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Abstract

Background: Both T-type calcium channels and cannabinoid receptors modulate signalling in the primary afferent
pain pathway. Here, we investigate the analgesics activities of a series of novel cannabinoid receptor ligands with
T-type calcium channel blocking activity.

Results: Novel compounds were characterized in radioligand binding assays and in vitro functional assays at
human and rat CB1 and CB2 receptors. The inhibitory effects of these compounds on transient expressed human
T-type calcium channels were examined in tsA-201 cells using standard whole-cell voltage clamp techniques, and
their analgesic effects in response to various administration routes (intrathecally, intraplantarly, intraperitoneally)
assessed in the formalin model. A series of compounds were synthesized and evaluated for channel and receptor
activity. Compound NMP-7 acted as non-selective CB1/CB2 agonist while NMP4 was found to be a CB1 partial
agonist and CB2 inverse agonist. Furthermore, NMP-144 behaved as a selective CB2 inverse agonist. All of these
three compounds completely inhibited peak Cav3.2 currents with IC50 values in the low micromolar range. All
compounds mediated analgesic effects in the formalin model, but depending on the route of administration,
could differentially affect phase 1 and phase 2 of the formalin response.

Conclusions: Our results reveal that a set of novel cannabinioid receptor ligands potently inhibit T-type calcium
channels and show analgesic effects in vivo. Our findings suggest possible novel means of mediating pain relief
through mixed T-type/cannabinoid receptor ligands.

Background
Cannabinoid (CB) receptors are the members of G pro-
tein-coupled receptor (GPCR) superfamily. They can be
activated by the phytocannabinoid Δ9-tetrahydrocanna-
binol (Δ9-THC) and endogenous cannabinoids, such as
anandamide and 2-arachidonyl glycerol (2-AG) (for
review, see [1]). To date, two members of the CB recep-
tor family have been identified, namely CB1 and CB2
receptors [2,3]. CB1 receptors are mainly expressed in
the central nervous system and peripheral neurons.
They are coupled to the Gi/o pathway and act on effec-
tors such as A-type and inwardly rectifying potassium
channels [4-6], as well as N- and P/Q-type calcium
channels [5,7,8]. Application of CB1 agonists can inhibit

the release of a number of neurotransmitters, which in
turn, can mediate cognitive and psychotropic effects [9],
impair motor function and induce analgesic effects [10].
CB2 receptors were originally identified in the periph-
eral immune system, where their activation modulates
the cell migration and cytokine release via Gi/o signaling
(for review, see [11,12]). Recently, several studies have
shown that the expression of CB2 receptors in microglia
is increased during inflammation [13,14], and that CB2
receptors are upregulated in peripheral nerve fibers and
spinal cord sensory neurons following nerve injury
[15-17]. In addition, a number of CB2-selective ligands
have been shown to possess anti-nociceptive effects in
various animal pain models, indicating an important
role of CB2 receptors in nociceptive signaling [18-20].
T-type voltage-gated calcium channels are another key

mediator in pain signaling [21-25]. T-type channels are
highly expressed in certain subsets of primary afferent
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pain fibers, where they can initiate the action potential
firing and the generation of burst firing. Intrathecal inhi-
bition of T-type channels with ethosuximide [26] or
knockdown of a specific T-type channel subtype,
Cav3.2, by antisense depletion induces potent analgesic
effects in rodents [27]. Interestingly, several endocanna-
binoids (anandamide and its methyl derivatives and N-
arachidonoyl dopamine) [28-30] and phytocannabinoids
(Δ9-tetrahydrocannabinol and cannabidiol) [31] can
directly block T-type calcium channels with potencies in
the high nanomolar and low micromolar range, and can
trigger analgesia when delivered directly into the hind-
paw [30]. Notably, these peripheral effects were abol-
ished in a Cav3.2 channel KO mouse.
In this study, we synthesized and pharmacologically

characterized a series of novel cannabinoid CB1/CB2
receptor ligands (NMP compounds). We screened the
series of CB ligands for T-type channel blocking activity,
and then tested their analgesic effects in an in vivo
model of inflammatory pain. Our data show that mixed
T-type/CB ligands may provide a new strategy for devel-
oping effective pain therapeutics.

