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Functional characterization of the TERRA
transcriptome at damaged telomeres
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Jacques Rougemont1,3 & Joachim Lingner1,2

Telomere deprotection occurs during tumorigenesis and aging upon telomere shortening or

loss of the telomeric shelterin component TRF2. Deprotected telomeres undergo changes

in chromatin structure and elicit a DNA damage response (DDR) that leads to cellular

senescence. The telomeric long noncoding RNA TERRA has been implicated in modulating

the structure and processing of deprotected telomeres. Here, we characterize the human

TERRA transcriptome at normal and TRF2-depleted telomeres and demonstrate that TERRA

upregulation is occurring upon depletion of TRF2 at all transcribed telomeres. TRF2 represses

TERRA transcription through its homodimerization domain, which was previously shown to

induce chromatin compaction and to prevent the early steps of DDR activation. We show

that TERRA associates with SUV39H1 H3K9 histone methyltransferase, which promotes

accumulation of H3K9me3 at damaged telomeres and end-to-end fusions. Altogether our

data elucidate the TERRA landscape and defines critical roles for this RNA in the telomeric

DNA damage response.
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T
he prevalent damage of the genetic material poses a
particular threat to genome integrity and cell survival.
Sensitivity of DNA to damaging agents and the kinetics of

repair are influenced by the chromatin structure. The DNA
damage response (DDR) differs in heterochromatic and
euchromatic genomic loci. Heterochromatin is better protected
from damage than euchromatin1 but damaged heterochromatin
is less accessible to DDR factors. Thus, DNA damage repair in
heterochromatin occurs with slow kinetics and is less effective
than in euchromatin, resulting in long-term retention of DNA
lesions2. While the ataxia-telangiectasia mutated protein (ATM)
prevents large-scale chromatin decompaction and silences
transcription in cis next to DNA double strand breaks (DSBs)
in euchromatic domains3, repair of damaged heterochromatic
regions is likely to require decondensation of the surrounding
chromatin structure and derepression of transcription4,5.
Chromatin relaxation and subsequent repair of heterochromatin
requires the ATM-dependent phosphorylation of the
heterochromatin protein Kap-1 (ref. 6) and the rapid release of
phosphorylated HP1 proteins from H3K9me3 (ref. 7), followed
by association of Tip60, an acetyltransferase involved in
chromatin acetylation8,9 and in the modification and
subsequent activation of ATM10–12.

Telomeres resemble constitutive heterochromatin as they
contain H3K9me3 and HP1 proteins13. Telomeres also actively
repress DNA repair pathways to prevent recombination of
natural chromosome ends. Consistent with these features,
telomeres when damaged but still functional elicit a persistent
DDR14 and they are refractory to DNA repair15, thus causing
cellular senescence15. In vertebrates, telomeric DNA is associated
with specialized telomeric proteins, known as shelterins16,
which repress DNA damage activation at the ends of linear
chromosomes17. At functional telomeres, the shelterin
component TRF2 binds double-stranded telomeric DNA and
represses ATM signalling, whereas the single-stranded telomeric
binding factor POT1 prevents ATR (ataxia telangiectasia and
Rad3 related) activation18. Extensive telomere shortening leads to
activation of the ATM and ATR pathways and replicative
senescence which is thought to suppress tumorigenesis19–22.

Telomeres in most or all eukaryotes are transcribed into
heterogeneous long non-coding RNAs known as TERRA23,24.
TERRA transcription is driven by RNA polymerase II (RNAPII)
and proceeds from subtelomeric DNA into the telomeric repeat
sequences23,24. In humans, CpG island promoters present at a
subset of telomeres are partially responsible for driving TERRA
transcription and PCR with reverse transcription (RT–PCR)
analyses as well as FISH experiments suggested that several if not
all telomeres can produce TERRA transcripts25. However, a
comprehensive description of the whole TERRA transcriptome is
missing. TERRA transcription has been linked to chromatin
structure and is repressed by the DNA methyltransferase enzymes
DNMT1 and DNMT3b25,26 and by the SUV39H1 H3K9 histone
methyltransferase and heterochromatin protein 1a (HP1a;
ref. 27). TERRA partially colocalizes with telomeres23,28 and
it has been proposed that TERRA may contribute to
telomeric heterochromatin formation by promoting H3K9
trimethylation27,29. Recently, we have shown that TERRA is
bound by the lysine demethylase LSD1 at TRF2-depleted
telomeres, which may promote the physical interaction between
LSD1 and MRE11. LSD1 activates MRE11 for the nucleolytic
processing of uncapped telomeres28. How TERRA transcription is
regulated at dysfunctional telomeres and to what extent TERRA
may affect chromatin reorganization following the induction of
telomeric DDR remains to be elucidated. Here we characterize in
detail the transcriptional upregulation of TERRA that ensues
telomere deprotection upon depletion of TRF2. We find that

TERRA upregulation is due to increased transcription of
telomeres. It occurs independently of ATM-dependent
checkpoint signalling and p53. We demonstrate that TRF2
negatively regulates TERRA transcription through its
dimerization domain. We define the TERRA transcriptome and
identify conserved transcription factor binding sites that may
regulate TERRA transcription. Finally, we provide data
supporting a model in which TERRA promotes SUV39H1
binding to TRF2-deficient telomeres and accumulation of
H3K9me3. Thus, the increased density of H3K9me3 at
uncapped telomeres may favour telomere end-to-end joining
and the activation of Tip60 and the subsequent induction of the
DDR pathways.

