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Abstract

Plectranthus amboinicus (Lour.) Spreng is an aromatic medicinal herb known for its thera-

peutic and nutritional properties attributed by the presence of monoterpene and sesquiter-

pene compounds. Up until now, research on terpenoid biosynthesis has focused on a few

mint species with economic importance such as thyme and oregano, yet the terpene

synthases responsible for monoterpene production in P. amboinicus have not been

described. Here we report the isolation, heterologous expression and functional characteri-

zation of a terpene synthase involved in P. amboinicus terpenoid biosynthesis. A putative

monoterpene synthase gene (PamTps1) from P. amboinicus was isolated with an open

reading frame of 1797 bp encoding a predicted protein of 598 amino acids with molecular

weight of 69.6 kDa. PamTps1 shares 60–70% amino acid sequence similarity with other

known terpene synthases of Lamiaceae. The in vitro enzymatic activity of PamTps1 demon-

strated the conversion of geranyl pyrophosphate and farnesyl pyrophosphate exclusively

into linalool and nerolidol, respectively, and thus PamTps1 was classified as a linalool/neroli-

dol synthase. In vivo activity of PamTps1 in a recombinant Escherichia coli strain revealed

production of linalool and nerolidol which correlated with its in vitro activity. This outcome

validated the multi-substrate usage of this enzyme in producing linalool and nerolidol both in

in vivo and in vitro systems. The transcript level of PamTps1was prominent in the leaf during

daytime as compared to the stem. Gas chromatography-mass spectrometry (GC-MS) and

quantitative real-time PCR analyses showed that maximal linalool level was released during

the daytime and lower at night following a diurnal circadian pattern which correlated with the

PamTps1 expression pattern. The PamTps1 cloned herein provides a molecular basis for

the terpenoid biosynthesis in this local herb that could be exploited for valuable production

using metabolic engineering in both microbial and plant systems.
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Introduction

Plectranthus amboinicus (Lour.) Spreng, locally known as Bangun-bangun in Malaysia, is a

medicinal herb that belongs in the Lamiaceae family along with the herbs sage, thyme, basil

and oregano. It is found naturally throughout the tropics and warm regions of Africa, Asia and

Australia [1]. This plant is characterized by its green, succulent, heart-shaped leaves with scal-

loped edges and can grow to about 50 cm tall with horizontal stems up to 180 cm long [2]. It

possesses a distinctive oregano-like odor and flavor that make it an excellent ingredient for

culinary purposes. This herb has been traditionally used for treatment of coughs, sore throats,

nasal congestion [2], animal and insect bites and also as a breast milk stimulant for hundreds

of years [3]. However, the last decade witnessed a large increase of scientific interest in P.

amboinicus research, as evidenced by increasing numbers of publications related to the bioac-

tivities of P. amboinicus. This plant extract exhibited antibacterial activity against methicillin-

resistant Staphylococus aureus in a murine model [4], and was proven effective against repro-

ductive tract infections by Candida albicans, Proteus vulgaris and Klebsiella pneumoniae [5]. It

has been reported that P. amboinicus possesses anti-inflammatory and antitumor activities [6],

larvicidal [7], and antithrombotic and antioxidant activities [8]. These therapeutic and medici-

nal properties of P. amboinicus are mainly attributed to its natural phytochemical compounds

present in the essential oils or the plant extract. Essential oils of P. amboinicus are known to

contain high amounts of bioactive compounds, mainly monoterpenoids such as carvacrol, thy-

mol, γ-terpinene, α-terpineol and ρ-cymene with various pharmacological properties [1].

Monoterpenes are C10 terpenoids, usually produced by plants, with increasing industrial

and clinical applications. In higher plants, terpenoids are synthesized via two independent

pathways located in separate intracellular compartments. The methylerythritol (MEP) pathway

is located in the plastid and responsible for production of mono-(C10), di-(C20) and tetrater-

penes (C40), while sesqui-(C15), tri-(C30) and polyterpenes (Cn) are synthesized via the mevalo-

nate (MVA) pathway in the cytosol. Both pathways produce the universal precursors,

isopentenyl pyrophosphate (IPP) and dimethyallyl pyrophosphate (DMAPP), for terpenoids

biosynthesis. Further condensation of the two precursors gives rise to linear prenyl pyrophos-

phate precursors, geranyl pyrophosphate (GPP, C10), farnesyl pyrophosphate (FPP, C15) and

geranyl geranyl pyrophosphate (GGPP, C20), and terpene synthases are the key enzymes

responsible for catalyzing these substrates into a variety of terpenoids found in plants [9,10].

All terpene synthases have similar properties with respect to their native molecular mass

(monomers or homodimers) and requirement for divalent metal ions such as Mg2+ and Mn2+

for activity. The sequence similarities between terpene synthases are dominated by species

relationship regardless of substrate or product specificity, and it was reported that many ter-

pene synthases catalyze formation of multiple products [9,11].

Plants in the Lamiaceae family are known to produce a large variety of terpenoids, and this

diversity could be due to expression of multiple terpene synthases and formation of multiple

products by individual terpene synthases as previously reported [12–15]. Terpene synthase

genes have been previously isolated and characterized from several important Lamiaceae

members including Thymus caespititius [13,14], T. vulgaris [16], Coriandrum sativum L. [15],

Origanum vulgarae [12] and Salvia officinalis [17]; however the terpene synthases responsible

for terpenoids production in P. amboinicus have not been functionally characterized. Thus,

the main objectives of this present study were to isolate and clone the full-length transcript of

P. amboinicusmonoterpene synthase, and to functionally express and characterize the recom-

binant terpene synthase in both in vivo and in vitro systems. The expression pattern of the iso-

lated transcript that was involved in the formation and emission of terpenoids in different

plant parts under day/night period was also explained. The information obtained from this
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study will benefit future exploitations of the isolated enzyme for terpenes biosynthesis in a sim-

pler heterologous microbial or plant system.

Materials andmethods

Plant material

The P. amboinicus leaves were collected from plants grown at the Faculty of Biotechnology

and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia. The plant was iden-

tified and authenticated taxonomically at the School of Environmental Science and Natural

Resources, Universiti Kebangsaan Malaysia, Selangor, Malaysia. The voucher specimen,

UKMB40411, was deposited in the herbarium facility. Fresh plant samples were used directly

for GC-MS analysis of the volatile compounds. For RNA extraction, the leaves were harvested

and immediately frozen in liquid nitrogen and kept at– 80˚C until ready for the extraction

process.

GC-MS analysis of Plectranthus amboinicus volatiles

The volatiles released from the P. amboinicus leaves and stems harvested at 2.00 AM, 8.00 AM,

2.00 PM and 8.00 PM were collected using headspace solid phase microextraction (HS-SPME)

equipped with a 100 μm polydimethylosiloxane (PDMS) fiber (Supelco) and analyzed using an

Agilent 7890A gas chromatograph coupled to an Agilent 5975C quadrupole mass detector

(Agilent Technologies, Santa Clara, USA). The instrument was equipped with an Agilent HP-

5MS capillary column (30 m x 250 μm inner diameter x 0.25 μm film) and helium was used as

the carrier gas at a flow rate of 1 ml per min. The SPME fiber was conditioned at the GC injec-

tion port at 250˚C for 5 min before use. Approximately 1 g of the P. amboinicus tissue was

placed in a 20 ml headspace vial fitted with a silicone septum screw cap. Following 10 min of

sample conditioning at room temperature, the SPME fiber was exposed to the headspace for

30 min at 60˚C and immediately desorbed in the gas chromatograph injector at 250˚C for

15 min using a splitless mode. The GC oven was maintained at 40˚C for 2 min, gradually

increased to 175˚C at a rate of 5˚C/min and then an increment up to 250˚C at 90˚C/min. Lin-

ear retention index (LRI) was determined through the injection of a C8 to C20 series of

straight chain n-alkanes (Sigma Aldrich, USA) and calculated in accordance to van Den Dool

and Kratz [18]. The volatile compounds were identified by mass spectra comparison using a

MSD Chemstation Enhanced Data Analysis Software (E.02.02.1431 version, Agilent Technolo-

gies) and the National Institute of Standards and Technology library database (NIST 14). In

addition, the compounds were tentatively identified by comparing the experimental retention

indices with the theoretical ones obtained from the literatures. The relative amount of the indi-

vidual component was expressed as a percentage of the peak area of respective compound over

the total peak areas of all identified volatiles.