Results
In vitro characterization of NMP compounds
In order to identify compounds potentially interacting
with cannabinoid receptors, a set of tricyclic compounds
(Figure 1) was selected from our compound library
based on carbazole and carboline scaffolds. These com-
pounds were tested for their cannabinoid activities but

also on serotonin receptors 5-HT2A and 5-HT2C to
discard any promiscuous ligands. In the primary binding
assays all of the compounds except NMP-139 displaced
more than 50% of [3H]CP55,490 in HEK293 cells
expressing human CB2 receptor, and in rat brain homo-
genates expressing CB1 receptors (Table 1). These
results were confirmed in competition binding assays
(Table 2). In contrast, none of the compounds signifi-
cantly displaced [3H]ketanserin and [3H]mesulergine in
HEK293 cells expressing human 5-HT2A or rat 5-HT2C
receptors, suggesting lack of 5HT receptor activity and
discarding GPCR promiscuous activities. Binding studies
for NMP-7 were not performed since the functional
assay data were already available for this compound
(Table 2). NMP-4 exhibited the best affinities for both
CB1 and CB2 receptors with Ki values of respectively
12.8 nM at rat CB1 receptors and 7.5 nM at human
CB2 receptors (Table 2). Functional activities confirm
these results since EC50 values of NMP-4 in GTPg[35S]
functional assays were 118.3 nM at human CB1 with an
efficacy of 30.4%, and 9.8 nM with an efficacy of -76.4%
at human CB2. These data indicate that NMP-4 acts as
a CB1 agonist and a CB2 inverse agonist.
EC50 values for the carbazole analog NMP-7 were

respectively 96.9 nM at human CB1 with an efficacy of
73.6%, and 10.5 nM with an efficacy of 30.8% at human
CB2 indicating that NMP-7 behaves as a CB1 and CB2
agonist. Functional activities for the b-carboline deriva-
tive NMP-140 were not performed because of the low
affinities at CB1 and CB2 determined in the binding

Figure 1 NMP compounds selected for this study. Carbazole derivatives NMP-4, NMP-7 and NMP-139, b-carboline derivatives NMP-140 and
NMP-141 and g-carboline derivative NMP-144 were selected and used in this study.
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studies. The corresponding eutomer NMP-141 did not
show any agonistic or antagonistic activities at human
CB1 receptors in the GTPg[35S] assay. EC50 value of
NMP-141 for CB2 receptor was 112.4 nM, with an effi-
cacy of 51.9%. Hence, NMP-141 appears to be a selec-
tive CB2 agonist. In contrast, the g-carboline derivative
NMP-144 appears to behave as a CB2 inverse agonist
with a CB2 EC50 value of 35.7 and an efficacy of -48.1%.
Overall, our results indicate that tricyclic scaffolds

such as carbazole or carboline can exhibit high affinities
for the cannabinoid receptors CB1 and CB2. As we pre-
viously demonstrated [32], we were able to reverse ago-
nist activity to inverse agonist activity by adding a
methoxy moiety in these scaffolds (NMP-4 and NMP-7).

NMP compounds block T-type calcium channels
Studies have shown that several endocannabinoids and
phytocannabinoids have direct inhibitory actions on T-
type voltage-gated calcium channels [28-31]. To deter-
mine whether the NMP compounds produced a similar
effect, we characterized their actions on transiently
expressed T-type calcium channels via whole-cell patch-
clamp recordings. Cells were held at -100 mV and bar-
ium current was evoked by a depolarizing pulse to -20
mV. As seen in Figure 2A, the initial screen with 10 μM
of each compounds revealed a varying degree of inhibi-
tion of T-type calcium channels, however, for each com-
pound, the degree of inhibition was similar for all three
Cav3 isoforms. The two carbazole derivatives NMP-4

and NMP-7 exhibited potent inhibition of T-type cur-
rent (80 ~ 95%), which could be rapidly reversed by
wash-out. In contrast, NMP-139, an analogue of NMP-4
and NMP-7 that was inactive at CB1/CB2 receptors,
yielded minimal inhibition on T-type current (< 20%).
Among those carboline derivatives, NMP-144 (g-carbo-
line derivative, a selective CB2 inverse agonist) displayed
robust block of T-type current (~ 70 to 90%), but had
only a small effect on N-type calcium channels (20%, n
= 5).
To further characterize compounds NMP-4, NMP-7

and NMP-144, we investigated the concentration depen-
dence of their action on Cav3.2, the major T-type cal-
cium channel subtype implicated in the afferent pain
pathway (Figure 2B, C). Concentration-response curves
revealed that NMP-4 and NMP-7 have similar IC50s
(2.47 μM and 1.84 μM, respectively) and are approxi-
mately 2-fold more potent in blocking T-type current
compared to NMP-144 (IC50 = 5.59 μM).
The experiments presented in Figure 2 were con-

ducted at a holding potential of -110 mV and hence
reflect tonic T-type channel block. To determine
whether these compounds also affected inactivated
channels, we recorded steady-state inactivation curves
prior and after application of NMP-4, NMP-7 or NMP-
144. As shown in Figure 3, application of 10 μM NMP-
4 or NMP-7 respectively induced 20 mV and 13 mV
hyperpolarizing shifts in the half inactivation potential
of Cav3.2 channels (Figure 3A, B), thus resulting in

