition of Sn to Sn(f) =
∑n−1

k=0 f ◦ T k, n = 1, 2, . . .. Fix θ1, . . . , θH ∈ R and let λ ∈ R. Since f is

supported by A, we have, as n→ ∞,

µnL

(
1

an

H∑
h=1

θhS⌈nth⌉(f) > λ

)

∼ µnL

(
Ac ∩

{
1

an

H∑
h=1

θhS⌈nth⌉(f) > λ

})

= µ(φ ≤ nL)−1
nL∑
m=1

µ

(
Am ∩

{
1

an

H∑
h=1

θhS⌈nth⌉(f) > λ

})

∼ µ(φ ≤ nL)−1
nL∑
m=1

µ

(
Am ∩ T−m

{
1

an

H∑
h=1

θhS(⌈nth⌉−m)+(f) > λ

})

=

∫
A

1

µ(φ ≤ nL)

nL∑
m=1

T̂mIAm · 1{∑H
h=1 θhS(⌈nth⌉−m)+

(f)>λan}dµ.

Note that the measure on E defined by η(·) =
∫
·Kdµ with K in (5.4) is necessarily a probability

measure. We conclude by (5.4) that

(6.18) µnL

(
1

an

H∑
h=1

θhS⌈nth⌉(f) > λ

)
∼

nL∑
m=1

η

(
1

an

H∑
h=1

θhS(⌈nth⌉−m)+(f) > λ

)
pn(m) ,

where pn(j) = µ(Aj)/
∑nL

m=1 µ(Am), j = 1, . . . , nL, is a probability mass function. Let T
(L)
n be a

discrete random variable with this probability mass function, independent of S⌈n·⌉(f), which is, in

turn, governed by the probability measure η. If we declare that T
(L)
n is defined on some probability

space
(
Ωn,Fn, Pn

)
, then the right hand side of (6.18) becomes

(
η × Pn

)( 1

an

H∑
h=1

θhS(⌈nth⌉−T
(L)
n )+

(f) > λ

)
.

Since η is a probability measure absolutely continuous with respect to µ, it follows from the

strong distributional convergence in Theorem 6.1 that

(6.19)
1

an
S⌈n·⌉(f) ⇒ µ(f)Γ(1 + β)Mβ(·) in D[0, L] ,

when the law in the left hand side is computed with respect to η. On the other hand, by the regular

variation of the wandering rate sequence and (4.5), for x ∈ [0, L],

Pn

(
T
(L)
n

n
≤ x

)
=

⌈nx⌉∑
m=1

pn(m) ∼
w⌈nx⌉

wnL
∼
(x
L

)1−β
,(6.20)
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which is precisely the law of T
(L)
∞ . We can put together (6.19), (6.20), and independence between

Sn and T
(L)
n to obtain

µnL

(
1

an

H∑
h=1

θhS⌈nth⌉(f) > λ

)
→ P

(
µ(f)Γ(1 + β)

H∑
h=1

θhMβ((th − T (L)
∞ )+) > λ

)
for all continuity points λ of the right hand side, and all θ1 . . . θH ∈ R by, e.g., Theorem 13.2.2 in

Whitt (2002). This proves the proposition. �

7. Proof of the Main Theorem

In this section we prove Theorem 5.1. We start with several preliminary results. The first lemma

explains the asymptotic relation (5.7).

Lemma 7.1. Under the assumptions of Proposition 6.3, assume, additionally, that the set A sup-

porting f is a Darling-Kac set. Let 0 < α < 2. If 1 < α < 2, assume, additionally, that f ∈ L2(µ),

and that either

(i) A is a uniform set for |f |, or
(ii) f is bounded.

Then

(7.1)

(∫
E
|Sn(f)|αdµ

)1/α

∼ |µ(f)|Cα,β anw
1/α
n as n→ ∞,

and (5.7) holds.

Proof. It is an elementary calculation to check that (7.1) implies (5.7), so in the sequel we concen-

trate on checking (7.1). It follows from (4.5) and the fact that f is supported by A, that

(7.2)

(∫
E
|Sn(f)|αdµ

)1/α

= an
(
µ(φ ≤ n)

)1/α
A(α)

n ∼ anw
1/α
n A(α)

n ,

where A
(α)
n = (

∫
E |Sn(f)/an|αdµn)1/α. Therefore, proving (7.1) reduces to checking that

(7.3) A(α)
n → |µ(f)|Cα,β as n→ ∞.