Results
TERRA levels increase upon DNA damage and TRF2 loss. To
investigate the putative impact of DNA damage on TERRA
expression at human telomeres, we monitored TERRA levels in
HeLa cells that had been continuously treated with the DSBs
generating agent zeocin. FACS profile analysis of zeocin-treated
cells showed an accumulation of cells in G2/M (Supplementary
Fig. 1a), indicating a prolonged mitotic arrest upon persistent
DNA damage. In chromatin immunoprecipitation (ChIP)
experiments with antibodies against TRF2, less telomeric DNA
was recovered upon zeocin treatment, indicating that reduced
amounts of TRF2 remained associated with telomeres (Fig. 1a,b).
At the same time ChIP analysis with antibodies against g-H2AX
indicated that this damage marker accumulated at telomeres
(Fig. 1c,d). These results are in agreement with a previous report
showing that prolonged mitotic arrest leads to loss of TRF2 from
telomeres, telomere deprotection and DDR activation30. Next, we
measured TERRA levels in time course experiments by northern
blot analysis using a strand-specific TERRA probe. Quantification
of the hybridization signals revealed that TERRA accumulated at
late time points of zeocin treatment over 18S rRNA (Fig. 1e;
Supplementary Fig. 1b). To test whether TERRA upregulation
was due to telomere deprotection and DDR activation, we
monitored TERRA levels following shRNA-mediated depletion of
TRF2 and POT1. As expected, shRNA-mediated depletion of
TRF2 and POT1 in HeLa cells (Supplementary Fig. 1a) led to the
accumulation of g-H2AX at telomeric but not at centromeric
regions as assessed by ChIP using antibodies against g-H2AX
(Fig. 1f,g). TERRA levels increased upon TRF2 knockdown but
they remained unaltered in cells depleted of POT1 (Fig. 1h).
Overall, our data suggest that TERRA accumulation upon
persistent DNA damage involves depletion of TRF2 from
telomeres. To evaluate whether other shelterin proteins may
affect TERRA levels, analogous experiments were carried out in
HeLa cells depleted for TRF1, Rap1, TIN2 and TPP1
(Supplementary Fig. 2b). As expected for a functional depletion
of TRF1, TIN2 and TPP1, telomeric but not centromeric DNA
was enriched in ChIP experiments using antibodies against
g-H2AX (Supplementary Fig. 2c,d). By northern blot analysis, we
found that TERRA is also upregulated following TRF1 removal
but not upon depletion of the other shelterin components
(Supplementary Fig. 2e).

TERRA transcriptome analysis at TRF2-deprotected telomeres.
TERRA transcription initiates within subtelomeric regions and
proceeds into the telomeric TTAGGG-tracts. TERRA promoters
have been identified within CpG islands that are embedded
within repetitive DNA tracts referred to as 61-29-37 repeats25.
These subtelomeric repeats reside in close proximity of the
telomeric TTAGGG-repeats at a large number of chromosome
ends25. To comprehensively characterize the TERRA
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transcriptome, we performed high-throughput sequencing using
nuclear RNA from wild-type and TRF2-depleted HeLa cells. To
enrich for full-length TERRA and minimize ribosomal RNA
(rRNA) contamination, we used two purification steps. Since
TERRA, but not rRNAs, contains a canonical m7G cap28, nuclear
RNA was first incubated with the high-affinity m7G cap-binding
protein eIF4E fused to GST and immobilized on Glutathione-
Sepharose. The RNA was recovered from the beads and incubated
with biotinylated antisense (CCCTAA)3 oligonucleotides that
specifically annealed to the UUAGGG-tracts residing near the
30ends of TERRA transcripts. The RNA bound to biotinylated

antisense (CCCTAA)3 oligonucleotides was recovered from
streptavidin beads. RNA-seq experiments were performed on
the TERRA-enriched RNA fraction and on total nuclear RNA
(input) from wild-type or TRF2-depleted HeLa cells. The reads
were mapped to the most complete assembly available of human
subtelomeres (http://www.wistar.org/lab/harold-c-riethman-phd/
page/subtelomere-assemblies)31 and read density profiles were
generated counting the number of reads aligned at each position
along the subtelomeric regions. The TERRA transcripts stemming
from different chromosome ends were identified based on their
enriched read density in the UUAGGG-containing RNA fraction
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Figure 1 | TERRA expression is upregulated upon persistent DDR and TRF2 depletion. (a) DNA-ChIP of telomeric and centromeric DNA with

anti-TRF2 antibody performed in HeLa cells treated with zeocin for the indicated times. (b) Quantification of three independent ChIP experiments

represented in a (mean±s.d., n¼ 3). (c) DNA-ChIP of telomeric and centromeric DNA with anti-gH2AX antibody performed in HeLa cells treated

with zeocin for the indicated times. (d) Quantification of three independent ChIP experiments represented in c (mean±s.d., n¼ 3). (e) Northern blot

analysis of total RNA from HeLa cells treated with zeocin. TERRA was detected using a telomeric DNA probe complementary to the UUAGGG

repeats. Filters were then stripped and reprobed for 18S rRNA. (f) DNA-ChIP of telomeric and centromeric DNA with anti-gH2AX antibody performed in

HeLa cells depleted of POT1 and TRF2, respectively. (g) Quantification of three independent ChIP experiments represented in f (mean±s.d., n¼ 3).

(h) Northern blot analysis of total RNA from HeLa cells depleted of POT1 and TRF2.
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Figure 2 | Characterization of TERRA transcriptome at TRF2-depleted telomeres. (a) Enrichment profiles of RNA-seq data of UUAGGG-containing

RNAs versus total nuclear RNA prepared from HeLa cells depleted of TRF2 at 10 different chromosome ends showing transcription within

subtelomeric regions. Red and green labelling indicates the p- and the q-arms, respectively. Yellow rectangles indicate TTAGGG repeats interspersed in

subtelomeric regions. The blue line is a moving average over a window of 10 nucleotides. Enrichment profiles of ChIP-seq analysis of CTCF are shown

below the RNA-seq profile data for each chromosome end. (b) Comparison of the GC content of TERRA transcribed versus non-transcribed subtelomeres.