Table 1 Primary radioligand competitive binding assays

Ligand (10 μM) Human 5-HT2A (%) Rat 5-HT2C (%) Rat CB1 (%) Human CB2 (%)

NMP4 23.9 -9.3 99.3 104.4

NMP7 ND ND ND ND

NMP139 7.7 -7.8 46.3 51.3

NMP140 11.2 -4.2 79.3 71.1

NMP141 11.9 -8.4 88.6 88.7

NMP144 -5.2 13 67.4 90.6

ND: not determined

Table 2 Radioligand competitive binding assays and GTPg[35S] functional activity.
Mean Ki (nM) GTPg[35S] functional assays

Ligand Rat CB1 Human CB2 Human CB1 Human CB2

EC50 (nM) Emax (%) EC50 (nM) Emax (%)

NMP4 12.8 ± 1.8 7.5 ± 0.7 118.3 ± 4 30.4 9.8 ± 0.3 -76.4

NMP7 ND ND 96.9 ± 11.9 73.6 10.5 ± 1.8 30.8

NMP139 NA 3594 ± 424 ND ND ND ND

NMP140 1252 ± 290 2874 ± 515 ND ND ND ND

NMP141 906.2 ± 211.3 480.7 ± 52.9 NA NA 112.4 ± 3.3 51.9

NMP144 1143 ± 264 706.2 ± 110.1 NA NA 35.7 ± 13.9 -48.1

ND: not determined; NA: not active at 1 μM
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additional inhibition when cells are held at a typical
neuronal resting membrane potential. In contrast, the
same concentration of NMP-144 did not significantly
affect voltage-dependent inactivation (Figure 3C),

suggesting that NMP-144 blocks Cav3.2 channels via a
distinct mechanism from that of NMP-4 and NMP-7
which differ in their backbones from NMP-144 (see Fig-
ure 1). Altogether, our results indicate that a subset of
CB1/CB2 ligands can act as potent T-type calcium
channel blockers. For characterization of in vivo effects,

Figure 2 Inhibition of T-type calcium channels by NMP
compounds. . (A) The histogram summarizes the inhibitory effects
of 10 μM NMP compounds on three subtypes of recombinant T-
type calcium channels expressed in tsA-201 cells. The number of
cells that have been tested is indicated on the top of the bars. (B)
Further characterization of compounds NMP-4, NMP-7 and NMP-144
on Cav3.2 channels. The IC50 values obtained from the fit to the
dose response relation were 2.47 μM, 1.84 μM 5.59 μM, respectively,
for Cav3.1, Cav3.2 and Cav3.3. Data represent the mean ± SEM from
3 - 8 cells of each concentration of compounds. (C) Representative
traces from a single cell showing the inhibitory effects of NMP-144
on Cav3.2 with different concentrations and recovery upon
washout.

Figure 3 Steady-state inactivation curves obtained from Cav3.2
channels before and after application of 10 μM NMP-4 (A),
NMP-7 (B) or NMP-144 (C). The half-inactivation potentials before
and after the treatment with drugs were as follows: NMP-4 -52.9 ±
1.4 mV and -72.9 ± 4.7 mV (n = 4, P < 0.01, paired t test); NMP-7:
-50.5 ± 0.6 mV and -63.3 ± 3.5 mV (n = 4, P < 0.05, paired t test);
NMP-144: -53.7 ± 1.6 mV and -55.8 ± 2.2 mV (n = 4, P > 0.05, paired
t test).
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we thus focused on three compounds that shared T-type
channel blocking activity, but displayed distinct actions
on CB1 and CB2 receptors.