If α = 1 and f is nonnegative, then this follows by direct calculation, using the definition of Cα,β. If

f is not necessarily nonnegative, we can use the obvious bound −Sn(|f |) ≤ Sn(f) ≤ Sn(|f |) together
with the so-called Pratt lemma; see Pratt (1960), or Problem 16.4 (a) in Billingsley (1995).

It remains to consider the case α ∈ (0, 1) ∪ (1, 2). Proposition 6.3 shows that
(
A

(α)
n

)
is the

sequence of the α-norms of a weakly converging sequence, and the expression in the right hand side

of (7.3) is easily seen to be the α-norm of the weak limit. Therefore, our statement will follow once

we show that this weakly convergent sequence is uniformly integrable, which we proceed now to

do.
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Suppose first that 0 < α < 1. Recalling the relation (4.6) and the fact that T preserves measure

µ, we see that

sup
n≥1

∫
E

∣∣∣∣Sn(f)an

∣∣∣∣ dµn = sup
n≥1

1

anµ(φ ≤ n)

∫
E
|Sn(f)|dµ

≤ sup
n≥1

n

anµ(φ ≤ n)

∫
E
|f |dµ <∞ ,(7.4)

which proves uniformly integrability in this case.

Finally, we consider the case 1 < α < 2, when it is sufficient to prove that

(7.5) sup
n≥1

∫
E

(
Sn(f)

an

)2

dµn <∞.

Under the assumption (i), since f is supported by A, we can use the duality relation (4.1) to write∫
E
Sn(f)

2dµ = n

∫
E
f2dµ+

n∑
k=1

n∑
l=1,k ̸=l

∫
E
f ◦ T kf ◦ T ldµ

= n

∫
E
f2dµ+ 2

n−1∑
k=1

n−k∑
j=1

∫
A
T̂ jf · fdµ ,

so that ∫
E

(
Sn(f)

an

)2

dµn ≤ n

a2nµ(φ ≤ n)

∫
E
f2dµ+

2

a2nµ(φ ≤ n)

n−1∑
k=1

n−k∑
j=1

∫
A
T̂ j |f | · |f |dµ.

Clearly, n/
(
a2nµ(φ ≤ n)

)
→ 0. Further, since A is uniform for |f |,

1

a2nµ(φ ≤ n)

n−1∑
k=1

n−k∑
j=1

∫
A
T̂ j |f | · |f |dµ ≤ n

anµ(φ ≤ n)

∫
A

1

an

n∑
j=1

T̂ j |f | · |f |dµ

∼ µ(|f |)2 n

anµ(φ ≤ n)
.

Using (4.6), we see that (7.5) follows. On the other hand, under the assumption (ii), the ratio

Sn(f)/Sn(1A) is bounded, hence for some finite C > 0,

sup
n≥1

∫
E

(
Sn(f)

an

)2

dµn ≤ C sup
n≥1

∫
E

(
Sn(1A)

an

)2

dµn.

However, the Darling-Kac property of A means that it is uniform for 1A, and so we are, once again,

under the assumption (i). �

In preparation for the proof of Theorem 5.1, we introduce a useful decomposition of the process

X given in (2.1). We begin by decomposing the local Lévy measure ρ into a sum of two parts,

corresponding to “large jumps” and “small jumps”. Let

ρ1(·) = ρ
(
· ∩ {|x| > 1}

)
,

ρ2(·) = ρ
(
· ∩ {|x| ≤ 1}

)
,
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and letM1, M2 be independent homogeneous symmetric infinitely divisible random measures, with-

out a Gaussian component, with the same control measure µ and local Lévy measures ρ1, ρ2

accordingly. Under the integrability assumptions (5.2), the stochastic processes X
(i)
n =

∫
E f ◦

Tn(x)dMi(x), n = 1, 2, . . ., for i = 1, 2, are independent stationary infinitely divisible processes,

and Xn = X
(1)
n +X

(2)
n , n = 1, 2, . . ..

Our final lemma shows that, from the point of view of the central limit behavior in the case

0 < α < 1, the contribution of the process
(
X

(2)
n

)
, corresponding to the “small jumps”, is negligible.

Lemma 7.2. If 0 < α < 1, then

(7.6)
1

cn

n∑
k=1

X
(2)
k

p→ 0 .