Isolation of full-length P. amboinicusmonoterpene synthase gene
(PamTps1)

Based on the P. amboinicus transcriptome library (SRA Accession No.:SRR7842030) previ-

ously created from matured leaves and sequenced using the MiSeq Illumina platform (Mohd

Hairul Ab. Rahim, unpublished), a 1361 bp partial terpene synthase transcript (Accession No.:

GGXS01005129) that showed the highest sequence similarity to known plant monoterpene

synthases was selected and designated as PamTps1. Total RNA was extracted using Tri Reagent

(MRC, USA) following the manufacturer’s protocol. The RNA was quantified and its purity

was determined using UV-VIS spectrophotometer (NanoDrop 1000, Thermo Scientific,
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USA), and its integrity was assessed on a 1.2% (w/v) agarose gel. Rapid Amplification of cDNA

Ends (RACE) was conducted using SMARTer RACE Kit according to the manufacturer’s pro-

tocol with minor modifications (Clontech, USA). For the first strand cDNA synthesis, 1 μg of

total RNA was reverse transcribed using SMARTScribe Reverse Transcriptase (Clontech,

USA) according to the manufacturer’s instructions. The components of the RACE reactions

were 1X Advantage 2 PCR buffer, 0.8 mM dNTP mix, 1 μM gene-specific primer (5’- CCC
TATCCCTCACAAATGGGAGTTTCT-3’), 1X Universal Primer AMix, 2.5 μl of 5’-RACE-

Ready cDNA, 1X Advantage 2 Polymerase Mix and PCR-grade water added to a final volume

of 50 μl. The gene-specific primer was designed at the conserved region of the partial sequence

obtained from the transcriptomic data (SRA Accession No.:SRR7842030 and Accession No.:

GGXS01005129) that fulfilled the requirements of 23–28 bp and 50–70% GC contents with a

melting temperature ranging from 65 to 72˚C. The gene-specific primer was synthesized by

Bioneer, Korea. The RACE amplification was conducted using a touch-down program set at 5

cycles of 94˚C for 30 sec, 72˚C for 3 min, 5 cycles of 94˚C for 30 sec, 70˚C for 30 sec, 72˚C for

3 min, and 25 cycles of 94˚C for 30 sec, 68˚C for 30 sec, 72˚C for 3 min, and a final extension

of 72˚C for 10 min. The amplified product was cloned into pGEMT-Easy vector (Promega)

and sent for sequencing (Bioneer, Korea). Based on the assembled fragments obtained by

RACE and the known partial sequence, the full-length cDNA was then amplified in a PCR

reaction containing 1X Pfx buffer, 0.3 mM dNTP mixture, 2 mMMgSO4, 0.5 U of Platinum™

Pfx DNA Polymerase (Thermo Fisher Scientific, USA), 0.8 μM of PamTps1-F (5’-CAACGC
AGAGTACATGGGATGGAGCAA-3’) and PamTps1-R (5’-GCATTTGTTCAGACATATGGA
TGGAACAGC-3’) primers, and 2.5 μl of 5’-RACE-Ready cDNA. Amplification was done at

94˚C for 2 min, followed by 35 cycles of 94˚C for 15 sec, 68˚C for 1 min, 68˚C for 3 min, and a

10 min final extension at 68˚C. The successful amplicon was cloned into a pGEMT-Easy vector

(Promega) and sent for sequencing (Bioneer, Korea).

Full-length sequence analysis and phylogenetic tree construction

The full-length transcript of PamTps1 was aligned against the non-redundant protein database

via the BLASTx algorithm. The N-terminal signal peptide sequence was predicted using

ChloroP 1.1 Server (http://www.cbs.dtu.dk/services/ChloroP/) [19] and TargetP 1.1 Server

(http://www.cbs.dtu.dk/services/TargetP/) [20]. The presence of conserved motifs shared

by all known terpene synthases were identified by protein sequence alignments between

PamTps1 and linalool synthase of Perilla frutescens var. hirtella (ACN42013.2), P. citriodora

(AAX16075.1) and Lavandula latifolia (ABD77417.1), S. rosmarinus pinene synthase

(ABP01684.1), P. setoyensis geraniol synthase (ACN42010.1), γ-terpinene synthase of T. caespi-
titius (AID51195.1), T. serpyllum (AGT29345.1) and O. syriacum (AEO27879.1), L. x interme-

dia 3-carene synthase (ARA91313.1), T. caespititius α-terpineol synthase (AGK88250.1) and
O. vulgare terpene synthase 5 (ADK73617.1) using Clustal Omega (https://www.ebi.ac.uk/

Tools/msa/clustalo/) [21] and BoxShade version 3.21 server (https://embnet.vital-it.ch/

software/BOX_form.html). The evolutionary relationships of PamTps1 were inferred using

the Neighbor-Joining method and the bootstrap consensus tree was inferred with 1000 repli-

cates computed via the PHYLogeny Inference Package version 3.695 (PHYLIP) [22].

Functional expression of PamTps1

The ORF of PamTps1 excluding the N-terminal transit peptide was amplified using PamTps1

forward (5’-ATTCAAGCTTATGAAGCCCGCTGTTGAAGCC-3’) and reverse (5’-ATTC
CTCGAGTCCAGAGCCGACATATGGATGGAACAG-3’) primers with restriction enzyme (RE)

sites shown in italics to createHindIII and XhoI (New England Biolabs, Canada) overhangs for
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use during ligation into a pET32b(+) bacterial expression vector (Merck, Germany), respec-

tively. The three amino acids spacer of GSG (underlined) was also incorporated into the

reverse primer. The PCR components and programs were as previously described with an

annealing temperature of 64˚C. The successful amplicon was cloned into the pET32b(+)

expression vector (Merck Millipore, USA) and transformed into E. coli Rosetta™ 2 (DE3) com-

petent cells (Merck Millipore, USA), and presence of the insert was confirmed using RE diges-

tions, followed by sequencing.

A single colony of recombinant expression cells harboring pET32b:PamTps1 and empty

vector pET32b, respectively, was inoculated into 10 ml Luria-Bertani (LB) medium containing

50 μg/ml carbenicillin and 34 μg/ml of chloramphenicol and grown at 37˚C, 250 rpm over-

night. Approximately 5 ml of the overnight culture was transferred into 95 ml of fresh LB

medium supplemented with the same antibiotics and grown at 37˚C until OD600nm ~ 0.6–0.8

was reached. Protein expression was induced by the addition of isopropyl-β-D-thiogalactopyr-
anoside (IPTG) to a final concentration of 0.5 mM and incubated with shaking at 150 rpm,

28˚Cfor 16 h. After induction, the cells were harvested by centrifugation at 3214 x g, 4˚C for 30

min and kept frozen at -20˚C until ready for protein extraction. Protein extraction was con-

ducted using the BugBuster Protein Extraction Reagent (Novagen, USA) according to the

manufacturer’s instructions. The lysate was then centrifuged at 12,633 x g, 4˚C for 20 min to

obtain the soluble protein fraction while the insoluble pellet was treated with 6 M urea at 4˚C

overnight followed by centrifugation to recover the inclusion body (IB) fraction. Buffer

exchange to assay buffer containing 10 mM Tris-Cl, 10% (v/v) glycerol, 1 mM dithiothreitol

(DTT) and 10 mMMgCl2 at pH 7.5 [14] was conducted using Amicon1 Centrifugal Filter

(MW cutoff = 30 kDa) (Merck Millipore, USA) following the manufacturer’s instructions.

The soluble protein fraction containing the His-tagged protein was purified using a

HisTrap™HP 5 ml column (GE Healthcare, USA) according to the manufacturer’s instruc-

tions. The eluted fractions were pooled and concentrated to 1 ml using Amicon1 Centrifugal

Filter and further purified by gel filtration chromatography using Superdex 200 10/300 GL col-

umn (GE Healthcare, USA). The fractions containing pure PamTps1 were eluted isocratically

using the assay buffer at a flow rate of 0.5 ml/min.