Effect of NMP-4 or NMP-144 on formalin-induced
nociception
When delivered spinally 10 minutes prior to behavioural
assessment, both NMP-4 (1-10 μg/i.t.) and NMP-144
(0.1-1 μg/i.t.) produced significant dose dependent inhi-
bition of both neurogenic (first) and inflammatory (sec-
ond) phases of formalin-induced nociception (Figures 4
and 5). In the presence of NMP-4 and NMP-144, pain
response times (i.e., time spent licking and biting) were
reduced, respectively by 44 ± 4% (Figure 4A) and 52 ±
3% (Figure 5A) (first phase) and 87 ± 7% (Figure 4B)
and 53 ± 14% (Figure 5B) (for second phase). In con-
trast, when NMP-4 (0.03-3 μg/paw) or NMP-144 (0.03-
3 μg/paw) were administered peripherally through intra-
plantar coinjection with formalin, no effect was observed
(Figures 4C, D and 5C, D). Altogether, these data show
that compounds with two completely different CB

receptor activity profiles, but overlapping T-type channel
blocking activity, block inflammatory pain and mediate
analgesia when administered spinally.

Effect of NMP-7 on formalin-induced nociception
As with the two other compounds, NMP-7 administered
spinally (i.t., 3-30 μg/i.t, 10 min prior) produced signifi-
cant inhibition of both neurogenic (0-5 min) and inflam-
matory (15-30 min) phases of formalin-induced
nociception (Figure 6A,B). When NMP-7 was adminis-
tered peripherally (i.pl., 0.3-3 μg/i.pl., co-injected with
formalin) it was also able to inhibit the first phase of
formalin-induced nociception (Figure 6C,D). As shown
in Figure 7A, i.pl. pre-treatment of the CB2 inverse ago-
nist NMP-4 (0.03 μg/i.pl.) significantly antagonized the
antinociceptive effect of NMP-7 (1 μg/i.pl.) on the first
phase of formalin-induced pain, suggesting that CB2
receptor activity is linked to the analgesic effect of
NMP-7 observed for the neurogenic phase.
We then delivered NMP-7 via the intrperitoneal route.

As shown in Figures 7B and 7C, systemic delivery (1

Figure 4 Effect of NMP-4 administered by i.t. (A and B) or i.pl. (C and D) (co-administered with formalin) routes on the first (A, C) and
second (B, D) phases of formalin-induced pain. Each bar represents the mean responses from 4-7 animals and the error bars indicate the S.E.
M. Control values (indicated by “C”) are from animals injected with 5% of DMSO and the asterisks denote the significance relative to the control
group. *P < 0.05, **P < 0.01, ***P < 0.001. (one-way ANOVA followed by Dunnett’ test).
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mg/kg, 30 min before behavioural assessment) led to a
strong inhibition of the pain responses in phase 1 (92 ±
7%) and phase 2 (94 ± 6%). Intraperitoneal administra-
tion of NMP-7 (1 mg/kg, i.p.) 30 minutes before the
experiment did not alter locomotor activity in the open-
field test when compared with control group (data not
shown).
Altogether, these data indicate that CB2 agonist activ-

ity (perhaps in addition to the ability to block T-type
channels) leads to an inhibition of the neurogenic pain
response when administered either systemically, or
locally at the site of injury.

Discussion
Ion channels and G protein coupled receptors in the
primary afferent pain pathway are key targets for med-
iating analgesia. Both CB1 and CB2 receptors play
important roles in the pain pathway. For example, CB2
receptors are upregulated during neuropathic pain [15].
CB2 receptor activation inhibits mechanical hyperalgesia
in inflammatory and neuropathic pain models [33], and
mediates analgesia in models of bone cancer when

admistered at the spinal level [34]. Similarly, peripheral
activation of CB1 receptors is effective in treating neuro-
pathic and inflammatory pain [35]. One of the key
endocannabinoids, anandamide, has been shown to not
only activate CB receptors, but to also potently inhibit
Cav3.2 T-type channels. T-type channel activity is upre-
gulated in various pain states including neuropathic
pain, and pharmacological inhibition or antisense deple-
tion of these channels in dorsal root ganglion neurons
mediates analgesia (for review see [25]). Hence one may
perhaps expect synergistic analgesic properties in CB
receptor agonists with T-type channel antagonist activ-
ity. Here we have developed several new synthetic CB
receptor ligands with various agonist/inverse agonist
activity profiles on CB1 and CB2 receptors, and then
screened them for T-type channel blocking activity. The
observation that several of these ligands mediated robust
T-type channel block may suggest that T-type calcium
channels and CB receptors may share a common bind-
ing pocket structure for cannabinoids and related com-
pounds, similar to what we described recently for CCR2
receptor ligands and Cav3.2 channels [36].