The plots were generated using the Wistar GC content track and are an average of the two subtelomere subsets. (c) Average GC content calculated

in the first 5 kb of each subtelomere. The boxes represent the GC content distribution of the two subtelomere subsets (TERRA transcribed versus
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(d) Reads per kilobase per million reads (RPKM, times 102 for practicality) as a measure for chromosome-specific TERRA levels in wild-type

(shEV) and TRF2-depleted cells (shTRF2).
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compared with the input material. Doing so, we identified
10 distinct chromosome ends where transcription into TERRA
molecules started as far as 5–10 kb upstream of the subtelomere–
telomere boundary (see Fig. 2a for TRF2-depleted HeLa cells and
Supplementary Fig. 3 for wild-type HeLa cells). At eight other
chromosome ends, the RNA-seq data suggested that transcription
starts in close proximity to the TTAGGG-tracts (Supplementary
Fig. 4). Despite good mappability scores for several additional
chromosome ends, the remaining complete subtelomeres did not
display consistent read profiles in the subtelomeric regions
(Supplementary Fig. 5). However, due to the repetitive nature
of the human telomeric repeat sequences, the reads containing
only UUAGGG repeats could not be assigned to a specific
chromosome end. Thus, we cannot rule out that transcription at
several chromosome termini may initiate within the terminal
TTAGGG-repeat sequences. Our RNA-seq data also revealed that
TERRA 50 ends are embedded within subtelomeric regions with
higher GC content than the non-transcribed subtelomeres
(Fig. 2b). In addition, using published ChIP-seq data from

Deng et al.32, we ascertain that CTCF, which positively regulates
TERRA transcription, binds subtelomeres in the vicinity of
TERRA 50 ends (Fig. 2a; Supplementary Fig. 4).

Next, we identified cis-regulatory elements and transcription
factors (TFs) that may control TERRA expression. To this aim,
we used TRANSFAC databases and scanned for transcriptional
regulatory modules in the subtelomeric regions flanking the
identified TERRA transcription start sites. For the TERRA
promoters located 5–10 kb upstream of the telomeric tracts, our
analysis revealed an overrepresentation of binding sites for zinc
finger transcription factors (ZFP281, ZFP740 and ZFX) and
members of the SP/KLF (specificity protein/Kruppel-like factor)
family, such as KLF15, SP1, SP2 and SP4 (Supplementary
Table 1). On the other hand, the TERRA promoters located in
close proximity of the terminal TTAGGG-repeat sequences
displayed an overrepresentation of sequence motifs that can be
bound by interferon regulatory factors, basic helix-loop-helix
transcription factors, such as myogenic regulatory factors (MyoD,
Myf, Myogenin) and GATA-type zinc finger transcription factors
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NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6379 ARTICLE

NATURE COMMUNICATIONS | 5:5379 | DOI: 10.1038/ncomms6379 |www.nature.com/naturecommunications 5

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


(GATA1 and GATA5) (Supplementary Table 2). The binding
motif for the transcriptional factor CTCF is overrepresented at
both the telomere distal and proximal TERRA promoters
(Supplementary Tables 1 and 2), thus further supporting the
role of CTCF in regulating TERRA expression.

Finally, we compared the abundance of the different TERRA
molecules that contained long subtelomeric sequences by
calculating the number of reads per kilobase per million reads
(RPKM)33 in the region between the TERRA 50 ends and the start
of the telomeric tract (5–10 kb; not spliced; Supplementary
Table 3). The abundance of TERRA RNAs from the different
chromosome ends was in the same bulk part and TERRA
abundance increased similarly at all measured chromosome ends
2 to 4-fold upon depletion of TRF2 confirming the previous
results (Fig. 2d and Supplementary Table 3). The TERRA RPKMs
were compared with the values obtained for four different
housekeeping genes. TERRA abundance from individual
chromosomes ends was 10 times lower than transcripts from
the GUSB gene (encoding for b-glucuronidase) and 100 to
1,000 times lower than the transcripts of three other highly
expressed housekeeping genes (GAPDH, ACTB and TUBA1)
(Supplementary Table 3).

Increased transcription in TRF2-deficient cells. TERRA
upregulation at deprotected telomeres could be a result of a
longer half-life of the transcripts or an increased transcription
rate. To distinguish between these two possibilities, we first
measured TERRA half-life. We blocked transcription in wild-type
and TRF2-depleted HeLa cells with actinomycin D and
monitored TERRA levels in time course experiment by northern
blot analysis. b-Actin, c-Myc and 18S rRNA were included in the
analysis for normalization (b-actin and 18S rRNA) and to control
for successful inhibition of RNAPII (c-Myc) ((t1/2) of 20min
(refs 34–36); Fig. 3a). Quantification of the hybridization signals
revealed that, as previously shown23,28, total TERRA has a half-
life ofB3 h in wild-type cells. In TRF2-depleted cells, the half-life
increased only marginally to B3.1 h upon TRF2 removal
(Fig. 3b), which cannot account for the accumulation of
TERRA transcripts in TRF2-deficient cells.

To obtain clues about transcriptional activity at wild-type
and TRF2-depleted telomeres, we performed ChIP experiments
using antibodies against RNA polymerase II (RNAPII) and its
phosphorylated forms (Fig. 3c,d). Telomeric DNA was signifi-
cantly enriched in TRF2-depleted cells over wild-type cells with
all RNAPII antibodies. Most striking was the difference with an
antibody against the elongating form of RNAPII recognizing the
phosphorylated serine in the amino acid 2 position of the
YSPTSPS-repeat sequence in the carboxy (C)-terminal domain of
RNAPII (PolII-S2P in Fig. 3c,d). Together, these experiments
indicate that TERRA accumulation upon telomere deprotection is
not because of an increase in the stability of the transcript but is
caused by a higher transcription rate.