The purified recombinant PamTps1 including the soluble and insoluble protein extracts

were resolved on 10% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)

and visualized by Coomassie blue staining. Western blotting for detection of the His-tagged

protein was also conducted using anti-polyHistidine-HRP antibody (Sigma-Aldrich, USA)

(dilution 1:2000) and detected using the SuperSignal1West Pico Chemiluminescent HRP

substrate (Pierce, USA) following the manufacturer’s instructions.

Functional characterization of PamTps1

Enzyme assays were performed accordingly in a glass vial using 25 μg recombinant protein in

100 μl reaction buffer containing 10 mM Tris-Cl, 10% (v/v) glycerol, 1 mMDTT and 10 mM

MgCl2 [14]. Phosphatase inhibitors of sodium tungstate (Na2WO4) and sodium fluoride (NaF)

were added at final concentrations of 0.1 mM and 0.05 mM, respectively, to prevent geraniol

formation. The enzymatic reaction was initiated by addition of 20 μMGPP or FPP (Sigma

Aldrich, USA) and incubated at 30˚C with constant shaking for 2 h. Terpene products were

collected by using a SPME fiber exposed for 30 min in the headspace above the assay mixture

at 60˚C in a water bath and analyzed by GC-MS. The oven temperature was programmed at

50˚C and gradually increased to 280˚C at a rate of 10˚C/min for 3 min. The temperature of

the ion source and transfer line were set at 220˚C and 280˚C, respectively, and the electron

impact mass spectra were recorded at 70 eV ionization energy. The identities of the terpene
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compounds were determined with referral to the NIST 14 library, as well as comparison of

mass spectra and retention times with authentic standards (Sigma-Aldrich, USA). The in vivo

activity of PamTps1 was conducted using the recombinant E. coli strain harboring the expres-

sion construct pET32b:PamTps1 grown under the conditions as described in the protein

expression section and the E. coli host harboring an empty vector was used as a control. Cul-

tures were sampled at 24 h of post-induction and the volatile terpenoid compounds in the

headspace of each culture were analyzed using HS-SPME-GC-MS as described in the assay

reactions.

Gene expression analysis of PamTps1

For the expression analysis of PamTps1 in various tissues, leaf and stem samples were collected

at 8.00 AM, 2.00 PM, 8.00 PM and 2.00 AM with three biological replicates. The plant samples

were immediately frozen and stored at—80˚C until the extraction process using the Tri

Reagent (MRC, USA). Total RNA of 1 μg was treated for genomic elimination and reverse

transcribed using QuantiTect1 Reverse Transcription kit (Qiagen, USA) according to the

manufacturer’s protocol. Quantitative RT-PCR was conducted to determine PamTps1 tran-

script abundance involved in the production of linalool and nerolidol. A 291 bp fragment in

the 3’ region of PamTps1 was amplified using the gene-specific primers (S1 Table). The experi-

ments were performed using QuantiNova SYBR Green PCRMaster Mix (Qiagen, USA) as per

manufacturer’s procedure and the real-time cycler program as follows: 95˚C for 2 min, 40

cycles of 95˚C for 5 s, 60˚C for 10 s, followed by a melting curve analysis of 65–95˚C with

0.5˚C increments. Sequencing analysis was performed to verify amplification of the expected

region of PamTps1. Each primers pair was validated using a standard curve of serial cDNA

dilutions to calculate the correlation coefficient and amplification efficiency. Three reference

genes namely elongation factor G (EF-G), tubulin and adenine phosphoribosyl transferase

(APRT) were used for normalization of the qPCR data. The primers for the qPCR analysis are

listed in the S1 Table.

Results and discussion

Volatiles profiling of Plectranthus amboinicus leaves

Headspace—solid phase microextraction—gas chromatography—mass spectrometry

(HS-SPME-GC-MS) analysis demonstrated that the P. amboinicus volatiles were dominated

by α-bergamotene (19.5%), carvacrol (19.6%), caryophyllene (19.2%), p-cymene (8.2%), γ-ter-
pinene (10.5%) and humulene (5.6%) (Table 1, Fig 1). Seven terpene alcohols including

1-octen-3-ol, terpinene-4-ol, linalool and nerolidol were detected which formed 2.35% of P.

amboinicus volatiles. Carvacrol has a characteristic pungent spicy-woody odor which contrib-

utes to the strong oregano-like aroma [23], and together with the high relative percentages of

citrus odor of α-bergamotene [24] and caryophyllene (spicy-woody) [25] collectively contrib-

ute to the unique, strong aromatic odor of P. amboinicus. This result is in agreement with the

known volatile constituents of P. amboinicus previously reviewed by Arumugam et al. [1].

However, the phytochemical composition of plants may vary depending on geographical loca-

tions, climatic conditions, methods of extraction and identification. The volatile constituents

of P. amboinicus leaves collected from Uganda which were also extracted using HS-SPME

showed the presence of linalool (50.3%) as the main component with other detected volatiles

such as carvacrol (14.3 4%), geranyl acetate (11.7%), nerol acetate (11.6%) and γ-terpinene
(3.2%) [26]. On the other hand, P. amboinicus oil from Cambodia was shown to contain domi-

nant constituents of thymol (57.4%), carvacrol (13.5%), γ-terpinene (5.6%) and p-cymene

(5.2%) [27]. Interestingly, thymoquinone and thymohydroquinone, phytochemical
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compounds with potential application as an anti-cancer drug that can be found in Nigella

sativa were also detected in P. amboinicus albeit in small amounts. The presence of thymoqui-

none in P. amboinicus has also been documented by Chen et al. [28] in water-hexane extract

with further identification using mass spectrophotometer and NMR analysis.

Isolation of full-length monoterpene synthase gene and sequence
characterization

The partial PamTps1 transcript (Accession No.: GGXS01005129) was identified from the P.

amboinicus transcriptome (SRA Accession No.:SRR7842030) using the BLAST alignment that

showed hits to known terpene synthases and also on the basis of the presence of its conserved

sequence characteristics that are shared by all terpene synthases. The full-length PamTps1

Table 1. Compounds identified from Plectranthus amboinicus leaf volatiles harvested at 8.00 AM using HS-SPME-GC-MS analysis.

No RTa (min) Compounds RIb Relative contentc (%)

1 8.304 β-Thujene 924 0.432 ± 0.048

2 10.081 1-Octen-3-ol 983 1.140 ± 0.054

3 10.279 β-Myrcene 990 1.372 ± 0.147

4 10.653 α-Phellandrene 1002 0.458 ± 0.030

5 11.043 α-Terpinene 1015 2.508 ± 0.212

6 11.434 ρ-Cymene 1027 8.208 ± 0.445

7 12.069 β-Ocimene 1048 0.149 ± 0.015

8 12.512 γ-Terpinene 1063 10.475 ± 0.465

9 13.229 Terpinolene 1086 0.161 ± 0.003

10 13.683 Linalool 1101 0.163 ± 0.020

11 15.665 Isoborneol 1169 0.131 ± 0.012

12 15.951 (-)-Terpinen-4-ol 1178 0.821 ± 0.026

13 16.370 α-Terpineol 1193 0.021 ± 0.010

14 18.032 Thymoquinone 1252 2.296 ± 0.753

15 19.343 Thymol 1294 0.331 ± 0.013

16 20.171 Carvacrol 1326 19.583 ± 1.937

17 21.144 Eugenol 1363 0.042 ± 0.004

18 22.794 Caryophyllene 1430 19.211 ± 2.355

19 23.213 α-Bergamotene 1447 19.529 ± 1.255

20 23.347 (+)-Epi-β-Santalene 1453 0.201 ± 0.014

21 23.627 Humulene 1464 5.636 ± 0.623

22 24.181 (E)-β-Famesene 1486 1.014 ± 0.056

23 24.385 (-)-Zingiberene 1501 0.181 ± 0.068

24 24.548 α-Muurolene 1508 0.478 ± 0.077

25 24.758 β-Bisabolene 1517 2.195 ± 0.079

26 25.108 β-Sesquiphellandrene 1532 1.080 ± 0.039

27 26.034 (±)-trans-Nerolidol 1571 0.033 ± 0.008

28 26.384 Thymohydroquinone 1586 0.213 ± 0.056

29 26.576 Caryophyllene oxide 1594 1.419 ± 0.123

30 27.148 Humulene epoxide II 1615 0.190 ± 0.022

31 28.797 α-Bisabolol 1688 0.039 ± 0.010

a Retention time (RT) in min
b van den Dool and Kratz retention index calculated for HP-5MS column
c Relative peak area expressed as percentage of the peak area of corresponding compound over the total peak areas of all identified volatiles.

https://doi.org/10.1371/journal.pone.0235416.t001
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transcript (Accession no: MK050501) contained an open reading frame (ORF) of 1797 bp

encoding a protein of 598 amino acids with theoretical isoelectric point (pI) and molecular

weight of 5.40 and 69.6 kDa, respectively. The transcript was predicted to contain a 52 amino

acid N-terminal chloroplast transit peptide, which most likely targets this protein to the plas-

tid, the location of monoterpenes biosynthesis found in other Lamiaceae members. This pre-

dicted transit peptide was characterized by high contents of serine and threonine, and low

number of acidic residues which in accordance to Williams et al. [29] is expected for the Tpsb

subfamily.