Figure 5 Effect of NMP-144 administered by i.t. (A and B) or i.pl. (C and D) (co-administered with formalin) routes on first (A, C) and
second (B, D) phases of formalin-induced pain. Each bar represents the mean response of 4-6 animals and the error bars indicate the S.E.M.
Control values (indicated by “C”) are from animals injected with 5% of DMSO and the asterisks denote the significance relative to the control
group. *P < 0.05, **P < 0.01. (one-way ANOVA followed by Dunnett’ test).
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It is interesting to note that NMP-4, NMP-7 and
NMP-144 all mediated analgesia, even though these
compounds displayed diametrically different actions on
CB receptors. While NMP-7 is an agonist for both
CB1 and CB2 receptors, NMP-4 is only a partial ago-
nist for CB1 and an inverse agonist of CB2, and NMP-
144 is a selective CB2 receptor inverse agonist. One
feature shared among all three compounds is their
ability to block T-type channels, thus suggesting T-
type inhibition as a main contributor to their analgesic
properties. Despite being a CB2 inverse agonist and
having little CB1 activity, NMP-4 and NMP-144
blocked both the neurogenic and the inflammatory
components of the formalin response, however NMP-
144 was the most potent and produced analgesia at
doses as low as 0.3 μg/i.t. This suggests that its analge-
sic actions do not involve CB receptors, but likely
occur predominantly via its T-type channel blocking
activity. In contrast, these compounds did not produce
effects when delivered intraplantarly, suggesting that
local administration of a T-type channel inhibitor does
not result in pain relief.

On the other hand, the mixed CB1/CB2 agonist NMP-
7 potently affected both phases after systemic delivery.
The effect of NMP-7 in the first phase was abrogated by
a CB2 inverse agonist, suggesting that CB2 receptors are
likely responsible for the observed local effects. This fits
with reports showing that CB2 receptors are expressed
at peripheral nerve endings and play a role in the
inflammatory pain or neuropathic pain states [15,37],
and the observation that local administration of CB2
agonists contribute to analgesia during in inflammatory
pain [37-39]. The potent systemic effects of NMP-7 are
more difficult to interpret at the mechanistic level,
because in addition to affecting spinal and peripheral
receptors/channels, this compound may also show CNS
penetration. Nonetheless, our data suggest that a mixed
CB2 receptor agonist/T-type channel antagonist may be
a suitable strategy towards mediating relief from inflam-
matory pain.

Conclusion
Altogether, our experiments identify a novel class of
mixed CB/T-type channel ligands with potent analgesic

Figure 6 Effect of NMP-7 administered by i.t. (A and B), or i.pl. (C and D) (co-administered with formalin) routes on first (A, C) and
second (B, D) phases of formalin-induced pain. Each bar represents the mean response from 4-7 animals and the error bars indicate the S.E.
M. Control values (indicated by “C”) are from animals injected with 5% of DMSO and the asterisks denote the significance relative to the control
group. *P < 0.05, **P < 0.01, ***P < 0.001. (one-way ANOVA followed by Dunnett’ test).
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properties. The novel pharmacophores may also serve a
starting point for the development of new, more potent
T-type channel antagonists.

Materials and methods
Chemical synthesis
NMP compounds were synthesized at the Core Labora-
tory for Neuromolecular Production (Figure 1). Full ana-
lytical data for NMP compounds are available in
Additional File 1.
Carbazole derivatives (NMP-4, NMP-7 and NMP-139)

were prepared in a four-step sequence starting with cor-
responding carbazole which were alkylated and formy-
lated [40,41]. Oxidation of the resulting aldhehyde [42]
yielded the corresponding carboxylic acid. The amide
analogues were prepared by amidification with the cor-
responding amines. b-carboline derivatives (NMP-140,
NMP-141) were prepared by amidification of commer-
cially available Boc protected carbolines affording the
corresponding amide which is alkylated. The Boc group

was selectively removed [43] and converted to the corre-
sponding hydrochlorides. g-Carboline derivative NMP-
144, was prepared by methodologies previously
employed [44,45]. Pyrido[4,3-b]indole obtained by
Fischer indol synthesis was alkylated and the ethoxycar-
bonyl group was removed. Direct reaction of the amine
previously obtained with the corresponding acyl chlor-
ides afforded the desired compounds.