Damage signalling is not required for TERRA upregulation.
To assess the influence of DNA damage signalling on the
increased levels of TERRA upon TRF2 knockdown, we depleted
separately MRE11 or NBS1, two subunits of the MRN complex,
and the ATM and ATR kinases by shRNA. MRE11 or NBS1 were
efficiently depleted in wild-type and TRF2-deficient HeLa cells as
determined by western blot analyses (Fig. 4a). Furthermore, a
reduction of telomere end-to-end fusions in the TRF2-depleted
cells indicated loss of function of MRE11 and NBS1
(Supplementary Fig. 6a). TERRA levels were monitored by
northern blot analysis and quantitative RT–PCR. Depletion of the
MRN complex components neither affected TERRA levels

in wild-type cells nor did it prevent TERRA upregulation at
TRF2-deprotected telomeres (Fig. 4b; Supplementary Fig. 6e).
Similar experiments were performed in wild-type and TRF2-
deficient cells efficiently depleted of ATM and ATR (Fig. 4c).
The depletions of ATM and ATR both were functional as
phosphorylation of the downstream Chk2 and Chk1 kinases was
reduced (Supplementary Fig. 6b). Functional depletion of ATM
was further confirmed in ChIP experiments in which
g-H2AX no longer accumulated at telomeres in TRF2-deficient
cells (Supplementary Fig. 6c,d). Analogous to what was observed
for the MRN complex, depletion of ATM and ATR had no effect
on TERRA levels at both functional and deprotected telomeres
(Fig. 4d; Supplementary Fig. 6f). In addition to ATM and ATR,
we depleted SMG1, which is also a member of the PI3K-related
kinase (PIKK) family. SMG1 has well-characterized roles in
nonsense-mediated RNA decay and in the DDR37,38. In addition,
SMG1 negatively regulates the abundance of TERRA at
telomeres23. We knocked down SMG1 with two different
shRNAs alone or in combination with TRF2 (Supplementary
Fig. 7a), which concomitantly reduced phosphorylation of UPF1
as expected for loss function of SMG1 (Supplementary Fig. 7b)
and evaluated TERRA levels by quantitative RT–PCR. No
significant difference in TERRA levels was observed upon
SMG1 depletion in both wild-type and TRF2-deficient cells
(Supplementary Fig. 7c). Finally, we tested if p53 may control
TERRA induction upon telomere deprotection. For this, we
employed two isogenic human colorectal carcinoma cell lines
(HCT116), which were wild-type (p53þ /þ ) or knocked out for
p53 (p53� /� ; ref. 39). We transfected the p53þ /þ and the
p53� /� cells with shRNAs against POT1 or TRF2 and we found
that TERRA upregulation occurred upon TRF2 but not POT1
removal in presence and absence of p53 (Fig. 4e). Thus p53 is
dispensable for TERRA transcription at wild-type and TRF2-
deprotected telomeres. Overall, these results strongly suggest that
DDR activation does not account for TERRA upregulation
following telomere deprotection by TRF2. Therefore, we
postulated that TRF2 might act directly as a negative regulator
of TERRA transcription.

The homodimerization domain of TRF2 represses TERRA.
TRF2 and TRF1 both consist of four domains: a C-terminal MYB
domain required for binding to telomeres, a flexible hinge domain
involved in protein–protein interactions, a TRFH domain
required for homodimerization40 and chromatin compaction41,42,
and a divergent amino (N)-terminal region rich in basic amino
acids in TRF2 and acidic residues in TRF1. To identify the
molecular properties of TRF2 involved in regulating TERRA
transcription, we swapped, inspired by a previous study41, several
domains between TRF2 and TRF1 (refs 43,44) in cDNA
constructs (Fig. 5a) and expressed them in HeLa cells (Fig. 5b).
Western blot analysis and IF-FISH experiments indicated that the
TRF2/TRF1 chimeric proteins were expressed at comparable
levels (Fig. 5b) and that they localized to telomeres even though
the nucleoplasmic patterns differed slightly with the different
constructs (Fig. 5c). We then tested whether the TRF2 chimeric
constructs were able to prevent induction of TERRA transcription
in HeLa cell lines depleted of endogenous TRF2 by shRNA.
Importantly, ectopically expressed full-length wild-type TRF2 but
not TRF1 prevented TERRA upregulation upon depletion of
endogenous TRF2 (Fig. 5d). This suggests that TRF2 and TRF1
suppress TERRA abundance through distinct mechanisms. The
TRF2 construct lacking the N-terminal basic region (TRF2-DB)
was also able to suppress the transcriptional induction of TERRA
that followed loss of endogenous TRF2 (Fig. 5d) ruling out a
critical and specific function of this domain in TRF2. Similarly,
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the hinge and DNA binding domains of TRF2 also did not seem
to have critical roles for the TRF2-specific repression of TERRA
as they could be replaced with the corresponding domains from
TRF1 (TRF2-DBcH and TRF2-DBcM in Fig. 5). In contrast,
ectopic expression of the TRF2 chimeric protein containing the
TRFH domain of TRF1 (TRF2-DBcT) did not prevent TERRA
accumulation in the absence of endogenous TRF2 (Fig. 5d).
Overall, these data suggest that TRF2 represses TERRA
transcription through its TRFH domain. This domain may
elicit this function through its capacity in structural compaction
of chromatin41,42, making telomeres less accessible to RNAPII.
Interestingly, it has recently been shown that the TRFH domain
of TRF2 is also required to prevent the activation of the ATM
pathway and the initial steps in the telomeric DDR44.