Proof. By Chebyshev’s inequality, for any ϵ > 0,

P

(
|

n∑
k=1

X
(2)
k | > ϵcn

)
≤ n

ϵcn
E|X(2)

1 | → 0

(since cn ∈ RVβ+(1−β)/α implies n/cn → 0 in the case 0 < α < 1) as long as the expectation E|X(2)
1 |

is finite. Since for every p1 > p0 in (5.1) and p1 ≥ 1,∫
E

∫
R
|xf(s)|1

(
|xf(s)| > 1

)
ρ2(dx)µ(ds) ≤

∫ 1

−1
|x|p1 ρ(dx)

∫
E
|f(s)|p1 µ(ds) ,

the expectation is finite because, by (5.2), we can find p1 as above such that
∫
E |f |p1 dµ <∞. �

Proof of Theorem 5.1. We start with proving the finite dimensional weak convergence, for which it

enough to show the convergence

1

cn

H∑
h=1

θh

⌈nth⌉∑
k=1

Xk ⇒ |µ(f)|
H∑

h=1

θhYα,β(th)

for all H ≥ 1, 0 ≤ t1 < · · · < tH , and θ1 . . . θH ∈ R. Conditions for weak convergence of infinitely

divisible random variables (see e.g. Theorem 15.14 in Kallenberg (2002)) simplify in this one-

dimensional symmetric case to

(7.7)

∫
E

(
1

cn

H∑
h=1

θhS⌈nth⌉(f)

)2 ∫ rcn/|
∑

θhS⌈nth⌉(f)|

0
xρ(x,∞) dx dµ

→ r2−αCα

2− α
|µ(f)|α

∫
[0,∞)

∫
Ω′

∣∣∣∣∣
H∑

h=1

θhMβ((th − x)+, ω
′)

∣∣∣∣∣
α

P ′(dω′)ν(dx)

and

(7.8)

∫
E
ρ

(
rcn|

H∑
h=1

θhS⌈nth⌉(f)|
−1,∞

)
dµ
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→ r−αCα |µ(f)|α
∫
[0,∞)

∫
Ω′

∣∣∣∣∣
H∑

h=1

θhMβ((th − x)+, ω
′)

∣∣∣∣∣
α

P ′(dω′)ν(dx)

for every r > 0. Fix L ∈ N with tH ≤ L and r > 0.

Since the argument for (7.7) and the argument for (7.8) are very similar, we only prove (7.7). By

Proposition 6.3 and Skorohod’s embedding theorem, there is some probability space
(
Ω∗,F∗, P ∗

)
and random variables Y , Yn, n = 1, 2, . . . defined on that space such that, for every n, the law of

Yn coincides with the law of a−1n

∑H
h=1 θhS⌈nth⌉(f) under µnL, the law of Y coincides with the law

of µ(f)Γ(1 + β)
∑H

h=1 θhMβ((th − T
(L)
∞ )+) under P

′, and Yn → Y P ∗-a.s.

Introduce a function

ψ(y) = y−2
∫ ry

0
xρ(x,∞) dx, y > 0 ,

so that the expression in the left hand side of (7.7) becomes∫
E
ψ

(
cn

|
∑H

h=1 θhS⌈nth⌉(f)|

)
dµ = µ

(
φ ≤ nL

)
E∗
[
ψ

(
cn

an|Yn|

)]
.

By Karamata’s theorem (see e.g. Theorem 0.6 in Resnick (1987)),

ψ(y) ∼ r2

2− α
ρ(ry,∞) as y → ∞ ,

so that, as n→ ∞,

µ
(
φ ≤ nL

)
ψ

(
cn

an|Yn|

)
(7.9)

∼ r2

2− α
µ
(
φ ≤ nL

)
|Yn|αρ

(
rcna

−1
n ,∞

)
+

r2

2− α
µ
(
φ ≤ nL

)
ρ
(
rcna

−1
n ,∞

)(ρ(rcna−1n |Yn|−1,∞
)

ρ
(
rcna

−1
n ,∞

) − |Yn|α
)
.

By (5.7), Lemma 7.1 and (4.5),

(7.10) ρ(rcna
−1
n ,∞) ∼ r−αCα

(
Γ(1 + β)

)−α(
µ(φ ≤ n)

)−1
as n→ ∞ .

This, together with the basic properties of regularly varying functions of a negative index (see

e.g. Proposition 0.5 Resnick (1987)), shows that the second term in the right hand side of (7.9)

converges to 0. Therefore,

µ
(
φ ≤ nL

)
ψ

(
cn

an|Yn|

)
→ r2−α

2− α
CαL

1−β
(

|Y |
Γ(1 + β)

)α

.