cDNA constructs
Human Cav3.2 and Cav3.3 were kindly provided by Drs.
Arnaud Monteil (CNRS Montpellier) and Terrance
Snutch (University of British Columbia), respectively.
Cloning of Cav3.1 was described by us previously [46].
The DNA encoding the human CB1 receptor was iso-
lated from a human brain stem cDNA library [47].
Sequencing confirmed that it was identical to GenBank
Accession X54937. The coding sequence of the human
CB1 receptor was subcloned as a HindIII-XbaI 1.5 kb
DNA fragment in the expression vector pCDNA3 and
in a bicistronic expression vector. The human CB2
receptor was cloned by PCR using oligonucleotides
based on the sequence published by Munro et al. [3]
with human genomic DNA as template. Sequencing of
the resulting clones identified a fragment of 1.1 kb
encoding the human cannabinoid 2 receptor, identical
to GenBank Accession X74328. The coding sequence of
the human CB2 receptor was inserted into bicistronic
expression plasmids as a BamHI-NheI fragment and was
subcloned as a BamHI-NheI DNA fragment in a
BamHI-XbaI expression vector pCDNA3 (Invitrogen).
The sequences of human CB2, human 5-HT2A and rat
5-HT2C used in the binding studies are the NCBI Refer-
ence Sequence.

Cell culture and transfection
HEK293 cells and CHO cells were used in the radioli-
gand binding assay while tsA-201 cells were used in the
electrophysiological study. Human CB2, human 5-
HT2A, rat 5-HT2C used in the binding studies were
cloned into pcDNA5.0FRT and cell lines were made
using the FlpIn system from Invitrogen. tsA-201 cell
culture and transient calcium channel transfection were
performed as described previously [36]. In brief, tsA-201
cells were transfected using the calcium phosphate
method. Cav3.1, 3.2 and 3.3 a1 subunits were trans-
fected individually with yellow fluorescent protein as a
transfection marker.

In vitro receptor radioligand CB1 and CB2 binding studies
CB1 and CB2 radioligand binding data were obtained
using National Institute of Mental Health (NIMH) Psy-
choactive Drug Screening Program (PDSP) resources as
described earlier [48-50]. Compounds were screened in

Figure 7 Effect of i.pl. pre-treatment with NMP-4 (0.03 μg/i.pl.)
on the antinociceptive effect of NMP-7 (1 μg/i.pl.) on first
phase of formalin-induced pain in mice (A). Each bar represents
the mean response from 5-7 animals and the error bars indicate the
S.E.M. Vehicle values are from animals injected with PBS solution
with 5% of DMSO. The asterisks denote the significance level: *P
<0.05 (two-way ANOVA followed by the Newman-Keuls’ test). B, C.
Effect of systemically delivered NMP-7 (1 mg/kg, i.p.) on both
phases of formalin induced pain. Each bar represents the mean
response from 5-6 animals and the error bars indicate the S.E.M.
Control values (indicated by “C”) are from animals injected with 5%
of DMSO and the asterisks denote the significance relative to the
control group. *P < 0.05, **P < 0.01, ***P < 0.001. (one-way ANOVA
followed by Dunnett’ test).
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a competitive binding experiment using, respectively,
membrane fractions prepared from rat brain homoge-
nate expressing CB1 receptor and HEK293 cells expres-
sing the human CB2 receptor. Experiments were
conducted at a range of different concentrations and in
duplicate. The competition binding experiment for CB1
and CB2 was performed in 96 well plates containing
Standard Binding Buffer (50 mM Tris HCl, 1 mM
EDTA, 3 mM MgCl2, 5 mg/ml fatty acid-free BSA, pH
7.4). The radioligand was [3H]CP55940, and the refer-
ence compound was CP55940. A solution of the com-
pound to be tested was prepared as a 1 mg/ml stock in
DMSO and then diluted in Standard Binding Buffer by
serial dilution. Radioligand was diluted to five times the
assay concentration in Standard Binding Buffer. Aliquots
(50 μl) of radioligand were dispensed into the wells of a
96-well plate containing 100 μl of Standard Binding Buf-
fer. Then, duplicate 50-μl aliquots of the test and refer-
ence compound dilutions were added. Finally, crude
membrane fractions of cells were resuspended in 3 ml
of chilled Standard Binding Buffer and homogenized by
several passages through a 26 gauge needle, then 50 μl
were dispensed into each well. The 250-μl reactions
were incubated at room temperature for 1.5 hours, and
then harvested by rapid filtration onto Whatman GF/B
glass fiber filters pre-soaked with 0.3% polyethylenei-
mine using a 96-well Brandel harverster. Four rapid
500-μl washes were performed. Filters were placed in 6-
ml scintillation tubes and allowed to dry overnight.
Bound radioactivity was harvested onto 0.3% polyethyle-
neimine-treated, 96-well filter mats using a 96-well Fil-
termate harvester. The filter mats were dried, then
scintillant was melted onto the filters and the radioactiv-
ity retained on the filters counted in a Microbeta scintil-
lation counter. Raw data (dpm) representing total
radioligand binding (i.e., specific + non-specific binding)
were plotted as a function of the logarithm of the molar
concentration of the competitor (i.e., test or reference
compound). Non-linear regression of the normalized (i.
e., percent radioligand binding compared to that
observed in the absence of test or reference compound)
raw data was performed in Prism 4.0 (GraphPad Soft-
ware) using the built-in three parameter logistic model
describing ligand competition binding to radioligand-
labeled sites: y = bottom + [(top-bottom)/(1 + 10 ×
-logIC50)] where bottom equals the residual radioligand
binding measured in the presence of 10 μM reference
compound (i.e., non-specific binding) and top equals the
total radioligand binding observed in the absence of
competitor. The log IC50 (i.e., the log of the ligand con-
centration that reduces radioligand binding by 50%) is
thus estimated from the data and used to obtain the Ki