TERRA upregulation may sustain H3K9me3 accumulation. At
telomeres, it has been suggested that TERRA may participate in
the accumulation of H3K9me3 (refs 27,29). We investigated by
ChIP the histone methylation pattern upon telomere uncapping.
The density of monomethylated H3K4 was not affected following
TRF2 depletion and the signals for di- and trimethylated H3K4
were close to background at both, capped and unprotected
telomeres (Supplementary Fig. 8a,b). Also monomethyl H3K9

was not affected at telomeres following TRF2 depletion (Fig. 6a).
However, we observed a significant reduction of dimethylated
H3K9 (H3K9me2) and a corresponding rise in the density of
H3K9me3 upon telomere uncapping, whereas they both
remained unaltered at centromeric chromatin (Fig. 6a,b). At
DSBs occurring in heterochromatic regions, H3K9me3 provides
activation sites for Tip60 (KAT5) (ref. 10), which affects
H4K16 acetylation and ATM activation. In line with this, we
observed that TRF2-deprotected telomeres showed an increase in
H4K16 acetylation, which is indicative of Tip60 activity
(Supplementary Fig. 8c). We tested whether the accumulation
of H3K9me3 at dysfunctional telomeres coincides with recruit-
ment of the histone methyltransferase SUV39H1. We performed
ChIP experiments with two different antibodies against endo-
genous SUV39H1 and found that the telomeric signal in the
SUV39H1-ChIP significantly increased upon telomere uncapping
by TRF2 depletion (Fig. 6c,d) suggesting that this protein is
responsible for H3K9 trimethylation at TRF2-depleted telomeres.
Next, we assessed whether SUV39H1 can interact with TERRA.
To this aim, we performed RNA immunoprecipitation experi-
ments with extracts derived from formaldehyde-crosslinked HeLa
cells followed by stringent washing conditions. Approximately 1%
of TERRA was immunoprecipitated with two different antibodies
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against endogenous SUV39H1 upon telomere uncapping.
In contrast, this interaction was barely detectable in cells with
normal levels of TRF2. Thus the number of TERRA–SUV39H1
complexes increased substantially upon TRF2 removal (Fig. 6e).
Remarkably, TERRA was also significantly enriched upon
H3K9me3 RNA-IP of formaldehyde-crosslinked extracts follow-
ing telomere deprotection indicating that TERRA, SUVH39H1
and H3K9me3 may be present in common structures. The
specificity of these interactions was confirmed by the fact that
TERRA did not immunoprecipitate with IgG control. 18S rRNA
served as negative control and was not retrieved by SUV39H1
or H3K9me3 immunoprecipitation. Together, these experiments
indicate that TERRA upregulation may account for the
increased recruitment of SUV39H1 to uncapped telomeres and
the subsequent accumulation of H3K9me3 upon depletion
of TRF2.

SUV39H1 N-terminus binds the UUAGGG repeats of TERRA.
To assess whether SUV39H1 binds TERRA directly, the
biochemical properties of recombinant GST-SUV39H1 were

characterized in electromobility shift assays (EMSAs).
GST-SUV39H1 was expressed in E. coli, purified (Fig. 7a) and
incubated with labelled TERRA-mimicking RNA oligonucleotide
(UUAGGG)10. The affinity of purified SUV39H1 for TERRA-
mimicking RNA oligonucleotides was shown by the retarded
migration of the labelled oligonucleotide (Fig. 7b) and the identity
of the shifted complex was confirmed in supershift mobility
assays with the use of an antibody recognizing GST-SUV39H1
(Fig. 7c). In contrast to the TERRA-oligonucleotide, labelled
DNA of the same sequence (TTAGGG)10 was not bound by
SUV39H1 (Fig. 7b). Further, the binding specificity was addres-
sed by EMSA in competition experiments in which the associa-
tion to labelled (UUAGGG)7-TERRA repeats was challenged with
excess of unlabelled wild-type and mutant telomeric repeats
(Fig. 7d). This analysis indicated that SUV39H1 has specificity for
the AGGG sequence within the UUAGGG-repeats but it does not
recognize the UU-dinucleotide (Fig. 7d). Finally, we delineated
the TERRA interaction domains of SUV39H1. Two bacterially
expressed GST-SUV39H1 fragments were purified (Fig. 7e,f) and
characterized by EMSA for their ability to bind TERRA-
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mimicking RNA oligonucleotides (UUAGGG)10. Only the
N-terminal SUV39H1 fragment encompassing the chromodo-
main was able to substantially retard the migration of the labelled
TERRA-mimicking oligonucleotide (Fig. 7g) with a dissociation
constant for (UUAGGG)10 ofB80 nM. In summary, we conclude
that SUV39H1 can bind directly via its N-terminal chromodo-
main the UUAGGG-repeat array of the TERRA transcript, with
moderate specificity.

To assess the roles of SUV39H1 in telomere end-to-end fusions
at TRF2-depleted telomeres, we used a HeLa cell line in which
TRF2 can be depleted by doxycycline-inducible expression of
shRNAs45 (Fig. 8a). Significantly, depletion of SUV39H1 by
siRNAs in the TRF2-depleted cell line (Fig. 8b) reduced telomere
end-to-end fusion events (Fig. 8c and Supplementary Table 4)
indicating that the chromatin modifications induced by this
enzyme sustain end-to-end fusions in accordance with data
obtained in mouse cells upon deletion of SUV39H1 (ref. 46).