Integrating the limit yields

E∗
[
r2−α

2− α
Cα L

1−β
(

|Y |
Γ(1 + β)

)α]
=

r2−α

2− α
Cα L

1−β |µ(f)|αE′
[

H∑
h=1

θhMβ((th − T (L)
∞ )+)

]α
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=
r2−αCα

2− α
|µ(f)|α

∫
[0,∞)

∫
Ω′

(
H∑

h=1

θhMβ((th − x)+, ω
′)

)α

P ′(dω′)ν(dx),

which is exactly the right hand side of (7.7). Therefore, in order to complete the proof of (7.7),

we only need to justify taking the limit inside the integral. For this purpose we use, once again,

Pratt’s lemma. We need to exhibit random variables Gn, n = 0, 1, 2, . . . on
(
Ω∗,F∗, P ∗

)
such that

µ
(
φ ≤ nL

)
ψ

(
cn

an|Yn|

)
≤ Gn P ∗-a.s.,(7.11)

Gn → G0 P ∗-a.s.,(7.12)

E∗Gn → E∗G0 ∈ [0,∞).(7.13)

We start with writing (using (7.10))

µ
(
φ ≤ nL

)
ψ

(
cn

an|Yn|

)
≤ C1

ψ
(
cna
−1
n |Yn|−1

)
ψ(cna

−1
n )

1{cn>an|Yn|} + C1
ψ
(
cna
−1
n |Yn|−1

)
ψ(cna

−1
n )

1{cn≤an|Yn|} ,

where C1 > 0 is a constant. Suppose first that 1 ≤ α < 2, and choose 0 < ξ < 2− α. Then by the

Potter bounds (see Proposition 0.8 in Resnick (1987)), for some constant C2 > 0,

ψ
(
cna
−1
n |Yn|−1

)
ψ(cna

−1
n )

1{cn>an|Yn|} ≤ C2(|Yn|α−ξ + |Yn|α+ξ)

for all n large enough. Further, since y2ψ(y) → 0 as y ↓ 0, we have, for some constant C3 > 0,

ψ
(
cna
−1
n |Yn|−1

)
ψ(cna

−1
n )

1{cn≤an|Yn|} ≤ C3

(
an
cn

)2 |Yn|2

ψ(cna
−1
n )

,

hence, for some constant C4 > 0,

(7.14) µ
(
φ ≤ nL

)
ψ

(
cn

an|Yn|

)
≤ C4

(
|Yn|α−ξ + |Yn|α+ξ +

(
an
cn

)2 |Yn|2

ψ(cna
−1
n )

)
for all n (large enough) and all realizations. We take

Gn = C4

(
|Yn|α−ξ + |Yn|α+ξ +

(
an
cn

)2 |Yn|2

ψ(cna
−1
n )

)
n = 1, 2, . . . ,

G0 = C4(|Y |α−ξ + |Y |α+ξ) .

Then (7.11) holds by construction, while (7.12) follows from the fact that(
an
cn

)2 1

ψ(cna
−1
n )

∈ RV(1−β)(1−2/α) ,

and (1 − β)(1 − 2/α) < 0. Keeping this in mind, and recalling that, by (7.5) (which holds also

for α = 1 under the assumptions of the theorem), supn≥1E
∗Y 2

n < ∞, we obtain the uniform

integrability implying (7.13). This proves (7.7) in the case 1 ≤ α < 2.
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If 0 < α < 1, then Lemma 7.2 allows us to assume, without loss of generality, that ρ(x : |x| ≤
1) = 0. Then ψ is bounded on (0, 1], so that for some C5 > 0,

ψ(cna
−1
n |Yn|−1)

ψ(cna
−1
n )

1{cn≤an|Yn|} ≤ C5
an
cn

|Yn|
ψ(cna

−1
n )

,

and the upper bound (7.14) is replaced with

µ
(
φ ≤ nL

)
ψ

(
cn

an|Yn|

)
≤ C6

(
|Yn|α−ξ + |Yn|α+ξ +

an
cn

|Yn|
ψ(cna

−1
n )

)
,

for some C6 > 0, where we now choose 0 < ξ < 1− α. Since

an
cn

1

ψ(cna
−1
n )

∈ RV(1−β)(1−1/α)

with (1 − β)(1 − 1/α) < 0 and supn≥1E
∗|Yn| < ∞ by (7.4), an argument similar to the case

1 ≤ α < 2 applies here as well. A similar argument proves, in the case 0 < α < 1, the “positive”

version described in Remark 5.4.