by applying the Cheng-Prusoff approximation: Ki =
IC50/(1 + [ligand]/KD) where [ligand] equals the assay

radioligand concentration and KD equals the affinity
constant of the radioligand for the target receptor.

5-HT2A and 5-HT2C binding
Radioligand binding data were obtained using National
Institute of Mental Health’s Psychoactive Drug Screen-
ing Program (NIMH/PDSP) using the same protocol
described for CB1 and CB2 binding experiments
[48-50]. Transfected HEK293 (human 5-HT2A or rat 5-
HT2C) cells were used. The radioligands were [3H]
ketanserin (0.5 nM) and [3H]mesulergine (0.5 nM) for
respectively 5-HT2A and 5-HT2C experiments. Non-
specific binding was determined in the presence of 10
μM chlorpromazine for both 5-HT2A and 5-HT2C
binding experiments. Cells were harvested and homoge-
nized in 50 mM Tris HCl, 10 mM MgCl2, 0.1 mM
EDTA, pH 7.4. Incubation of radioreceptor binding
assay mixtures was 1.5 hours at room temperature in
the dark.

GTPg[35S] functional assays
Functional activity was evaluated using GTPg[35S] assay
in CHO cell membrane extracts expressing recombinant
human CB1 or CB2 receptors as we previously described
[51]. Compounds were solubilized in 100% DMSO at a
concentration of 10 mM within 4 hours of the first test-
ing session. A predilution for the dose response curve
was performed in 100% DMSO and then diluted 100
fold in assay buffer at a concentration 2 fold higher than
the concentration to be tested. Compounds were tested
for agonist activities in duplicate with CP55,940 (Tocris,
Bioscience, Ellisville, MI, USA) as reference agonist.
Membranes were mixed with GDP diluted in assay buf-
fer to give 30 μM solution (volume:volume) and incu-
bated for at least 15 min on ice. In parallel, GTPg[35S]
(GE Healthcare, Catalogue number SJ1308) were mixed
with the beads (PVT-WGA (GE Healthcare,
RPNQ001)), diluted in assay buffer at 50 mg/ml (0.5
mg/10 μl) (volume:volume) just before starting the reac-
tion. The following reagents were successively added in
the wells of an Optiplate (Perkin Elmer): 50 μl of ligand,
20 μl of the membranes:GDP mix, 10 μl of assay buffer
for agonist testing, and 20 μl of the GTPg[35S]:beads
mix. The plates were covered with a topseal, shacked on
an orbital shaker for 2 min, and then incubated for 1
hour at room temperature. Then the plates were centri-
fuged for 10 min at 2000 rpm and counted for 1 min/
well with a PerkinElmer TopCount reader. Assay repro-
ducibility was monitored by the use of reference com-
pound CP 55,940. For replicate determinations, the
maximum variability tolerated in the test was of ± 20%
around the average of the replicates. Efficacies (Emax) for
CB1 or CB2 are expressed as a percentage relative to the
efficacy of CP 55,940.
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Electrophysiology
Whole-cell currents were recorded from tsa-201 cells 2-
4 days after transfection. The external recording solu-
tion contained (in mM): BaCl2 (20), MgCl2 (1), HEPES
(10), TEA-Cl (40), CsCl (65), d-glucose (10) and pH 7.2
adjusted with TEA-OH. The internal pipette solution
was composed of (in mM) Cs-methanesulfonate (108),
MgCl2 (4), EGTA (9), HEPES (9) and pH 7.2 adjusted
with CsOH. The internal solution was supplemented
with 0.6 mM GTP (sodium salt) and 2 mM ATP (tris
salt), which were added directly to the internal solution
immediately prior to use. Pipettes with a resistance of
2~5 MΩ when filled with internal solution were used
for recording. Currents were elicited from a holding
potential of -100 mV and were measured by conven-
tional whole-cell patch clamp using an Axopatch 200B
amplifier in combination with Clampex 9.2 software
(Axon Instruments, Foster City, CA). Data were filtered
at 1 kHz (8-pole Bessel) and digitized at 10 kHz with a
Digidata 1320 (Axon Instruments, Foster City, CA). Ser-
ies resistance were compensated by 85% in all experi-
ments. An online P/4 programme was used to subtract
the leak currents. Drugs were dissolved in DMSO at the
following stock concentrations: 20 mM for NMP-4 and
NMP-7, and 10 mM for NMP-139, NMP-140, NMP-141
and NMP-144. Prior to the experiment, drugs were
diluted into external recording solution with a final
DMSO concentration no higher than 0.3%. DMSO was
also included in the control solution. Drug delivery was
controlled by a Valvelink8.2 fast perfusion system
(Automate Scientific Inc., Berkeley, CA). The perfusion
tip was positioned a few hundred microns from the cell
and kept as constant as possible throughout the experi-
ments. Electrophysiological data were analyzed using
Clampfit 9.2 (Axon Instruments, Foster City, CA) and
GraphPad Prism 5 software (GraphPad Software Inc.,
San Diego, CA). Concentration-response curves for
compound inhibition were generated using Hill equation
I/Icontrol = 1/[1 + (IC50/[compound])n], where I is the
normalized current at a given concentration of the com-
pound, IC50 is the concentration of the compound yield-
ing a current that is half of the control current, Icontrol,
and n is the Hill coefficient. Steady-state inactivation
curves were fitted using the Boltzmann equation: I = 1/
(1 + e (V-Vh)/k), where Vh is the half inactivating poten-
tial and k is the slope factor.