Discussion
In this study, we characterize the transcriptional response of
telomeres that follows uncapping upon depletion of TRF2. Our
data show that damaged telomeres are transcriptionally dere-
pressed which is typical for damaged heterochromatic domains.
Using high-throughput RNA-seq, we also characterize the whole

TERRA transcriptome. Our results demonstrate that transcrip-
tion initiation of TERRA at different chromosome ends varies
substantially with regard to its position to the telomeric repeat
tract extending in some cases for several kilobases into the
subtelomeric regions. This observation is in agreement with a
broad distribution of RNAPII across subtelomeres that was
reported previously32. Analysis of the subtelomeric sequence
reads did not reveal any splicing events of TERRA transcripts
suggesting that TERRA transcripts in contrast to many other long
noncoding RNAs are not spliced. Sequences with enriched GC
content located from 5–10 kb upstream of the telomeric tracts
may function as promoters and drive TERRA transcription near
at least 10 different chromosome ends. On the other hand, the
previously reported set of CpG island promoters25 appear
responsible for driving the transcription of the TERRA
molecules whose 50 ends localize in close proximity to the
telomeric tracts. Overall, the promoter distribution of TERRA at
different chromosome ends can account for the length
heterogeneity of the transcripts. We cannot rule out the
possibility that transcription may also start within telomeric
repeats or within immediate proximity thereof, leading us to
underestimate the real number of transcribed chromosome ends;
similarly, we cannot rule out cell line-specific effects that could
impact the distribution of TERRA-expressing telomeres. We
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Figure 6 | SUV39H1 associates with TERRA and is recruited to uncapped telomeres. (a) ChIP of telomeric and centromeric DNA with H3 antibodies

recognizing histone marks in HeLa cells transfected with control vector (shEV) or depleted of TRF2 (shTRF2). (b) Quantification of three independent ChIP

experiments represented in a (mean±s.d., n¼ 3). Statistical analysis was done using a two-tailed Student’s t-test (*Po0.05). (c) ChIP of telomeric

and centromeric DNA with anti-SUV39H1 antibodies performed in HeLa cells transfected with control vector (shEV) or depleted of TRF2 (shTRF2).

(d) Quantification of three different ChIP experiments represented in c (mean±s.d., n¼ 3). Statistical analysis was done using a two-tailed Student’s
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provide a bioinformatic analysis of the putative TERRA
promoters and identify transcription factor modules that might
regulate TERRA. Among the putative TERRA transcription
factors, we find that CTCF, previously shown to regulate
TERRA expression32, not only localizes near the 50 ends of the
CpG island TERRA promoters but also to the more telomere
distal TERRA promoters identified in our analysis.

Despite a previous study that reported a p53-dependent
increase in TERRA levels at damaged telomeres47, we provide
evidence that TERRA induction at TRF2-depleted telomeres
occurs independently of p53 and does not require the ATM- or
ATR-dependent DNA damage signalling cascade. Therefore,
although ATM can silence transcription in the vicinity of DSBs
occurring in euchromatic regions to prevent chromatin
movement and maintain proximity of broken termini3, it does
not regulate transcription at telomeres. On the other hand, we
observe that TRF2 directly suppresses TERRA transcription
through its homodimerization domain. The TRFH domain of
TRF2 has been implicated in chromatin compaction41,42 and it
might be involved in sequestering chromosome termini within

the T-loop structure48,49, which may protect the ends of
chromosomes from the DNA damage machinery. When TRF2
is removed, the higher order telomere structures are disrupted
and the telomeric chromatin becomes accessible to RNAPII.
Moreover, the TRFH domain of TRF2 is required to prevent the
activation of ATM and the initial steps in the DDR pathway44.
This observation together with the evidence that the DDR
pathways are not responsible for TERRA accumulation, lead us to
hypothesize that TERRA may function either upstream or in
parallel to ATM signalling upon telomere deprotection.

What is then the role of TERRA upregulation at uncapped
telomeres? In addition to its roles in telomere end processing50,
we propose a functional link between TERRA induction and
chromatin reorganization of dysfunctional telomeres. TERRA has
been implicated in the accumulation of H3K9me3 at functional
telomeres facilitating heterochromatin formation27,29. Moreover,
at elongated telomeres increased density of H3K9me3 correlates
with an increase in TERRA-derived UUAGGG signal27. Here, we
show that the UUAGGG-tract of TERRA interacts with the
N-terminal domain of the histone methyltransferase SUV39H1
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Figure 7 | The N-terminal domain of SUV39H1 directly binds UUAGGG-TERRA repeats. (a) Coomassie stained gel of GST-SUV39H1 affinity
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ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6379

10 NATURE COMMUNICATIONS | 5:5379 |DOI: 10.1038/ncomms6379 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


responsible for the methylation of H3K9. Given that telomeric
chromatin requires dynamic remodelling upon DNA damage, the
TERRA RNA binding ability of SUV39H1 will likely serve to
enhance SUV39H1 telomere association following TRF2
depletion promoting de novo methylation of H3K9. Depletion
of SUV39H1 reduced telomere fusion events at TRF2-depleted
telomeres indicating that SUV39H1 and possibly accumulation of
H3K9me3 are required for efficient end fusions (this study and
ref. 46). Whether this mechanism involves also activation of
Tip60 as seen at canonical DNA DSBs remains to be determined
in future experiments.

In summary, we provide a comprehensive analysis of the
molecular mechanisms underlying TERRA transcriptional reg-
ulation at uncapped telomeres and we propose a model in which
TERRA acts in the initiation steps of the DDR pathways
promoting changes in the chromatin architecture of damaged
telomeres and ensuring an effective DDR (Fig. 8d).