The sequence identity of PamTps1 at the amino acid level was compared via BLASTp algo-

rithm against the NCBI non-redundant protein database and showed 60–70% amino acid

sequence identity to monoterpene synthases of other Lamiaceae members including T. caespi-

titius γ-terpinene synthase (AID51201.1) [14], S. rosmarinus pinene synthase (ABP01684.1), P.
frutescens linalool synthase (AAL38029.1) and P. setovensis geraniol synthase (ACN42010.1)

[30]. This analysis confirmed that the sequence similarity among Lamiaceae terpene synthases

was relatively high but may not necessarily be linked to the catalytic function of the enzyme.

Based on the sequence similarity and presence of N-terminal transit peptide, PamTps1 was

designated as a putative monoterpene synthase.

Despite the sequence diversity, terpene synthases share several conserved amino acid resi-

dues both at the N- and C-terminal protein domains. These conserved motifs were found in

the deduced amino acid sequence of PamTps1 (Fig 2) notably the tandem arginine motif

(RRx8W) located downstream of the transit peptide at the N-terminal region of monoterpene

synthases. Deletion of this motif on theMentha spicata limonene synthase was found to affect

the ability of the enzyme to utilize geranyl pyrophosphate as a substrate, suggesting that this

motif might be involved in the isomerization of geranyl pyrophosphate to a cyclizable interme-

diate [29]. This arginine pair has also been reported to stabilize the closed active site in the

Fig 1. Total ion chromatogram of Plectranthus amboinicus leaf volatiles harvested at 8.00 AM extracted using headspace solid phase
microextraction (HS-SPME). The numbers corresponded to the compounds detected as described in Table 1.

https://doi.org/10.1371/journal.pone.0235416.g001
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Fig 2. Alignment of PamTps1 amino acid sequence without transit peptide with other plant monoterpene synthases using Clustal Omega and BoxShade
server. Conserved domains of RRx8W, LQLYEASFL, DDxxD, GTLxEL and DTE were labelled. AGK88250.1: T. caespititius α-terpineol synthase; ARA91313.1:
L.x intermedia 3-carene synthase; ABD77417.1: L. latifolia linalool synthase; AID51195.1: T. caespititius γ-terpinene synthase; ADK73617.1:O. vulgare terpene
synthase 5; AGT29345.1: T. serpyllum γ-terpinene synthase; AEO27879.1: O. syriacum γ-terpinene synthase; ABP01684.1: S. rosmarinus pinene synthase;
ACN42010.1: P. setoyensis geraniol synthase; ACN42013.2: P. frutescens var. hirtella linalool synthase and AAX16075.1: P. citriodora linalool synthase.

https://doi.org/10.1371/journal.pone.0235416.g002
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enzyme-ligand complexes reaction [31]. The LQLYEASFLL motif which was also found in

PamTps1 but as a LQLYEASFLE sequence is another conserved motif that is believed to be

part of the active site and might be involved in substrate binding [15,32]. Another conserved

region in terpene synthases is the aspartate-rich DDxxD motif that has been found in almost

all isolated plant terpene synthases. This highly conserved motif, which occurs as DDVYD in

P. amboinicus, is located at the C-terminal domain of all terpene synthases and is known to be

involved in the binding of divalent metal ion cofactor such as Mg2+ or Mn2+ to initiate binding

and activation of the diphosphate moiety of the substrate [33–35]. The DDxxD motif located

at the entrance of the catalytic site was demonstrated to be critical in positioning the substrate

for catalysis as mutation of this motif often led to decreased catalytic activity and abnormal

product [36,37]. Besides that, an additional metal cofactor binding motif NSE/DTE which

evolved from a second aspartate-rich region to form a consensus sequence of (L,V)(V,L,A)(N,

D)D(L,I,V)x(S,T)xxxE occurred as LADDLGTAPFE in PamTps1. Both the DDxxD and NSE/

DTE motifs bind to a trinuclear magnesium ions cluster and are involved in the fixation of

pyrophosphate substrate. PamTps1 also contains other motifs such as RxR and GTLxEL that

are postulated to be part of terpene synthases active site [17,38] and occur as RDR and

GTLDEL, located about 35 amino acids upstream and two amino acids downstream of

DDxxD, respectively.

Functional expression of PamTps1

The N-terminal transit peptide necessary for plastidial targeting of monoterpene synthases has

been reported to facilitate formation of inclusion bodies in an E. coli expression system. High

yield expression of soluble monoterpene synthases can be accomplished by truncation of the

transit peptide from the coding region to remove the target sequence [11]. Previous studies on

bacterial expression of terpene synthases isolated from other members of Lamiaceae such as

M. spicata limonene synthase and T. caespititius γ-terpinene synthase demonstrated the

expression of functional enzymes upon removal of the transit peptide upstream of the double

arginine motif [13,29]. Therefore, the signal peptide was removed from PamTps1 sequence

during cloning in order to achieve expression of a soluble and functional putative monoter-

pene synthase in an E. coli system. The complete PamTps1ORF was 1797 bp, of which 147 bp

corresponding to the putative transit peptide was removed to improve protein solubility dur-

ing expression. The truncated PamTps1 was cloned into pET32b(+) expression vector that

contained a dual-fusion tag consisting of thioredoxin (TrxA) and histidine (His6) to give a pre-

dicted mass of 79 kDa for the fusion protein. The truncated PamTps1 was expressed in

Rosetta™ 2(DE3) strain which supplied rare tRNAs to cope with the differences of codon usage

between PamTps1 and E. coli that may impede translation due to the demands for tRNAs that

may be lacking in the bacterial host. Protein expression analysis for the clone harboring the

truncated PamTps1 was compared with the control expression containing the empty pET32b

(+) vector. The recombinant protein was then purified using immobilized metal affinity chro-

matography (IMAC) followed by gel filtration chromatography to yield a pure protein for

functional characterization study. The SDS-PAGE andWestern blot analyses showed the pres-

ence of a corresponding protein band of an estimated size of ~79 kDa (S1 Fig).

Functional characterization of PamTps1

Most of the previously described terpene synthases were multi-product enzymes where

the identity and relative abundance of the terpene products did not accurately predict the pro-

tein function [15,39,40]. Thus, the activity of PamTps1 was investigated through in vitro enzy-

matic assay and in vivo expression in an E. coli system. The PamTps1 enzymatic reaction
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demonstrated that this protein predominantly catalyzed formation of linalool from GPP con-

firming that PamTps1 is a functional monoterpene synthase (Fig 3A). Interestingly, when FPP

was provided as a substrate, PamTps1 was able to synthesize sesquiterpene nerolidol, the C15

analogue of linalool (Fig 3B). The identification of linalool and nerolidol produced from

PamTps1 enzymatic reaction was conducted by comparing their retention times and mass

spectra with the authentic standard materials and NIST14 library (Fig 3 and S2 Fig). Smaller

peaks of linalool and nerolidol were observed in the control reactions without enzyme which

could arise as a result of non-enzymatic solvolysis of GPP and FPP in the presence of metal

ions (S3 Fig) [41]. However, it was evident from the chromatogram that the significant and

higher signal abundances of linalool and nerolidol as compared to the control reactions were

the products of PamTps1 enzymatic reactions, albeit with partial contamination of solvolysed

products of the substrates. These enzymatic products of PamTps1 were also detected in the

volatiles composition of P. amboinicus although only present at 0.2% of the total volatiles

detected (Table 1).