Animals
All experiments were conducted following the protocol
approved by the Institutional Animal Care and Use Com-
mittee (protocol #M09130) and all efforts were made to
minimize animal suffering. Male mice of C57BL/6J strain
weighing 25~30 g, 10 weeks old were used. Animals were
housed at a maximum number of five per cage (30 × 20

× 15 cm) with food and water ad libitum. They were
kept in 12 h light/dark cycles (lights on at 7:00 a.m.) at a
temperature of 23 ± 1°C. All manipulations were carried
out between 11:00 am and 3:00 pm. All drugs were dis-
solved in DMSO in amount that did not exceed a final
DMSO concentration of 5%. Control animals received
the same vehicle used to dilute the compounds. When
drugs were delivered by intraperitoneal (i.p.) route, a con-
stant volume of 10 ml/kg body weight was injected.
When drugs were administered by intrathecal (i.t.) or
intraplantar (i.pl.) routes, respectively volumes of 5 μl or
20 μl were injected. Appropriate vehicle-treated groups
were also assessed simultaneously.

Formalin Test
The formalin test is a widely used model that allows us
to evaluate two different types of pain: neurogenic pain
(phase 1) is caused by direct activation of nociceptive
nerve terminals, while inflammatory pain (phase 2) is
mediated by a combination of peripheral input and
spinal cord sensitization [52,53]. Animals received 20 μl
of a formalin solution (1.25%) made up in PBS injected
intraplantarly (i.pl.) in the ventral surface of the right
hindpaw. Following i.pl. injection of formalin, the ani-
mals were immediately placed individually into observa-
tion chambers and the time spent licking or biting the
injected paw was be recorded and considered as noci-
ceptive response. We observed animals individually from
0-5 min (neurogenic phase) and 15-30 min (inflamma-
tory phase).

Intrathecal injections
Intrathecal injections were given to fully conscious mice
using the method previously described by Hylden and
Wilcox [54]. Briefly, the animals were manually
restrained, and a 30-gauge needle connected by a poly-
ethylene tube to a 25 μl Hamilton syringe (Hamilton,
Birmingham, UK) was inserted through the skin and
between the vertebrae into the subdural space of the
L5-L6 spinal segments. Intrathecal injections were given
over a period of 5 seconds.

Statistical analysis
The results for all the experiments are presented as
mean ± S.E.M. The statistical significance of differences
between groups was detected by ANOVA followed by
Dunnett’s or Newman-Keuls’ test when appropriate. P-
values less than 0.05 were considered significant.

Additional material

Additional file 1: mass spectrometry analyses of compounds used
in this study. This file contains raw mass spectrometry analysis data for
the various compounds examined in this study. There is also a brief
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paragraph on LC-MS methodology and a summary of retention time and
molecular weights of the individual compounds.
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