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Abstract 
 

Hemolymph cellular composition, morphology and functional properties of the Pacific 

oyster (Crassostrea gigas) hemocytes were studied. Three hemocyte types 

(agranulocytes, hyalinocytes and granulocytes) were described in hemolymph. The 

morphology of each type was characterized by light microscopy and flow cytometry. 

Agranular cells (agranulocytes and hyalinocytes) were the dominant type of cells in 

hemolymph; their number was 86.7±2.7% of total cell count. Under hypoxia the 
number of agranulocytes increased (37.4% for control group versus 95.3% for hypoxic 

probes), whereas granulocyte and hyalinocyte number decreased up to 3.9% and 0.7% 

in hypoxic specimens respectively. The spontaneous ROS production decreased in each 

hemocyte type after exposure to hypoxia. Low dissolved oxygen did not influence 

hemocyte proliferation and mortality level.  

 

Introduction 
 

Hypoxic areas or even persistent oxygen minimum 

zones (OMZ) (Levin, 2002) has become ubiquitous in 

coastal and open ocean environments since 1950-ies 

(Gewin, 2010; Middelburg & Levin, 2009). Coastal 

hypoxia has expanded in recent decades (Rabalais & 

Turner, 2001) negatively influencing biodiversity of 

resident organisms and fisheries. Climate models 

predict general decrease of oxygen concentration in 

World Ocean and spreading of OMZ in conditions of 

global warming (Beszczynska-Möller et al., 2012; 
Deutsch et al., 2011; Melzner et al., 2013; Chan F. et 

al. 2019; Zhao et al., 2020). Shelf macroorganisms are 

usually characterized with low tolerance to hypoxia and 

up to 50% of coastal species die at oxygen concentration 

less than 70 mM kg-1 (Vaquer-Sunyer & Duarte, 2008; 

Young & Gobler, 2020).  

Due to a prominent ecological role and economic 

importance of bivalves, the influence of hypoxia on 

mollusks’ physiology has been intensively studied in 

recent years (van der Schatte Olivier et al., 2020; Gu et 

al., 2019). Low oxygen induces various physiological 

disturbances in bivalves, which occurs as a result of 

decreased protein synthesis and general suppression of 

aerobic metabolism (Gewin, 2010; Hochachka & 

Somero, 2002). Hypoxia causes disruptions of growth 

rate, immunity status and other parameters which are 

important for cultivated species (Clark et al., 2013). 

The Pacific oyster (Crassostrea gigas), a 

commercially important bivalve mollusk, usually inhabit 

shallow intertidal areas, which frequently became 

hypoxic due to eutrophication and poor water mixing 

(Gray et al., 2002; Melzner et al., 2013; Wu, 2002). It is 

generally considered that species from Ostreidae family 

possess 3 types of hemocytes: agranulocytes, 

hyalinocytes and granulocytes (Ford et al., 1994; Picot et 

al., 2019; Hong et al., 2012). Oyster granulocytes are the 

main hemocyte type involved in cellular immune 

responses as they are more active in phagocytosis 

compared with agranulocytes and hyalinocytes (Wang 

et al., 2017). The hyalinocytes possess lower ability to 
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phagocytosis, and agranulocytes, in turn, are not able to 

phagocytoze (Terahara et al., 2006; Takahashi et al., 

2017; Jiang et al., 2018). Other bivalve species 

demonstrate similar specialization of hemocytes (Cheng 

& Rifkin, 1970; Foley & Cheng, 1975; Wang et al., 2017; 

Wu et al., 2018; Sui et al., 2016).  Despite that, precise 

functional role of agranular cells is not clear yet, 

although they also perform cellular immune responses 

and may be involved in the processes of wound healing 

(Suzuki & Funakoshi, 1992). 