Some terpene synthases may behave differently in in vivo as compared with the in vitro due

to differences in cofactors availability and other biochemical conditions [42,43]. It was previ-

ously shown that terpene synthase products can vary depending on the expression host and

Fig 3. GC-MS chromatograms (selected ion, m/z = 93) of PamTps1 products generated both in in vitro and in vivo
systems. PamTps1 enzymatic reaction incubated with (A) GPP or (B) FPP; products generated in E. coli harboring (C)
empty vector and (D) PamTps1; (E) (-)-linalool standard and (F) cis- and trans-nerolidol standards. In vitro PamTps1
reactions produced exclusively linalool and nerolidol when incubated with GPP and FPP, respectively. In recombinant
E. coli, PamTps1 produced both linalool and nerolidol. Only sample peaks higher than the negative control were
marked with numbers. Corresponding compounds are: 1 = linalool (retention time = 6.7 min); 2 = trans-nerolidol
(retention time = 13.0 min) and 3 = cis–nerolidol (retention time = 12.6 min).

https://doi.org/10.1371/journal.pone.0235416.g003
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the subcellular localization of the protein [42,44,45]. Thus, in order to demonstrate whether

multi-substrate activity of PamTps1 extends to the in vivo environment, microbial production

of terpenoids in the E. coli system was conducted. The terpenoid profile produced in the

recombinant E. coli host up to 24 h of post-induction was illustrated in Fig 3F. It was observed

that the recombinant E. coli harboring PamTps1 was capable of producing both linalool and

nerolidol in vivo without supplementation of any exogenous GPP or FPP substrates, which

correlated with the in vitro activity of PamTps1. This outcome validated the multi-substrate

use of this enzyme in producing linalool and nerolidol in both the in vivo and in vitro systems.

Hence, we designated PamTps1 as a linalool/nerolidol synthase, and this is the first report

describing isolation and functional characterization of such substrate promiscuity of a terpene

synthase from P. amboinicus. Recent advances and progresses in the characterization of

enzymes responsible for terpenoids biosynthesis in plants and bacteria have revealed the exis-

tence of multi-substrate terpene synthases capable of synthesizing terpenes of different chain

lengths depending on corresponding substrate availability. Pazouki and Niinemets [46]

highlighted that there were at least 40 confirmed cases of multi-substrate enzymes among

plant terpenoids, suggesting that the substrate promiscuous terpene synthases are prevalent

within the plant kingdom.

Based on the functional assay study, it was evident that PamTps1 is a high-fidelity, multi-

substrate enzyme capable of performing both monoterpene and sesquiterpene activities in in

vitro and in vivo systems for the formation of linalool and nerolidol. In planta, the formation

of linalool and nerolidol requires either two specialized terpene synthases (linalool and neroli-

dol synthases) or a substrate promiscuous linalool/nerolidol synthase. Linalool synthases are

widely identified from both angiosperms and gymnosperms, and are considered a defective

monoterpene cyclase that can catalyze the initial ionization and rearrangement of GPP but

cannot proceed to the subsequent cyclization steps [47]. It was an interesting observation that

most papers reported linalool synthase or nerolidol synthase or linalool/nerolidol synthase

showed high-fidelity activity by producing exclusively either linalool or nerolidol instead of

multiple compounds as demonstrated by the promiscuous terpene synthases [33,48–52]. The

PamTps1 shared a similarity of less than 36% with other linalool/nerolidol synthase from V.

vinifera [53,54], Streptomyces clavuligerus [55], A.majus [48] and S. lycopersicum. Sequence

comparison of PamTps1 with plant monoterpene synthases showed that Lamiaceae linalool

synthases differ from others by a three-amino acid deletion (i.e. between residues 524–526 in

PamTps1) at the C-terminal region of the protein (Fig 2) which structurally provided more

water access to the active site of linalool synthase and caused premature quenching by water

capture [47]. However, no deletion of such amino acids was observed in PamTps1, and it was

postulated that this premature quenching was due to the less efficient active site closure in the

enzyme-ligand complexes which thereby was unable to shield reactive carbocation intermedi-

ates from the water molecule [56]. It will be interesting to further explore this PamTps1 to

identify the structural features that confer the multi-substrate function that can be exploited to

engineer terpene synthases with high fidelity and specificity for production of terpenoids in a

microbial cell factory.

Expressional analysis of PamTps1

Volatile terpenoids are often synthesized and emitted from specific plant tissue at a particular

time that correlates with the spatio-temporal expression of their terpene synthases, suggesting

that the terpenoid biosynthesis is transcriptionally regulated [57]. The leaf and stem tissues of

aromatic plants were generally associated with the presence of secretory structures that pro-

duced large quantities of volatile terpenoids consisting mostly monoterpenes and
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sesquiterpenes [58,59]. Based on our preliminary histomorphology results (unpublished), P.

amboinicus leaves exhibited high accumulation of essential oils. Since Lamiaceae leaves pro-

duce essential oils rich in terpenoids and stems are also frequently used for essential oils

extraction, both tissues were selected for PamTps1 differential expression analysis using quan-

titative RT-PCR (RT-qPCR). Comparison of volatiles released by P. amboinicus leaf and stem

tissues during the natural 24 h day/night cycle is displayed in S4 Fig. From this analysis, it was

evident that the leaves of this herbal plant emitted a vast array of volatiles throughout the day

and the amounts declined towards the night. A similar observation was made in Lillium

whereby its floral scent emission was significantly influenced by light intensity and tempera-

ture [60].

Preferential accumulation of PamTps1 transcripts was observed in the leaf tissue instead of

the stems, and this concurred with the emission of linalool and nerolidol from the leaves (Fig

4). Overall, our findings revealed that the PamTps1 showed a 42-fold preferential expression in

leaves as compared to the stem with a maximal expression in the afternoon. This observation

was also noted with the terpene synthases expression in S. guaranitica such as linalool

synthases 1 and 2, geranyl linalool synthase, selinene synthase and β-caryophyllene synthase
that showed high expression levels in the leaf tissue as compared to the stems [61]. Likewise, a

Citrus terpene synthase exhibited preferential expression in leaves and fruit flavedo which cor-

responds to the terpenes accumulation and essential oils production by these tissues in the Cit-

rus plants [62]. Similarly, germacrene A synthase in Achillea millefolium showed high

expression levels in the leaves and flowers in contrast to the stem tissue [63]. In constrast,

expression of linalool synthase was mostly reported in flower tissues which accounted for the

floral scents emission of Lillium [64], A. argute [65] and Osmanthus fragrans [66] that corre-

lated with the volatiles released during flower development. The expression of terpene synthase

genes has been reported to be highly up-regulated in specialized cells such as those in glandular

trichomes, which were located on the aerial parts of the plants [11,14,67]. A number of Lamia-

ceae terpene synthases, including linalool synthase, involved in terpenoid biosynthesis in

secretory glandular trichomes had been functionally characterized as reviewed by Lange &

Turner [68]. In P. amboinicus, our preliminary histomorphological results showed that the

Fig 4. Correlation between linalool and nerolidol emissions and PamTps1 expression in leaves and stems of P.
amboinicus within a 24 h day/night cycle. Relative expression analysis was performed by qRT-PCR using EFG, TUB
and APRT as reference genes. The relative transcription level in tissue with the highest expression quantity was set to 1
(100%). Each bar represents the mean value ±SE of three biological and three technical replicates. The linalool and
nerolidol emission data presented are means ± SE of duplicate experiments.

https://doi.org/10.1371/journal.pone.0235416.g004

PLOS ONE Functional characterization of Plectranthus amboinicus terpene synthase

PLOSONE | https://doi.org/10.1371/journal.pone.0235416 July 2, 2020 13 / 22

https://doi.org/10.1371/journal.pone.0235416.g004
https://doi.org/10.1371/journal.pone.0235416


glandular trichomes are probably the storage sites for the essential oils produced in the leaves.