Methods
Plasmids. shRNA vectors were prepared by cloning double-stranded DNA
oligonucleotides into pSuper-Puro or pSuper-Blast. The target sequences were as
follows: TRF2, 50-GCGCATGACAATAAGCAGA-30 (ref. 50); POT1 50-GTACTA
GAAGCCTATCTCA-30 (shPOT1-2) and 50-GGGTGGTACAATTGTCAAT-30

(shPOT1-3) (ref. 51); MRE11, 50-TGAGAACTCTTGGTTTAAC-30 (ref. 50);
NBS1, 50-AGGAAGATGTCAATGTTAG-30 (ref. 50); ATM, 50-GCAACATACTA
CTCAAAGA-30 (ref. 52); ATR, 50- GGAGATTTCCTGAGCATGT-30 (ref. 53);
TRF1, 50-GAATATTTGGTGATCCAAA-30 (ref. 54); hRAP1 50-AGAGTTCTTGC
ATTGGAACT-30 (ref. 55); TIN2 50-GTGGAACATTTTCCGCGAGTACTGG
AGT-30 (ref. 51); 50-GACUUAGAUGUUCAGAAAA-30 (ref. 51); hSMG1a 50-ATC
TTCTGGGAATATTACT-30 (ref. 23); hSMG1b 50-CACTTCAGATAACTGA
GAG-30 (ref. 23). Full-length human TRF1 and TRF2, and chimeric TRF2
constructs were cloned from cDNAs into pCDNA6-based mammalian expression

vectors using PCR amplification and InFusion cloning (Clonetech). The full-length
SUV39H1 and SUV39H1 deletion mutant cDNA fragments were cloned into
bacterial expression plasmids pGEX6p-1.

Cell culture and transfection. HeLa cells were transfected using Lipofectamine
2000 according to the manufacturer’s protocol (Invitrogen). Puromycin
(2 mgml� 1; InvivoGen) or blasticidin (10 mgml� 1; InvivoGen) was added to the
medium 24 h after transfection of pSuper-Puro and/or pSuper-Blast constructs.
Puromycin and blasticidin selection was maintained for 4 days.

siRNA transfections. siRNA transfection was performed with Lipofectamine
RNAiMAX (Invitrogen, USA) according to the manufacturer’s procedures. SiRNA
oligonucleotides sequences were as follows: SUV39H1 siRNAa, 50-ACCUCUUU
GACCUGGACUA-30 (ref. 56), SUV39H1 siRNAb, 50-CAAAUCGUGUGGUA
CAGAA-30 (ref. 57), Luciferase siRNA, 50-CGUACGCGGAAUACUUCGA-30.

Affinity purification of UUAGGG-repeat containing RNA. Affinity purification
of 50 capped RNAs was performed by incubating nuclear RNA with GST-eIF4E as
described28. Briefly, purified GST-eIF4E (1mg) was bound to glutathione agarose
beads in 1� phosphate-buffered saline (PBS) for 1 h at 4 �C. The beads were
washed with 1� PBS and with buffer A (10mM KHPO4 pH 8.0, 100mM KCl,
2mM EDTA, 5% glycerol, 100 mgml� 1 yeast tRNA, 6mM DTT, 1.3% polyvinyl
alcohol, Triton X-100, 1U ml� 1 SuperaseIN (Ambion)) and then incubated with
nuclear RNA, pre-heated to 75 �C for 5min, at room temperature. After 1 h, the
supernatant was collected and the beads were washed five times with 1ml buffer A
lacking yeast tRNA. RNA retained on the beads as well as RNA present in the
supernatant fraction was extracted using the RNeasy Mini Kit (Qiagen), according
to the manufacturer instructions. A total of 125 mg of nuclear RNA pulled down
with GST-eIF4E was then incubated with 125 pmol of (CCCTAA)3 oligonucleotide
in 250 ml of 5mM Tris–HCl pH 7.5, 0.5mM EDTA and subsequently heated to
75 �C for 5min to denature the RNA secondary structures. NaCl was added to a
final concentration of 1M and the sample was cooled down to 50 �C over a period
of 30min. Then, 25ml of Dynabeads (10mgml� 1; Invitrogen) were added and the
mixture was incubated at 50 �C for 3 h. After washing the beads, the RNA was
eluted by adding 100ml of 10mM Tris–HCl pH 8.0 and heating to 80 �C for 3min.
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DSN library preparation and RNA high-throughput sequencing. Libraries were
prepared starting from 100 ng of RNA using the PE-102-1002-Paired-end kit from
Illumina (Illumina, San Diego, CA, USA) according to manufacturer’s recom-
mendations. Ligation products of around 250 bp were gel purified before PCR
amplification (15 cycles). Then 100 ng of libraries were normalized according to the
Illumina DSN protocol using the Duplex-specific nuclease from Evrogen (JSC,
Moscow, Russia). Twelve PCR cycles were performed using PCR PE 1.0 and 2.0
primers to enrich DNA fragments. DSN libraries were loaded on a HiSeq 2000
(Illumina) at 6 pM and paired-end sequenced using the 100 bp protocol. The
RNA-seq data sets were submitted to NCBI GEO and have the accession number
GSE56727.

Mapping RNA-seq to human subtelomeres. The sequencing produced 100
nucleotide (nt) paired-end reads from each of the four different samples. FLASH58

was used to merge overlapping mates into single-end reads. We used FastQC
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc) for the quality control.
After sequencing quality control, the first 10 and the last five bases were trimmed,
leaving read lengths of 85 nucleotides. Except for telomere 1p, the reads were
subsequently mapped to a set of 500,000 nt-sized subtelomere assemblies (Wistar
Institute, http://www.wistar.org/lab/harold-c-riethman-phd/page/subtelomere-
assemblies) with Bowtie59 (via the HTSstation60). Coordinate 1 of each completed
assembly corresponds to the start of the terminal repeat tract on the strand
oriented towards the centromere (to maintain a consistent starting coordinate for
subtelomere annotation). For the telomeres whose reference sequence does not
extend to the terminal repeat (6p, 8p, 11p, 3q, 9q, 20p), coordinate 1 corresponds
to the most distal base of the subtelomere assembly. The five acrocentric short-arm
telomeres are not represented in these assemblies; while they are known to contain
a characteristic SRE organization closely related to distal 4p (ref. 61), they cannot
be distinguished from each other and assemblies adjacent to them are unavailable.
For telomere 1p, the reads were mapped to the subtelomere assembly of NCBI
(hg19).