Non-specific immunity parameters are considered 

to be critically important for assessment of physiological 

state of cultivated bivalves. Innate immune system of 

bivalve mollusks is ensured by hemocytes circulating in 

hemolymph and non-specific tissue humoral factors 

(Song et al., 2010). Cellular immune responses typically 

involve phagocytosis and encapsulation of invading 

agents, and production of cytotoxic products and 

intracellular reactive oxygen species (ROS) (Cochennec-

Laureau et al., 2003; Li et al., 2014; Song et al., 2010; 

Wang et al., 2018). Low dissolved oxygen greatly 

influences non-specific immune responses in bivalve 

mollusks (Wang et al., 2018). Decreased total hemocyte 

number, intensity of phagocytosis, lower lysosomal 

content, increased hemocyte mortality and the content 

of reactive oxygen species were observed in Perna viridis 

and Mytilus coruscus under hypoxia (Sui et al., 2016, 

Wang et al., 2012, 2014; Sussarellu et al., 2012). At the 

cellular level, hypoxia causes inhibition of aerobic 

respiration in mitochondria (Sussarellu et al., 2013) and 

the increase of expression of antioxidant enzymes 

(Sussarellu et al., 2010). Oxygen is also essential for ROS 

production, which are involved in the process of 

pathogen degradation during phagocytosis (Donaghy et 

al., 2013; Hermes-Lima et al., 2015). 48-h incubation of 

oysters (Crassostrea virginica) in low-oxygen water led 

to 70 % decrease of ROS production by hemocytes (Boyd 

& Burnett, 1999). On the other hand, short-term 

hypoxia did not cause such effects in C. gigas (Sussarellu 

et al., 2012).  

Considering that global decrease of dissolved 

oxygen is an emerging concern for coastal aquaculture 

the aim of the present work was to examine effects of 

24h hypoxia on hemolymph cellular composition and 

functional parameters of hemocytes of the Pacific oyster 

(C. gigas) cultivated in the Black sea.  

 

Materials and Methods 
 

Maintaining of Mollusks 

 

Adult oysters (C. gigas) of both sexes (shell length 

94±3.5 mm, 23±4.2 g, n=16) were obtained from 
shellfish farm (Salt Lake Donuzlav, Crimea) during 

October 2017–November 2017. Oysters were divided on 

2 groups (8 individuals in each group) and kept in 30 L 

tanks equipped with flowing sea water system (oxygen 

concentration 7.5 - 8.0 mg×l-1, salinity 17.8 PSU, pH 8.0, 

15 - 18ºC) at least 1 week prior to experiment. Water 

temperature, salinity and acidity corresponded to that 

observed in natural habitat conditions of oysters in the 

Black Sea. During the acclimation period oysters were 

fed daily with mixture of microalgae. 

 

Hypoxia Modeling 

 

Oxygen concentration in the tank with oysters was 

decreased to 0.2 mg L-1 by bubbling of seawater with 

nitrogen gas. Hypoxic conditions were maintained for 24 

h and the concentration of oxygen was monitored 

regularly (oxygen sensor Ohaus Starter 300 D, USA) and 

kept at constant level throughout the experiment. 

 

Hemolymph Sampling 

 

After 24 h incubation period 0.5 - 1.0 ml 

hemolymph was collected from each oyster with a 25-

gauge needle and 2-ml plastic syringe. Hemolymph from 

individual oysters was analyzed separately. After 

sampling, hemolymph was filtered to 20 μm mesh to 
eliminate aggregates or large pieces of debris and cells 

were separated by centrifugation (500g, 5 min). The 

pellet was washed twice and resuspended in sterile 

filtered (0.2 μm) sea water. To prevent hemocyte 
clumping, all manipulations with samples were held on 

ice. After the final washing slides were prepared. 

 

Light Microscopy of Hemocytes 

 

Slides were dried on air at least 24 h and then fixed 

and dyed with May Grünwald and Giemsa stain 
solutions. Hemocytes were viewed on light microscope 

(Biomed PR-2 Lum) equipped with camera (Levenhuk C 

NG Series). Approximately 1000 cells per smear were 

examined. Morphometric analysis was performed using 

ImageJ 1.44 p. For each hemocyte the largest cellular 

and nuclear diameter has been measured. The nucleo-

cytoplasmic ratio was calculated using the equation: 

 

N/C ratio = nucleus diameter / cell diameter 

 

Flow Cytometry 

 