It remains to prove that the laws in the left hand side of (5.9) are tight in D[0, L] for any fixed

L > 0. By Theorem 13.5 of Billingsley (1999), it is enough to show that there exist γ1 > 1, γ2 ≥ 0

and B > 0 such that

P
[
min

(∣∣∣⌈ns⌉∑
k=1

Xk −
⌈nr⌉∑
k=1

Xk

∣∣∣, ∣∣∣⌈nt⌉∑
k=1

Xk −
⌈ns⌉∑
k=1

Xk

∣∣∣) ≥ λcn

]
≤ B

λγ2
(t− r)γ1

for all 0 ≤ r ≤ s ≤ t ≤ L, n ≥ 1 and λ > 0. We start with a simple observation that, in the case

0 < α < 1, we may assume that the function f is bounded. To see that, note that we can always

write f = f1|f |>M + f1|f |≤M , and use the finite-dimensional convergence in (5.10) and the fact

that µ
(
f1|f |>M

)
→ 0 as M → ∞.

Next, for any 0 < α < 2, if 0 < t− r < 1/n, then the probability in the left hand side vanishes.

If Xn = X
(1)
n + X

(2)
n , n = 1, 2, . . . be the decomposition described prior to Lemma 7.2. We start

with the part corresponding to the “small jumps”. Note that, by Lemma 7.2, this part is negligible

if 0 < α < 1 (since we can apply the lemma to the supremum of the process). Therefore, we only

consider the case 1 ≤ α < 2, and prove that there exist γ1 > 1, γ2 ≥ 0 and B > 0 such that for all

0 ≤ s ≤ t ≤ L, n ≥ 1, |t− s| ≥ 1/n and λ > 0,

(7.15) P
(∣∣∣⌈nt⌉∑

k=1

X
(2)
k −

⌈ns⌉∑
k=1

X
(2)
k

∣∣∣ ≥ λcn

)
≤ B

λγ2
(t− s)γ1 .

Note that the Lévy-Itô decomposition yields

⌈nt⌉∑
k=1

X
(2)
k −

⌈ns⌉∑
k=1

X
(2)
k

d
=

∫
E
S⌈nt⌉−⌈ns⌉(f) dM2

d
=

∫∫
|xS⌈nt⌉−⌈ns⌉(f)|≤λcn

xS⌈nt⌉−⌈ns⌉(f) dN̄2 +

∫∫
|xS⌈nt⌉−⌈ns⌉(f)|>λcn

xS⌈nt⌉−⌈ns⌉(f) dN2 ,
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where N2 is a Poisson random measure on R×E with mean measure ρ2×µ and N̄2 ≡ N2−
(
ρ2×µ

)
.

Therefore,

P
(∣∣∣ ⌈nt⌉∑

k=1

X
(2)
k −

⌈ns⌉∑
k=1

X
(2)
k

∣∣∣ ≥ λcn

)
≤ P

(∣∣∣ ∫∫
|xS⌈nt⌉−⌈ns⌉(f)|≤λcn

xS⌈nt⌉−⌈ns⌉(f) dN̄2

∣∣∣ ≥ λcn

)
+ P

(∣∣∣ ∫∫
|xS⌈nt⌉−⌈ns⌉(f)|>λcn

xS⌈nt⌉−⌈ns⌉(f) dN2

∣∣∣ > 0
)
.(7.16)

It follows from (5.1) that for some constant C1 > 0,

P
(∣∣∣ ∫∫

|xS⌈nt⌉−⌈ns⌉(f)|≤λcn
xS⌈nt⌉−⌈ns⌉(f) dN̄2

∣∣∣ ≥ λcn

)
≤ 1

λ2c2n
E

∣∣∣∣∣
∫∫
|xS⌈nt⌉−⌈ns⌉(f)|≤λcn

xS⌈nt⌉−⌈ns⌉(f) dN̄2

∣∣∣∣∣
2

=
1

λ2c2n

∫∫
|xS⌈nt⌉−⌈ns⌉(f)|≤λcn

∣∣xS⌈nt⌉−⌈ns⌉(f)∣∣2 ρ2(dx) dµ
≤ 4

∫
E

(
S⌈nt⌉−⌈ns⌉(f)

λcn

)2 ∫ λcn/|S⌈nt⌉−⌈ns⌉(f)|

0
xρ2(x,∞) dx dµ

≤ C1

λp0
1

cp0n

∫
E
|S⌈nt⌉−⌈ns⌉(f)|p0 dµ .