Read density profiles were produced counting the number of reads mapping at
each position, each read accounting for 1/N, where N is the number of its different
mapping positions. Scores were further normalized by dividing them by the total
number of aligned reads for the sample. The ratio plots represent, at each base
position within 50 kb from the telomere, the value of one of the ratios in log scale.
In cases where the denominator was null, the accounted score was arbitrarily
chosen as the log of the numerator. RPKMs of housekeeping genes were calculated
using portions of the genome covered by the exons of a given gene (not the whole
regions between the Ensembl gene coordinates) as described33, whereas RPKM
values for TERRA molecules were calculated using the length of each subtelomeric
region transcribed into different TERRA species.

Northern blot and Real-time RT–PCR. Cells were trypsinized and RNA was
prepared using the RNeasy Mini Kit (Qiagen), according to the manufacturer’s
instructions. For northern blots, RNA (B5 mg) was loaded onto 1.3% for-
maldehyde agarose gels and separated by electrophoresis. RNA was then trans-
ferred to Nylon membranes and blots were blocked in Church buffer for 1 h at
55 �C and then incubated with 32P-labelled probes. For RT–PCR analysis, total
RNA was reverse transcribed with beta-actin28 and telomere-specific primers
((CCCTAA)5) at 55 �C using SuperScript III reverse transcriptase (Invitrogen).
For SYBR green reactions, four different TERRA transcripts were analysed as
described previously28.

Chromatin immunoprecipitation. ChIP assays were performed as described
previously51. For immunoprecipitations, 5 mg of each specific antibody was used,
and the mixtures were incubated overnight at 4 �C with 50 ml of a 50% slurry of
protein G-Sepharose beads (GE Healthcare). Telomeric DNA was detected with a
probe generated as follows: a template mixture of 1–5 kb long telomeric DNA
fragments was synthesized by ligating double-stranded telomeric DNA
oligonucleotides ((TTAGGG)5, (CCCTAA)5) that were amplified by PCR. The
probe was random labelled with a-32P-dCTP and cold dTTP and dATP (for
detection of the TTAGGG strand). For detection of centromeric sequences, a 50
32P-labelled oligonucleotide probe corresponding to the alphoid element (50-GTT
TTGAAACACTCTTTTTGTAGAATCTGC-30) was used.

RNA-IP. RNA-IP of formaldehyde-crosslinked extract was performed as described
previously29. Briefly, for immunoprecipitations, 5 mg of SUV39H1 or H3K9me3
antibodies were used, and the mixtures were incubated overnight at 4 �C with 50 ml
of a 50% slurry of protein G-Sepharose beads (GE Healthcare). TERRA was
detected with the telomeric probe as described above. For detection of 18S rRNA,
a specific antisense 32P-gATP 50-end-labelled oligonucleotide probe was used.

Electromobility shift assay. EMSA with GST-SUV39H1 was performed in 1�
EMSA reaction buffer (25mM Tris–HCl pH 8.0, 100mM NaCl, 10% glycerol,
2mM MgCl2, 1mM DTT, 1U ml� 1 SuperaseIN). One nanomolar of 32P-gATP
50-end-labelled RNA or DNA oligonucleotide probes was mixed with the indicated
proteins and competitor oligonucleotides and incubated to equilibrium for 30min

at 37 �C. The reaction was supplemented with EMSA loading buffer to a final
concentration of 1� (8% glycerol, 2mM Tris-HCl pH 7.5, 0.02% bromophenol
blue and cyan cyanol) and separated on 2% 0.5� TBE-agarose gels at 60mA for
30min. Gels were dried, exposed to Phosphoimager screens and analysed using a
FLA-3000 Phosphoimager (Fujifilm) and AIDA Image Analyzer software (Raytest).

Antibodies. The following antibodies were used: Histone H3 (ab1791, Abcam);
H3K4me1 (07-436, Millipore); H3K4me2 (07-030, Millipore); H3K4me3 (ab8580,
Abcam); H3K9me1 (ab9045, Abcam); H3K9me2 (ab1220, Abcam); H3K9me3
(ab8898, Abcam); SUV39H1#1 (07-958, Millipore); SUV39H1#2 (Active Motif);
MRE11 (NB100-142, Novus Biologicals); NBS1 (NB100-143, Novus Biologicals);
ATM (Ab-3, Calbiochem); ATR (N19, SantaCruz); phospho-gH2AX (05-636,
Millipore), UPF1 (generous gift of Dr. Claus Azzalin)62; a� phospho-(Ser/Thr)
ATM/ATR substrate (6966, Cell Signaling).

Microscopy. IF-FISH staining and telomere-FISH analysis of chromosome
metaphase spreads were performed as described63. Briefly, for IF-FISH, cover slips
were washed with 1ml 1� PBS and then fixed with 4% formaldehyde in 1� PBS
for 10min at room temperature. Subsequently, the cover slips were washed with
1� PBS, permeabilized in 1� detergent solution (0.1% Triton X-100, 0.02% SDS
in 1� PBS) and then blocked with 10% normal serum in BSA/1� PBS.
Subsequently, cover slips were incubated with primary and then with secondary
antibody, fixed with 4% formaldehyde in 1� PBS and dehydrated with ethanol.
For FISH staining, cover slips were incubated with the hybridization mix,
containing 10mM Tris–HCl pH 7.4, 70% formamide, 0.5% blocking reagent and
1/1,000 Cy3 probe, denatured at 80 �C and hybridized for 3 h at room temperature.
After hybridization, cover slips were washed, stained with DAPI and dehydrated
with ethanol. For metaphase telomere-FISH, HeLa cells were treated with 0.05 mg
Demecolcine for 2 h. Subsequently cells were collected, resuspended in 56mM KCl
at 37 �C for 5min and then fixed with methanol/acid acetic 3:1 solution.
Resuspended cells were dropped onto wet slides, fixed with 4% formaldehyde in
1� PBS and dehydrated with ethanol. The FISH procedure was performed as
described above.
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