For flow cytometry analysis, hemocyte 

concentration in the suspension adjusted to 1-

2×106 cell ml-1. Cells were analyzed on FC500 flow 

cytometer (Beckman Counter) equipped with an air-

cooled argon laser, providing a laser excitation at 488 

nm. An FSC threshold was defined in order to eliminate 

cell debris and bacteria and 50 000 events were counted 

for each sample. Suspensions were dyed with DNA-

binding fluorochrome SYBR Green I (final concentration 

in the probe 10 µM), and hemocytes were readily 
differentiated from other particles in the hemolymph on 

the basis of the dye fluorescence. Results are expressed 

as cell cytograms indicating the size (FSC value), the 

granularity (SSC value) and the level of fluorescence 

using the corresponding channel of fluorescence. 
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Intracellular ROS Production 

 

The production of reactive oxygen species (ROS) by 

hemocytes was assessed using 2-7-dichlorofluorescein-

diacetate (DCF-DA). Working solution of DCF-DA was 

prepared by the dilution of the dye in DMSO and kept 

frozen (-20ºC). Hemocyte suspensions (1 ml) were 

incubated with 10 μl of DCF-DA solution for 30 min in 

the dark. During staining, the dye was oxidized to highly 

fluorescent dichlorofluorescein (DCF) in hemocyte 

cytoplasm. The level of fluorescence represents the 

capacity of cells to generate ROS. The green 

fluorescence produced by DCF was registered by the FL1 

detector. 

 

Hemocyte Proliferation 

 

DNA content and hemocyte proliferation were 

determined on a single-parameter histograms of SYBR 

Green I fluorescence in FL1-channel. The number of 

proliferating cells was estimated using standard cell 

cycle analysis, by the number of cells in S-, G2- and M-

stages (Nunez, 2001). Cell aggregates were 

discriminated on amplitude versus width plots of SYBR 

Green I fluorescence. 

 

Mortality Level 

 

The number of dead cells in hemolymph was 

investigated by the analysis of the fluorescence of 

hemocytes stained with Propidium iodide (PI). 10 μl of 
200 μg ml-1 PI stock solution (Sigma Aldrich) was added 

to 1 ml hemocyte suspension, and the cells were 

incubated in the dark for 30 min at 4º C. The percentage 
of dead hemocytes was evaluated on the histograms of 

PI fluorescence in the channel FL4 of cytometer. 

 

Percoll Centrifugation 

 

To characterize each hemocyte subpopulation, 

cells were separated by centrifugation in a 

discontinuous Percoll gradient according to the protocol 

used for molluskan hemocytes (López et al., 1997). 0.5 

ml of hemocytes suspensions was layered over a 1.5 ml 

of discontinuous gradient and centrifuged at 400 g for 

10 min in centrifuge Elmi CM-80 (Russia). Cells from 

each layer were collected separately and gently washed 

twice in sterile filtered sea water to remove Percoll. The 

pellet was divided for flow cytometric and light 

microscopic analysis (see 2.4). Each layer was analyzed 

separately. 

 

Data Analysis 

 

All flow cytometric measurements were 

performed at least at 3 replicates. One-way analysis of 

variance (ANOVA) and Tukey’s test were carried out to 
compare the means. Differences were considered 

significant at P≤0.05. The results are expressed as the 

means and standard errors. 

Results 
 

No mortality of oysters was observed during 

acclimation period and 24h hypoxia exposure. Total 

survival of the animals was 100%. 

 

Light Microscopy 

 

Microscopic observation allowed distinguishing 

three cell types in hemolymph of oysters: agranulocytes, 

hyalinocytes, and granulocytes (Figure 1). Agranulocytes 

were round cells with large rough basophilic nucleus and 

narrow cytoplasm. Agranulocytes did not form 

pseudopodia. Relatively large granulocytes possessed 

ameboid shape, cytoplasm had granules (basophilic, 

eosinophilic or mixed color); small eccentric nuclei 

contained heterochromatin. Hyalinocytes were 

characterized with intermediate cellular diameter and 

their morphology was similar to that in granulocytes, 

however, basophilic nuclei were situated in the center 

of cell and basophilic cytoplasm did not contain 

granules. Morphometric parameters of hemocytes are 

presented in Table 1. 