Similarly, for some constant C2 > 0,

P
(∣∣∣ ∫∫

|xS⌈nt⌉−⌈ns⌉(f)|>λcn

xS⌈nt⌉−⌈ns⌉(f) dN2

∣∣∣ > 0
)
≤ P

(
N2{|xS⌈nt⌉−⌈ns⌉(f)| > λcn} ≥ 1

)
≤ EN2{|xS⌈nt⌉−⌈ns⌉(f)| > λcn}

= 2

∫
E
ρ2
(
λcn|S⌈nt⌉−⌈ns⌉(f)|−1,∞

)
dµ

≤ C2

λp0
1

cp0n

∫
E
|S⌈nt⌉−⌈ns⌉(f)|p0 dµ ,

so that, in the notation of (7.3),

P
(∣∣∣ ⌈nt⌉∑

k=1

X
(2)
k −

⌈ns⌉∑
k=1

X
(2)
k

∣∣∣ ≥ λcn

)
≤ C1 + C2

λp0
1

cp0n

∫
E
|S⌈nt⌉−⌈ns⌉(f)|p0 dµ

=
C1 + C2

λp0
µ(φ ≤ ⌈nt⌉ − ⌈ns⌉)

µ(φ ≤ n)

(
a⌈nt⌉−⌈ns⌉

an

)p0 (A
(p0)
⌈nt⌉−⌈ns⌉)

p0

cp0n µ(φ ≤ n)−1a−p0n

.

It follows from (7.5) that

sup
n≥1,0≤s≤t≤L

A
(p0)
⌈nt⌉−⌈ns⌉ <∞.

Next, we may, if necessary, increase p0 in (5.1) to achieve p0 > α. In that case, the sequence

cp0n µ(φ ≤ n)−1a−p0n ∈ RV(1−β)(p0/α−1) diverges to infinity, so for some constant C3 > 0,

1

cp0n

∫
E
|S⌈nt⌉−⌈ns⌉(f)|p0dµ ≤ C3

µ(φ ≤ ⌈n(t− s)⌉)
µ(φ ≤ n)

(
a⌈n(t−s)⌉

an

)p0

.
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By the regular variation and the constraint t − s ≥ 1/n, for every 0 < η < min(β, 1 − β), there is

C4 > 0, such that

µ(φ ≤ ⌈n(t− s)⌉)
µ(φ ≤ n)

≤ C4

(
⌈n(t− s)⌉

n

)1−β−η
≤ 21−β−η C4 (t− s)1−β−η ,

a⌈n(t−s)⌉

an
≤ 2β−η C4 (t− s)β−η .

Therefore, for some constant C5 > 0,

P
(∣∣∣ ⌈nt⌉∑

k=1

X
(2)
k −

⌈ns⌉∑
k=1

X
(2)
k

∣∣∣ ≥ λcn

)
≤ C5

1

λp0
(t− s)1+(p0−1)β−(1+p0)η.

Since p0 > α ≥ 1, we can choose η > 0 so small that 1+ (p0− 1)β− (1+ p0)η > 0. This establishes

(7.15).

Next, we take up the process
(
X

(1)
n

)
. Lévy-Itô decomposition and the symmetry of the Lévy

measure ρ1 allow us to to write, for any K > 0,

1

cn

⌈nt⌉∑
k=1

X
(1)
k

d
=

1

cn

⌈nt⌉∑
k=1

∫∫
|xfk|≤Kcna

−1
n

xfk dN̄1 +
1

cn

⌈nt⌉∑
k=1

∫∫
|xfk|>Kcna

−1
n

xfk dN1

:= Z(1,K)
n (t) + Z(2,K)

n (t),

where N1 and N̄1 are as above. Here we first show that or any ϵ > 0,

(7.17) lim
K→∞

lim sup
n→∞

P
(
sup

0≤t≤L

∣∣Z(2,K)
n (t)

∣∣ ≥ ϵ
)
= 0 .

Consider first the case 1 < α < 2. Choose 0 < τ ≤ 2− α, and define

κ(w) =

{
1 if 0 ≤ w < 1

w−(α+τ) if w ≥ 1,

g(w) =
(
(w + 1)κ(w)

)−1
, w ≥ 0 .