However, it remains unknown whether PamTps1 expression is associated with this storage

site. The PamTps1 expression in the leaves followed a diurnal circadian rhythm with increased

level exhibited early in the morning at 2.00 AM, and achieved a high point around 2.00 PM

before diminishing during the remainder of the day (Fig 4). This expression pattern is similar

to A. chinensin bifunctional nerolidol synthase (AcNES1) expression in the whole flower that

showed an increment from 4.00 AM to a maximum point at midday before decreasing after-

wards [69]. The AcNES1 expression accompanied by time point analysis of terpenes suggested

that nerolidol was largely accumulated throughout the day with maximal emission at midnight

preceded by a steady decrease and remained low until morning. Similar trend was observed in

P. amboinicus leaf where the highest nerolidol emission occurred early in the morning (2.00

AM) and the amounts reduced thereafter. In contrast, maximal linalool emission from the P.

amboinicus leaf was observed at 8.00 AM and started to decline in the afternoon till midnight

(Fig 4). Based on this pattern, we hypothesized that the accumulation of linalool happened

during the night before the morning emission. Similar correlation was observed with Chen

et al. [65] study where the A. argute linalool synthase (AaLS1) displayed constitutive expression

with slight reduction in the morning and an increased at midday accompanied by maximal

emission rate of linalool at 8.00 AM. This phenomenon could possibly be related to the study

previously demonstrated in Pinus pinea where large emission of oxygenated monoterpenoid

linalool was controlled by stomata opening, which was influenced by light intensity and tem-

perature [70,71]. This was accompanied by a significant reduction in the emission rate of

monoterpenoids during midday which was attributable to diurnal water-stress leaves with

closed stomata [70]. It remains uncertain whether the diurnal water-stress leaves with closed

stomata could explain the terpenoids emission pattern in P. amboinicus.

Phylogenetic analysis of PamTps1

Phylogenetic profiling of PamTps1 protein was conducted to infer its evolutionary relationship

with members of the plant terpene synthase subfamilies and other terpene synthases from the

Lamiaceae family. Plant terpene synthases share a common evolutionary origin based upon

their similar reaction mechanisms and conserved structural and sequence characteristics that

include amino acid sequence homology and conserved sequence motifs [9,10,72]. The bifurca-

tion of the terpene synthases involved in primary and secondary metabolism appears to occur

before the separation of angiosperms and gymnosperms. Previous phylogenetic analysis of ter-

pene synthases from the gymnosperms and angiosperms delineated the Tps gene family into

eight subfamilies, designated as Tpsa through Tpsg and α-farnesene synthase cluster [9,72,73].
Terpene synthases that produce secondary metabolites are classified into subfamilies of Tpsa

(angiosperm sesquiterpene and diterpene synthases), Tpsb (angiosperm monoterpene

synthases) and Tpsd (gymnosperm monoterpene synthases) are only distantly related to Tpsc

(copalyl diphosphate synthase) and Tpse (kaurene synthase) subfamilies that are rich in spe-

cialized (i.e. secondary) metabolism beyond carrying the enzyme involved in gibberellin bio-

synthesis, and distantly ancient branch Tpsf containing linalool synthase [9,11].

Functional characterization of PamTps1 using in vitro and in vivo expression systems

showed that this multi-substrate enzyme possesses a monoterpene synthase and a sesquiter-

pene synthase activity producing exclusively linalool and nerolidol, respectively. The phyloge-

netic tree (Fig 5) reveals that PamTps1 belongs to the Tpsb group as expected for a Lamiaceae

monoterpene synthase. The presence of RRx8Wmotif, which is characteristic of the angio-

sperm Tpsb group [11,73], positioned PamTps1 in the Tpsb cluster. This monophyletic Tpsb

group contains terpene synthases such as pinene synthase, linalool synthase and limonene
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synthase which produce cyclic and acyclic products, which were grouped together on the basis

of their sequence similarities and the presence of tandem arginine motif, despite differences in

their catalytic functions. It is evident from Fig 5 that the phylogenetically closest sequences to

PamTps1 are Lavandula and Salvia terpene synthases with more than 67% similarity, signify-

ing a close relationship between these genera that are cluster together in Tpsb regardless of the

product specificity [67]. This could probably be related to the adaptive evolutionary process of

ancestral gene copy that had undergone a divergence in structure and function which contrib-

uted to the large diversity of terpene synthases [10]. The other known multi-substrate terpene

synthases that belong to the Tpsb and have a transit peptide are the S. lycopersicum linalool

synthase [74],Hedychium coronarium terpene synthase [75] and β-ocimene synthase of Arabi-

dopsis thaliana [45]. It is noteworthy to mention that most of the reported linalool/nerolidol

synthases belong to the Tpsg group, a clade closely related to the Tpsb which comprises of

angiosperm acyclic terpene synthases that produce monoterpenes, sesquiterpenes and diter-

penes. However, Tpsg group members lack the common structural feature of RRx8Wmotif

present in the Tpsbmembers [9,54].

The multi-substrate activity of terpene synthases are widely divergent across the Tps sub-

families in the multiple plant species. Phylogenetic analysis suggested that all plant terpene

synthases originated from the ancient diterpene synthases of the Tpsc clade that represents the

base of the rooted phylogenetic tree such as illustrated in Fig 5 [9,76,77]. These old diterpene

synthases adopt a tri-domain architecture of αβγ proteins that contain a transit peptide [78–

80]. Further evolutionary modifications over time have witnessed diversification of product

profiles that are not only been associated with changes in the active site center structure, but

also loss of γ-domain in the isoprene, monoterpene and sesquiterpene synthases, and transit

peptide loss in the sesquiterpene synthases [78–80]. Identification of two plastidic and

Fig 5. Phylogenetic relationship of PamTps1 with selected plant terpene synthases from different subfamilies. Target sequences upstream of the RRx8Wmotif of
the alignment were removed. Selection of terpene synthases subfamilies were based on previous literatures [11,100,101]. The Tpsc and Tpse subfamilies were chosen as
outgroups. Evolutionary relationship was inferred using Neighbor-Joining method with 1000 replicates for bootstrapping. The numbers indicated were the actual
bootstrap values of the branches.

https://doi.org/10.1371/journal.pone.0235416.g005
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cytosolic linalool/nerolidol synthases in A.majus and F. ananassa further suggests that sesqui-

terpene synthases might have evolved from the monoterpene synthases ancestor through the

loss of plastid signal peptide and acquirement of an active site adaptation to the FPP substrate

[46,48,81,82]. The evolution of terpene synthases family shows that these enzymes possesses a

remarkable flexibility to evolve into new functional diversification and subsequently contrib-

utes to the chemical diversity of terpenoids in nature [9].

Conclusions

Initially, PamTps1 was selected as a terpene synthase candidate among other candidates for

functional characterization study based on the highest sequence similarity with available plant

terpene synthases in the database. The functional study has undoubtedly classified PamTps1 as

a linalool/nerolidol synthase with the ability to exclusively produce linalool and nerolidol in

both in vivo and in vitro systems, suggesting that this enzyme possesses both monoterpene

synthase and sesquiterpene synthase activities. Interestingly, PamTps1 was clustered with the

Tpsb subfamily as expected for a predicted monoterpene synthase instead of Tpsg or Tpsf

which was presumed for an acyclic monoterpene synthase or ancient linalool synthase, respec-

tively. Although this study did not clarify the exact role of PamTps1 in P. amboinicus, it did

not rule out the possibility that PamTps1 could function as both a monoterpene synthase and

a sesquiterpene synthase in planta. The expressional analysis showed that this transcript was

highly expressed in P. amboinicus leaves throughout the day that correlated with its linalool

emission following a diurnal circadian pattern. Even though PamTps1 is only accountable for

production of minor volatiles in P. amboinicus, it represents the first substrate promiscuous

monoterpene synthase that has been cloned and functionally characterized from this herbal

plant. The substrate promiscuity activity of PamTps1 has intrigued us to further study this

enzyme for the opportunity to attain additional insight into its catalytic basis of product

specificity.
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S1 Table. qPCR primers used in this study.