Despite the average diameter of agranulocytes, 

hyalinocytes and granulocytes significantly differed (P < 

0.05, n = 16), we also observed agranular cells with 

cellular diameter close to that for granulocytes. 

Similarly, some granulocytes were almost the same size 

as agranulocytes. The diameter of hyalinocytes varied in 

the wide range partly overlapping agranulocytes and 

granulocytes dimensions. 

 

Flow Cytometry 

 

Hemolymph samples stained with SYBR Green I 

were plotted by forward scatter (FSC) and side scatter 

(SSC). SYBR Green I positive cells revealing a single peak 

of green fluorescence were considered as the hemocyte 

population. Hemocytes were relatively homogenous by 

DNA content. No proliferation was observed. The CV of 

diploid peak was 15.7±0.7 (Figure 2). The percentage of 
hemocytes found to be nonviable were low in all 

hemolymph samples (≤10 %). 

Three cell populations differing by size and 

granulation could be detected in C. gigas hemolymph 

(Figure 3). Subpopulation 1 consisted of small non-

granulated cells amounting 24.3±2.7% of total cell 

count. Subpopulation 2 comprised large cells with 

moderate level of granularity (SSC). These cells were the 

most abundant in hemolymph (62.4±2.7% of total cell 
count). Cells in the subpopulation 2 greatly varied by 

their FSC and SSC level. Subpopulation 3 was the 

smallest in number (13.2±1.7%) and contained the 
largest cells with the highest granularity level. 

 

ROS Production 

 

All cells in suspension exhibited bright 

fluorescence of DCF-DA differing by the intensity among 
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subpopulations. Subpopulation 1 possessed significantly 

lower DCF fluorescence compared to subpopulation 2 

and subpopulation 3. Subpopulation 2 cells had 3 times 

higher intensity of the dye fluorescence compared to 

subpopulation 1. The largest granulated cells were 

characterized with the highest DCF fluorescence in 

suspension. 

 

Percoll Density Gradient 

 

Density gradient centrifugation demonsrated 

three hemocyte layers in hemolymph. The lowest layer 

(cells with larger density) contained mainly granulocytes 

and small number of hyalinocytes. Hyalinocytes 

observed in this layer were larger comparing to mean 

size for this cell type. The top layer was formed by the 

cells with the lowest density agranulocytes. Some 

hyalinocytes were also observed in this layer. The 

intermediate layer was mainly formed by large 

agranulocytes and low-granulated granulocytes. 

 

Hypoxic Impact  

 

The cellular composition of oysters’ hemolymph. 
subjected to hypoxia underwent substantial changes. 

Flow cytometric observation demonstrated significant 

increase of agranulocyte number (37.4% for control 

group versus 95.3% for hypoxic probes). The number of 

granulocytes and hyalinocytes decreased to 3.9% and 

0.7% in hypoxic specimens respectively. No significant 

changes in the level of dead cells hemocyte morphology 

and proliferation of cells were observed. Hypoxia 

substantially decreased the ability of hemocytes to 

produce ROS. The level of DCF-DA fluorescence in all 

subpopulations of cells was significantly lower 

comparing to normoxic probes (Figure 4). 

 

Figure 1. The morphology of C. gigas hemocytes: AG– agranulocytes; H-hyalinocytes; G– granulocytes. Slides were stained with 

May Grünwald and Gimsa solutions and viewed in light microscope. Morphometric analysis was performed in the ImageJ program.  

Bar: 10µm 

 

 

 

Table 1. Morphometric analysis of C. gigas hemocytes. Mean ± SE and rank of variation corresponding to cell diameter. nucleus 
diameter and N/C ratio of each hemocyte type are shown. AG: agranulocyte; H: hyalinocyte; G: granulocyte. 