Since 2g(w)/g(u) ≥ 1 for 0 ≤ u ≤ w, we have

P
(
sup

0≤t≤L

∣∣Z(2,K)
n (t)

∣∣ ≥ ϵ
)
≤ P

(∫∫
R×E

|x|
nL∑
k=1

|f | ◦ T k 1
(
|x||f | ◦ T k > Kcna

−1
n

)
dN1 ≥ ϵcn

)

= P

(
2

∫∫
R×E

|x|
nL∑
k=1

|f | ◦ T k g
(
|f | ◦ T k

) 1

g
(
Kcna

−1
n /|x|

) dN1 ≥ ϵcn

)

≤ 2

ϵ
c−1n E

(∫∫
R×E

|x|
nL∑
k=1

|f | ◦ T k g
(
|f | ◦ T k

) 1

g
(
Kcna

−1
n /|x|

) dN1

)

≤ C1 nc
−1
n

∫ ∞
1

x
(
Kcna

−1
n /x+ 1

)
κ
(
Kcna

−1
n /x

)
ρ(dx) ,

where C1 > 0 is another constant. It is now straightforward to check that for some constant C2 > 0,

lim sup
n→∞

P
(
sup

0≤t≤L

∣∣Z(2,K)
n (t)

∣∣ ≥ ϵ
)
≤ C2K

−(α−1) .
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This implies (7.17).

On the other hand, let 0 < α ≤ 1. Recall that we are assuming that the function f is now

bounded. We have

P
(
sup

0≤t≤L
|Z(2,K)

n (t)| ≥ ϵ
)
≤ P

(
max

k=1,...,nL
N1

{
(x, s) : |xfk(s)| > Kcna

−1
n

}
≥ 1
)

≤ EN1

{
(x, s) : |x| max

k=1,...,nL
|fk| > Kcna

−1
n

}
= 2

∫
E
ρ1

(
Kcna

−1
n

maxk=1,...,nL |fk|
,∞
)
dµ .

If we denote ∥ f ∥= supx∈E |f(x)| <∞, then we can use once again Potter’s bounds to see that for

some constant C1 > 0 and 0 < ξ < α,

ρ1
(
Kcna

−1
n (maxk |fk|)−1,∞

)
ρ1(cna

−1
n ,∞)

≤ C1

((
1

K
max

k=1,...,nL
|fk|
)α−ξ

+

(
1

K
max

k=1,...,nL
|fk|
)α+ξ

)
.

Therefore by (4.5), (5.7) and the fact that f is supported by A, for some constant C2 > 0,

P
(
sup

0≤t≤L
|Z(2,K)

n (t)| ≥ ϵ
)
≤ 2C1ρ1(cna

−1
n ,∞)

∫
E

(
1

K
max

k=1,...,nL
|fk|
)α−ξ

+

(
1

K
max

k=1,...,nL
|fk|
)α+ξ

dµ

≤ 2C1ρ1(cna
−1
n ,∞)

((
∥ f ∥
K

)α−ξ
+

(
∥ f ∥
K

)α+ξ
)
µ(φ ≤ nL)

≤ C2

((
∥ f ∥
K

)α−ξ
+

(
∥ f ∥
K

)α+ξ
)
,

and (7.17) follows.

It remains to consider the processes {Z(1,K)
n (t), 0 ≤ t ≤ L}, n = 1, 2, . . . for a fixed K > 0. In

the sequel we drop the superscript K for notational convenience. We will show that exist γ1 > 1,

and B > 0 such that for all 0 ≤ s < t ≤ L, n ≥ 1, t− s ≥ 1/n and λ > 0,

(7.18) P (|Z(1)
n (t)− Z(1)

n (s)| ≥ λ) ≤ B

λ2
(t− s)γ1 .

Indeed, by Chebyshev’s inequality and the fact that f is supported by A, we see that

P
(
|Z(1)

n (t)− Z(1)
n (s)| ≥ λ

)
≤ 1

λ2c2n
E

∣∣∣∣∣∣
⌈nt⌉−⌈ns⌉∑

k=1

∫∫
|xfk|≤Kcna

−1
n

xfkdN̄1

∣∣∣∣∣∣
2

≤ 2

λ2c2n

⌈n(t−s)⌉∑
k=1

⌈n(t−s)⌉∑
l=1

∫
E
|fkfl|

∫ Kcna
−1
n /|fk|∨|fl|

0
x2 ρ1(dx) dµ .