(PDF)

S1 Fig. SDS-PAGE andWestern blot profile of purified PamTps1. Lane M: Full-Range

Rainbow™Molecular Weight Markers (GE Healthcare, USA). Lanes 1–3: PamTps1 protein

from IMAC fractions and lane 4: PamTps1 from gel filtration fraction on SDS-PAGE analysis

(A) andWestern blot analysis (B). The recombinant PamTps1 band was observed with the

expected size of 79 kDa.

(TIF)

S2 Fig. Mass spectra comparison of products generated by recombinant PamTps1.Mass

spectra of linalool (A) and (B) nerolidol generated by PamTps1; mass spectra of authentic

(-)-linalool (C) and trans-nerolidol (D) standards; mass spectra of linalool (E) and trans-nero-

lidol (F) in the NIST14 library.

(TIF)

S3 Fig. GC-MS chromatograms (selected ion, m/z = 93) negative control reactions of in

vitro assay. Negative control reaction without presence of PamTps1 (A) and empty vector

control reaction (B) after incubation with GPP; negative control reaction without presence of

PamTps1 (C) and empty vector control reaction (D) after incubation with FPP. Correspond-

ing compounds are: 1 = linalool (retention time = 6.7 min); 2 = trans-nerolidol (retention
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time = 13.0 min) and 3 = cis–nerolidol (retention time = 12.6 min).

(TIF)

S4 Fig. Comparison of chromatographic profiles of volatiles emitted from different tissues

of P. amboinicus within a 24 h day/night cycle. TIC profiles of (A) leaf and (B) stem at 2.00

AM; (C) leaf and (D) stem at 8.00 AM; (E) leaf and (F) stem at 2.00 PM; and (G) leaf and (H)

stem at 8.00 PM. Corresponding retention time for linalool and trans–nerolidol are 13.7 min

and 26.0 min, respectively.

(TIF)

S1 Raw images.

(PDF)
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of essential oils from different aromatic herbs grown in Mediterranean regions of Spain. Foods. 2016
May 25; 5(2):41. https://doi.org/10.3390/foods5020041.

26. Asiimwe S, Karlsson AB, AzeemM, Mugisha KM, Namutebi A, Gakunga NJ. Chemical composition
and toxicological evaluation of the aqueous leaf extracts of Plectranthus amboinicus Lour. Spreng. Int J
Pharm Sci Invent. 2014; 3(2):19–27.

27. Koba K, Garde D, Sanda K, Delgado Raynaud C, Chaumont J-P. Chemical composition and antimicro-
bial properties of the leaf essential oil ofColeus aromaticus Benth. from Cambodia. Int J Essent Oil
Ther. 2007 Jan 1; 1:16–20.

28. Chen Y-S, Yu H-M, Shie J-J, Cheng T-JR, Wu C-Y, Fang J-M, et al. Chemical constituents of Plec-
tranthus amboinicus and the synthetic analogs possessing anti-inflammatory activity. Bioorg Med
Chem. 2014; 22(5):1766–72. https://doi.org/10.1016/j.bmc.2014.01.009 PMID: 24491635

29. Williams DC, McGarvey DJ, Katahira EJ, Croteau R. Truncation of limonene synthase preprotein pro-
vides a fully active “pseudomature” form of this monoterpene cyclase and reveals the function of the
amino-terminal arginine pair. Biochemistry. 1998 Sep; 37(35):12213–20. https://doi.org/10.1021/
bi980854k PMID: 9724535

30. Masumoto N, Korin M, Ito M. Geraniol and linalool synthases from wild species of perilla. Phytochemis-
try. 2010; 71(10):1068–75. https://doi.org/10.1016/j.phytochem.2010.04.006 PMID: 20447664

31. Hyatt DC, Youn B, Zhao Y, Santhamma B, Coates RM, Croteau RB, et al. Structure of limonene
synthase, a simple model for terpenoid cyclase catalysis. Proc Natl Acad Sci. 2007 Mar 27; 104
(13):5360–5. https://doi.org/10.1073/pnas.0700915104 PMID: 17372193

32. Mcgeady P, Croteau R. Isolation and characterization of an active-site peptide from amonoterpene
cyclase labeled with a mechanism-based inhibitor. Arch Biochem Biophys. 1995 Feb; 317(1):149–55.
https://doi.org/10.1006/abbi.1995.1147 PMID: 7872777

33. Karuppiah V, Ranaghan KE, Leferink NGH, Johannissen LO, ShanmugamM, Nı́ Cheallaigh A, et al.
Structural basis of catalysis in the bacterial monoterpene synthases linalool synthase and 1,8-cineole
synthase. ACS Catal. 2017 Sep 22; 7(9):6268–82. https://doi.org/10.1021/acscatal.7b01924 PMID:
28966840

34. Kampranis SC, Ioannidis D, Purvis A, MahrezW, Ninga E, Katerelos NA, et al. Rational conversion of
substrate and product specificity in a Salviamonoterpene synthase: structural insights into the evolution
of terpene synthase function. Plant Cell. 2007; 19(6):1994–2005. https://doi.org/10.1105/tpc.106.
047779 PMID: 17557809

35. Whittington DA,Wise ML, UrbanskyM, Coates RM, Croteau RB, Christianson DW. Nonlinear partial dif-
ferential equations and applications: Bornyl diphosphate synthase: Structure and strategy for carboca-
tion manipulation by a terpenoid cyclase. Proc Natl Acad Sci. 2002 Nov 26; 99(24):15375–80. https://
doi.org/10.1073/pnas.232591099 PMID: 12432096

36. Prosser I, Phillips AL, Gittings S, Lewis MJ, Hooper AM, Pickett JA, et al. (+)-(10R)-Germacrene A
synthase from goldenrod, Solidago canadensis; cDNA isolation, bacterial expression and functional
analysis. Phytochemistry. 2002 Aug; 60(7):691–702. https://doi.org/10.1016/s0031-9422(02)00165-6
PMID: 12127586

37. Cane DE, Xue Q, Fitzsimons BC. Trichodiene synthase. Probing the role of the highly conserved aspar-
tate-rich region by site-directed mutagenesis. Biochemistry. 1996 Jan; 35(38):12369–76. https://doi.
org/10.1021/bi961344y PMID: 8823172

38. Li R, Fan Y. Molecular cloning and expression analysis of a terpene synthase gene, HcTPS2, inHedy-
chium coronarium. Plant Mol Biol Report. 2011 Mar 16; 29(1):35–42. https://doi.org/10.1007/s11105-
010-0205-1.

39. Rusdi N, Goh H-H, Sabri S, Ramzi A, Mohd Noor N, Baharum S. Functional characterisation of new
sesquiterpene synthase from the malaysian herbal plant, Polygonumminus. Molecules. 2018 Jun 6; 23
(6):1370. https://doi.org/10.3390/molecules23061370.

40. Despinasse Y, Fiorucci S, Antonczak S, Moja S, Bony A, Nicolè F, et al. Bornyl-diphosphate synthase
from Lavandula angustifolia: A major monoterpene synthase involved in essential oil quality. Phyto-
chemistry. 2017 May; 137:24–33. https://doi.org/10.1016/j.phytochem.2017.01.015 PMID: 28190677

41. Cori O, Chayet L, De La Fuente M, Fernandez LA, Hashagen U, Perez L, et al. Stereochemical aspects
of chain lengthening and cyclization processes in terpenoid biosynthesis. In: Chapeville F, Haenni A.,
editors. Chemical Recognition in Biology Molecular Biology, Biochemistry and Biophysics. Springer,
Berlin, Heidelberg; 1980. p. 97–110. https://doi.org/10.1007/978-3-642-81503-4_8.