 Nucleus (μm) Cell (μm) N/C ratio 

 Mean±SD Min Max Mean±SD Min Max Mean±SD Min Max 

AG 5.5±0.1 2.4 12.1 9.1±0.1 4.0 20.4 0.6±0.01 0.4 0.9 

H 4.0±0.1* 1.2 8.4 9.7±0.2* 4.4 18.2 0.4±0.01* 0.2 0.6 

G 3.0±0.1* 1.3 7.6 11.1±0.4* 5.0 23.4 0.3±0.01* 0.1 0.5 

* shows a significant differences (P<0.05) between hyalinocyte and agranulocyte types; agranulocyte and granulocyte types. 
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Discussion 
 

Hemocytes Classification 

 

We identified 3 types of С. gigas hemocytes that 

corresponds to classification previously shown by other 

researchers (Ford et al., 1994; Picot et al., 2019; Hong et 

al., 2012) The main morphological features of oysters’ 
granulocytes (low N/C ratio. numerous granules in 

cytoplasm. small eccentric nucleus and pseudopodia) 

were similar to those already reported (Chang et al., 

2005). Some authors subdivided granulocytes into 

basophilic, eosinophilic and intermediate cells according 

to the color of granules (Aladaileh et al., 2007; Chang et 

al., 2005). In spite of observing granulocytes with 

granules differently colored we did not used this 

morphological criterion for distinguishing 

subpopulations as it could be subjective. Density 

centrifugation of hemolymph demonstrated only three 

cellular layers and three subsets of cells could be 

identified in flow cytometry plots, which agrees with 

previously published data (Bachère et al., 1988). The 

controversies around the nomenclature of agranular 

hemocytes in Ostreidae family substantially complicate 

comparison of the cells morphology and functions 

described in published works. In the present study there 

were two subtypes of agranular cells in hemolymph, 

agranulocytes (the smaller ones) and hyalinocytes (the 

larger agranular cells). These cell types differed by their 

nucleo-cytoplasmic ratio and the ability to form 

pseudopodia. Hyalinocytes and granulocytes had similar 

cellular and nuclear diameters to those found in 

previous works on C.gigas (Ford et al., 1994) and 

C.virginica (Allam et al., 2002). Oysters had larger 

agranulocytes (9.1 μm v. 8.0 μm) and smaller 
granulocytes (11.1 μm v. 12.7 μm) than mussels 
(Andreyeva et al., 2019). In several works small 

agranulocytes are sometimes classified as blast-like cells 

(hemocytoblasts), which are suggested to be stem cells 

freely circulating in the hemolymph (Hine, 1999). Cells 

with similar morphology are also called ‘small 
hyalinocytes’ (Sun et al., 2006). In the present work 
agranulocytes had a wide range of cell diameter (4 to 20 

μm) and the smallest cells had close diameter and 
morphology to blast-like hemocytes. Overlap of the 

range of cell diameter between cell types in the 

hemolymph observed in this work, and the presence of 

low- and high- granulated granulocytes in hemolymph 

may indicate, that agranular cells (i.e. agranulocytes and 

hyalinocytes) are stages of granulocyte maturation. This 

hypothesis is indirectly confirmed by the gradual 

decrease of NCR from agranulocytes to hyalinocytes and 

granulocytes, as immature vertebrate blood cells usually 

have larger nucleus compared to mature ones 

 

Figure. 2. DNA content in hemocytes of C. gigas. Histogram represents SYBR Green I-positive non-proliferating cells in suspensions 

of hemocytes. 

 

 

 

Table 2. Spontaneous ROS production by C. gigas. hemocytes. The analysis of ROS production by cells was based on the intensity 

of DCF-DA fluorescence (Mean ± SE) in non-stimulated hemocytes. 

Cell type DCF-DA fluorescence (arbitrary units) 

Subpopulation 1 418±14.11 

Subpopulation 2 1290.33±72.67* 

Subpopulation 3 5041.89±362.62* 

* represents significant differences between average value of fluorescence between subpopulations. P≤0.05 
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Figure 3. The distribution of C. gigas hemocytes by arbitrary size and granulation level.  A -Forward scatter (FSC) vs. side scatter 

(SSC) density plot shows SYBR Green I- positive cells forming three populations (Subpopulation 1.2.3). B. D. F – characterization of 

cells in subpopulation 3. 2. 1 respectively by the arbitrary diameter; C. E. F – distribution of cells within subpopulation 3. 2. 1 

according to granularity criteria. Hemocyte concentration in sterile filtered sea water was 1-2∙106 cell ml-1; cells were incubated 

with SYBR Green I with final concentration in the probe 10µM. 
 