It follows from the Potter bounds and the fact that ρ1 does not assigns mass to the interval (0, 1)

that for any 0 < ξ < 2− α there is C > 0 such that for all a > 0 large enough and all r > 0,∫ ra
0 x2 ρ1(dx)∫ a
0 x

2 ρ1(dx)
≤ C

(
r2−α−ξ ∨ r2−α+ξ

)
.
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Therefore, for all n large enough, for some constant C1 > 0,

P
(
|Z(1)

n (t)− Z(1)
n (s)| ≥ λ

)
≤ C1

λ2c2n

⌈n(t−s)⌉∑
k=1

⌈n(t−s)⌉∑
l=1

∫
E

|fkfl|
(|fk| ∨ |fl|)2−α−ξ

dµ

∫ cna
−1
n

0
x2 ρ1(dx)

+
C1

λ2c2n

⌈n(t−s)⌉∑
k=1

⌈n(t−s)⌉∑
l=1

∫
E

|fkfl|
(|fk| ∨ |fl|)2−α+ξ

dµ

∫ cna
−1
n

0
x2 ρ1(dx) .

Note that by Karamata’s theorem, (4.5) and the definition (5.5) of the normalizing sequence (cn),

there is C2 > 0 such that ∫ cna
−1
n

0
x2 ρ1(dx) ≤ C2

c2n
nan

.

If 1 < α < 2, we impose also the constraint ξ < α− 1, and use the relation

(7.19)
|fkfl|

(|fk| ∨ |fl|)2−α±ξ
=
(
|fk| ∧ |fl|

)(
|fk| ∨ |fl|

)α−1∓ξ
,

so that

1

c2n

⌈n(t−s)⌉∑
k=1

⌈n(t−s)⌉∑
l=1

∫
E

|fkfl|
(|fk| ∨ |fl|)2−α±ξ

dµ

∫ cna
−1
n

0
x2 ρ1(dx)

≤ C2
1

nan

⌈n(t−s)⌉∑
k=1

⌈n(t−s)⌉∑
l=1

∫
E

(
|fk| ∧ |fl|

)(
|fk| ∨ |fl|

)α−1∓ξ
dµ

≤ 2C2
1

nan

[
⌈n(t− s)⌉

∫
E
|f |α∓ξ dµ

+

⌈n(t−s)⌉−1∑
k=1

⌈n(t−s)⌉∑
l=k+1

(∫
E
|fl||fk|α−1∓ξ dµ+

∫
E
|fk||fl|α−1∓ξ dµ

)]
:= Jn(1) + Jn(2) + Jn(3) .

The fact that t − s > 1/n and (an) is regularly varying with the positive exponent β, shows that

for any 1 < γ1 < 1 + β there is some constant C3 > 0, such that for all n = 1, 2, . . .,

Jn(1) ≤ C3(t− s)γ1 .

Next, by the duality relation (4.1),

Jn(2) ≤
4C2

an
(t− s)

⌈n(t−s)⌉∑
k=1

∫
E
|fk||f |α−1∓ξ dµ

=
4C2

an
(t− s)

∫
A
|f |

⌈n(t−s)⌉∑
k=1

T̂ k|f |α−1∓ξ
 dµ .

If f is bounded, then by the Darling-Kac property of the set A we have, for some constants

C4, C5 > 0,

Jn(2) ≤ C4(t− s)
a⌈n(t−s)⌉

an
µ(|f |) ≤ C5(t− s)γ1 , 1 < γ1 < 1 + β ,
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by the regular variation of (an). If, on the other hand, A is a uniform set for |f |, then we can write

⌈n(t−s)⌉∑
k=1

T̂ k|f |α−1∓ξ ≤
⌈n(t−s)⌉∑

k=1

T̂ k1A +

⌈n(t−s)⌉∑
k=1

T̂ k|f | ,

and obtain the same bound on J2 by using both the Darling-Kac property and the uniform property

of the set A. A similar argument shows that, for some constant C6 > 0 we also have

Jn(3) ≤ C6(t− s)γ1 , 1 < γ1 < 1 + β ,

which proves (7.18) in the case 1 < α < 2.

Finally, for 0 < α ≤ 1 the same argument works, if we replace the relation (7.19) by

|fkfl|
(|fk| ∨ |fl|)1+ξ

≤
(
|fk| ∧ |fl|

)1−ξ
,

|fkfl|
(|fk| ∨ |fl|)1−ξ

=
(
|fk| ∧ |fl|

)(
|fk| ∨ |fl|

)ξ
,

respectively if α = 1, and
|fkfl|

(|fk| ∨ |fl|)2−α±ξ
≤
(
|fk| ∧ |fl|

)α±ξ
if 0 < α < 1. This proves (7.18) in all cases and, hence, completes the proof of the theorem. �
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