PLOS ONE Functional characterization of Plectranthus amboinicus terpene synthase

PLOSONE | https://doi.org/10.1371/journal.pone.0235416 July 2, 2020 19 / 22

https://doi.org/10.21475/poj.16.09.04.p7901
https://doi.org/10.3390/foods5020041
https://doi.org/10.1016/j.bmc.2014.01.009
http://www.ncbi.nlm.nih.gov/pubmed/24491635
https://doi.org/10.1021/bi980854k
https://doi.org/10.1021/bi980854k
http://www.ncbi.nlm.nih.gov/pubmed/9724535
https://doi.org/10.1016/j.phytochem.2010.04.006
http://www.ncbi.nlm.nih.gov/pubmed/20447664
https://doi.org/10.1073/pnas.0700915104
http://www.ncbi.nlm.nih.gov/pubmed/17372193
https://doi.org/10.1006/abbi.1995.1147
http://www.ncbi.nlm.nih.gov/pubmed/7872777
https://doi.org/10.1021/acscatal.7b01924
http://www.ncbi.nlm.nih.gov/pubmed/28966840
https://doi.org/10.1105/tpc.106.047779
https://doi.org/10.1105/tpc.106.047779
http://www.ncbi.nlm.nih.gov/pubmed/17557809
https://doi.org/10.1073/pnas.232591099
https://doi.org/10.1073/pnas.232591099
http://www.ncbi.nlm.nih.gov/pubmed/12432096
https://doi.org/10.1016/s0031-9422(02)00165-6
http://www.ncbi.nlm.nih.gov/pubmed/12127586
https://doi.org/10.1021/bi961344y
https://doi.org/10.1021/bi961344y
http://www.ncbi.nlm.nih.gov/pubmed/8823172
https://doi.org/10.1007/s11105-010-0205-1
https://doi.org/10.1007/s11105-010-0205-1
https://doi.org/10.3390/molecules23061370
https://doi.org/10.1016/j.phytochem.2017.01.015
http://www.ncbi.nlm.nih.gov/pubmed/28190677
https://doi.org/10.1007/978-3-642-81503-4_8
https://doi.org/10.1371/journal.pone.0235416


42. Fischer MJC, Meyer S, Claudel P, Perrin M, Ginglinger JF, Gertz C, et al. Specificity ofOcimum basili-
cum geraniol synthase modified by its expression in different heterologous systems. J Biotechnol. 2013
Jan; 163(1):24–9. https://doi.org/10.1016/j.jbiotec.2012.10.012 PMID: 23108028

43. Su P, Hu T, Liu Y, Tong Y, Guan H, Zhang Y, et al. Functional characterization of NES and GES respon-
sible for the biosynthesis of (E)-nerolidol and (E,E)-geranyllinalool in Tripterygium wilfordii. Sci Rep.
2017 Feb 27; 7(1):40851. https://doi.org/10.1038/srep40851.

44. Ginglinger J-F, Boachon B, Hofer R, Paetz C, Kollner TG, Miesch L, et al. Gene coexpression analysis
reveals complex metabolism of the monoterpene alcohol linalool in Arabidopsis flowers. Plant Cell.
2013 Nov 1; 25(11):4640–57. https://doi.org/10.1105/tpc.113.117382 PMID: 24285789

45. HuangM, Abel C, Sohrabi R, Petri J, Haupt I, Cosimano J, et al. Variation of herbivore-induced volatile
terpenes among Arabidopsis ecotypes depends on allelic differences and subcellular targeting of two
terpene synthases, TPS02 and TPS03. Plant Physiol. 2010 Jul 1; 153(3):1293–310. https://doi.org/10.
1104/pp.110.154864 PMID: 20463089
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56. González V, Grundy DJ, Faraldos JA, Allemann RK. The amino-terminal segment in the β-domain of δ-
cadinene synthase is essential for catalysis. Org Biomol Chem. 2016; 14(31):7451–4. https://doi.org/
10.1039/c6ob01398h PMID: 27431578

57. Nagegowda DA. Plant volatile terpenoid metabolism: Biosynthetic genes, transcriptional regulation and
subcellular compartmentation. FEBS Lett. 2010 Jul 16; 584(14):2965–73. https://doi.org/10.1016/j.
febslet.2010.05.045 PMID: 20553718

58. Schilmiller AL, Schauvinhold I, LarsonM, Xu R, Charbonneau AL, Schmidt A, et al. Monoterpenes in
the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than gera-
nyl diphosphate. Proc Natl Acad Sci U S A. 2009; 106(26):10865–70. https://doi.org/10.1073/pnas.
0904113106 PMID: 19487664

59. Rehman R, Hanif MA, Mushtaq Z, Al-Sadi AM. Biosynthesis of essential oils in aromatic plants: A
review. Food Rev Int. 2016 Apr 2; 32(2):117–60. https://doi.org/10.1080/87559129.2015.1057841.

60. Hu Z, Zhang H, Leng P, Zhao J, WangW,Wang S. The emission of floral scent from Lilium ‘siberia’ in
response to light intensity and temperature. Acta Physiol Plant. 2013 May 5; 35(5):1691–700. https://
doi.org/10.1007/s11738-012-1211-8.

PLOS ONE Functional characterization of Plectranthus amboinicus terpene synthase

PLOSONE | https://doi.org/10.1371/journal.pone.0235416 July 2, 2020 20 / 22

https://doi.org/10.1016/j.jbiotec.2012.10.012
http://www.ncbi.nlm.nih.gov/pubmed/23108028
https://doi.org/10.1038/srep40851
https://doi.org/10.1105/tpc.113.117382
http://www.ncbi.nlm.nih.gov/pubmed/24285789
https://doi.org/10.1104/pp.110.154864
https://doi.org/10.1104/pp.110.154864
http://www.ncbi.nlm.nih.gov/pubmed/20463089
https://doi.org/10.3389/fpls.2016.01019
https://doi.org/10.1016/s0003-9861(02)00348-x
https://doi.org/10.1016/s0003-9861(02)00348-x
http://www.ncbi.nlm.nih.gov/pubmed/12176064
https://doi.org/10.1111/j.1365-313X.2008.03496.x
http://www.ncbi.nlm.nih.gov/pubmed/18363779
https://doi.org/10.1007/s00425-007-0631-y
http://www.ncbi.nlm.nih.gov/pubmed/17924138
https://doi.org/10.1104/pp.112.208249
http://www.ncbi.nlm.nih.gov/pubmed/23256150
https://doi.org/10.1093/jxb/ery224
http://www.ncbi.nlm.nih.gov/pubmed/29901784
https://doi.org/10.1016/j.phytochem.2009.07.030
https://doi.org/10.1016/j.phytochem.2009.07.030
http://www.ncbi.nlm.nih.gov/pubmed/19793600
https://doi.org/10.3390/ijms151221992
http://www.ncbi.nlm.nih.gov/pubmed/25470020
https://doi.org/10.1186/1471-2229-10-226
https://doi.org/10.1002/cbic.201100501
https://doi.org/10.1002/cbic.201100501
http://www.ncbi.nlm.nih.gov/pubmed/21910204
https://doi.org/10.1039/c6ob01398h
https://doi.org/10.1039/c6ob01398h
http://www.ncbi.nlm.nih.gov/pubmed/27431578
https://doi.org/10.1016/j.febslet.2010.05.045
https://doi.org/10.1016/j.febslet.2010.05.045
http://www.ncbi.nlm.nih.gov/pubmed/20553718
https://doi.org/10.1073/pnas.0904113106
https://doi.org/10.1073/pnas.0904113106
http://www.ncbi.nlm.nih.gov/pubmed/19487664
https://doi.org/10.1080/87559129.2015.1057841
https://doi.org/10.1007/s11738-012-1211-8
https://doi.org/10.1007/s11738-012-1211-8
https://doi.org/10.1371/journal.pone.0235416


61. Ali M, Hussain RM, Rehman NU, She G, Li P, Wan X, et al. De novo transcriptome sequencing and
metabolite profiling analyses reveal the complex metabolic genes involved in the terpenoid biosynthesis
in Blue Anise Sage (Salvia guaranitica L.). DNA Res. 2018 Dec 1; 25(6):597–617. https://doi.org/10.
1093/dnares/dsy028 PMID: 30188980

62. Dornelas MC, Mazzafera P. A genomic approach to characterization of the Citrus terpene synthase
gene family. Genet Mol Biol. 2007; 30(3 suppl):832–40. https://doi.org/10.1590/S1415-
47572007000500011.

63. Pazouki L, Memari HR, Kännaste A, Bichele R, Niinemets Ã. Germacrene A synthase in yarrow (Achil-
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