 

 

 
Figure 4. Hypoxia causes changes in cellular composition of C. gigas hemolymph and their ability to produce ROS. A – ratio between 

subpopulations of cells in hemolymph; B – The level of spontaneous ROS production by subpopulations of hemocytes. ROS 

production by cells was based on the intensity of DCF-DA fluorescence (mean ± SE) in non-stimulated hemocytes. * represents 

significant differences between average value of fluorescence between cell types. P≤0.05. 
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(Andreyeva et. al., 2017; van der Knaap et al., 1993).  

However, site of hemocyte proliferation is supposed to 

occur outside the circulation system as we did not 

observe hemocyte proliferation in hemolymph.  

 

Hypoxic Impact  

 

24-h hypoxia substantially influenced functional 

parameters of hemocytes. Spontaneous ROS production 

decreased in all cell types. Similar tendency was 

previously reported for C.gigas (Table 2) (Donaghy et al., 

2013) and other bivalve species (Andreyeva at al., 2019; 

Boyd & Burnett. 1999; Wang et al., 2012). Oxygen is 

essential for production of intracellular ROS and the 

decrease observed may be at least partly caused by the 

inhibition of respiration in mitochondria (Donaghy et al., 

2012). 24-h hypoxia influenced the agranular and 

granular cells differently. ROS production in 

granulocytes decreased more than 9 times. Hyalinocytes 

and agranulocytes of oysters demonstrated respectively 

6 and 2 times lower fluorescence of DCF-DA compared 

to normoxic probes. Such differences in the degree of 

hypoxic impact on intracellular ROS production between 

hemocytes may be caused by the functional role and the 

morphological structure of each cell type. Granulocytes 

are more oxygen demanding cells compared to 

agranular cells, because they possess complicated 

ultrastructure with numerous mitochondria and 

endoplasmic reticulum (Chang et al., 2005). These 

morphological properties presume granulocytes as 

greater oxygen consumers comparing to agranulocytes 

which in turn leads to their greater sensitivity to low 

dissolved oxygen level. 

Hemolymph of oysters held in hypoxic conditions 

contained increased number of agranulocytes. The 

number of hyalinocytes and granulocytes decreased. 

Similar changes in agranulocyte number have been 

previously reported for C. gigas after 24-h hypoxia at 

oxygen concentrations 2.6 mg O2 L-1 (Sussarellu et al., 

2012). The processes involved in modulation of 

hemolymph cellular composition in bivalves under 

hypoxia are not clear. In lower vertebrates rapid 

increase of red blood cell number in circulating blood 

after exposure to hypoxia is usually caused by release of 

cells from spleen (Fange & Nilsson, 1985; Ноustоn et al., 
1996; Strunjak-Perovic et al.. 2009; Abdel-Tawwab et al., 

2019; Soldatov A. A. et al., 2017). Changes in blood cell 

composition following chronic or long-term hypoxia are 

associated with the enhancement of erythropoiesis in 

hematopoietic tissues (Moritz et al., 1997; Soldatov, 

2005; Van der Weele & Jeffery, 2019). Increased 

hematopoiesis seems unlikely due to short-term 

exposure to hypoxia. In the present work we did not 

observe hemocyte proliferation in normoxic or hypoxia-

treated mollusks. Hemocyte migration from other 

tissues is an alternative process that may be associated 

with changes in the hemolymph cell composition during 

hypoxia (Donaghy et al., 2012; Ottaviani et al., 1998).  

In summary, hemolymph of the Pacific oyster 

contains 3 hemocyte types, two of which are agranular 

cells (agranulocytes and hyalinocytes) and one is 

granulocytes. Agranular cells are supposed to be 

immature granulocytes. However, hematopoiesis of 

hemocytes does not occur in hemolymph. The results of 

the study indicate that 24-h hypoxic exposure causes 

considerable changes in physiology of oysters. At the 

organismic level the fluctuations in hemolymph cellular 

composition are observed, i.e. the number of 

agranulocytes increased. At the cellular level incubation 

in low dissolved oxygen led to decrease of spontaneous 

ROS production by hemocytes, but did not induce 

hemocyte mortality. 
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