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Functional classification of proteins for the prediction of cellular function from a protein-protein interaction networkWe here describe PRODISTIN, a new computational method allowing the functional clustering of proteins on the basis of protein-protein interaction data. This method, assessed biologically and statistically, enabled us to classify 11% of the Saccharomyces cerevisiae proteome into several groups, the majority of which contained proteins involved in the same biological process(es), and to predict a cellular function for many otherwise uncharacterized proteins.

Abstract

We here describe PRODISTIN, a new computational method allowing the functional clustering of
proteins on the basis of protein-protein interaction data. This method, assessed biologically and
statistically, enabled us to classify 11% of the Saccharomyces cerevisiae proteome into several groups,
the majority of which contained proteins involved in the same biological process(es), and to predict
a cellular function for many otherwise uncharacterized proteins.

Background
Complete genome sequencing makes available a large
number of coding protein sequences for which we have little
or no functional information. In fact, the function of 30-35%
of encoded proteins per completely sequenced genome
remains unknown [1]. To decipher the functions of these pro-
teins and, more broadly, to propose functional relationships
among proteins, new computational methods relying upon
genome organization have been developed. The Rosetta
Stone method proposes that two proteins in a given proteome
are functionally linked when they exist as a single fused
polypeptide in another proteome [2,3]. The chromosomal
proximity method suggests that genes repeatedly found as
neighbors on chromosomes in different organisms may
encode functionally related proteins [4-6]. Finally, the phylo-
genetic co-inheritance of proteins in several different pro-
teomes may indicate their functional link [7]. Although these
methods and combinations thereof [8] successfully predict

the function of certain proteins, they suffer from several lim-
itations: they are more informative when applied to com-
pletely sequenced genomes; they are generally more
appropriate for prokaryotic genome organization; and the
principles underlying some of them are only valid for a small
number of proteins.

Molecular interactions are essential actors for all biological
processes. Large-scale studies of protein-protein interactions
have been carried out in several organisms to establish inter-
action maps and to decipher protein function [9-16]. These
large intricate networks now need to be analyzed in detail to
extract information related to protein function and to rela-
tionships linking cellular processes. Various methods of bio-
logical network analysis have been proposed so far. They may,
for instance, allow identification of functional modules after
network clustering [17], or the assignment of function to pro-
teins of unknown function on the basis of the functional
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annotation of their neighbors [18]. Another way to analyze
the interaction network is to compare proteins functionally at
the cellular level. This approach would represent a useful
complement to sequence-comparison methods, which
address function at the molecular level. With this in mind, we
propose a new bioinformatics method allowing a functional
classification of the proteins according to the identity of their
interacting partners.

The method, named PRODISTIN for protein distance based
on interactions, was applied to the yeast interactome and sta-
tistically evaluated for robustness using several independent

criteria. The analysis of the results obtained demonstrated
that proteins are grouped according to their cellular rather
than molecular function; proteins involved in the same
molecular complex(es), pathway(s) or cellular process(es) are
clustered; a sound prediction of cellular function for the
uncharacterized proteins is possible. The biological relevance
of the obtained predictions is discussed with respect to recent
experimental results.

Results
Principle of the PRODISTIN method and classification 
of the yeast proteome
We previously suggested that comparing the sets of interac-
tors for different proteins should allow detection of functional
similarity independently of the sequence information [19].
We therefore developed the PRODISTIN method based on
the principle that the more two proteins share common inter-
actors, the more likely they are to be functionally related. In
practice, starting from a list of binary protein-protein interac-
tions, the PRODISTIN method consists of three different and
successive bioinformatic steps (Figure 1, see Materials and
methods for details). First, a graph comprising all proteins
connected by a specific relation is constructed and a func-
tional distance is calculated between all possible pairs of pro-
teins in the graph with regard to the number of interactors
they share. Second, all distance values are clustered, leading
to a classification tree. Third, the tree is visualized and subdi-
vided into formal classes. We thus define a PRODISTIN class
as the largest possible subtree composed of at least three pro-
teins sharing the same functional annotation and represent-
ing at least 50% (the absolute majority) of the individual class
members for which a functional annotation is available.
Classes of proteins are then analyzed for their biological rele-
vance and tested for their statistical robustness.

In the first experiment, we analyzed 2,946 yeast protein-pro-
tein interactions involving 2,139 proteins, that is, 38% of the
Saccharomyces cerevisiae proteome [20,21]. The classifica-
tion tree obtained contains 602 proteins (Figure 2).

PRODISTIN clustering depends neither on sequence 
similarity nor on biochemical function
To understand the biological foundation of PRODISTIN clus-
tering, we examined different possibilities that could explain
protein segregation in the tree. First, we tested whether
sequence similarity correlates with our clustering results,
given the abundance of proteins involved in related functions

Flowchart of PRODISTINFigure 1
Flowchart of PRODISTIN. (a) A graph is constructed from a list of binary 
protein-protein interactions. (b) A functional distance based on the 
identity of the shared interactors is calculated among all proteins. (c) The 
distance matrix obtained is used to build a classification tree, on which 
functional classes are subsequently determined and analyzed by evaluating 
(d) their statistical robustness and (e) their biological relevance.
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A functional classification tree for 602 yeast proteins computed with the PRODISTIN methodFigure 2 (see following page)
A functional classification tree for 602 yeast proteins computed with the PRODISTIN method. (a) The foundation for protein clustering. PRODISTIN 
classes are clustered according to the 'cellular role' of proteins only (pink), according to the 'functional category' of proteins only (blue), and according to 
both criteria (yellow). (b) Functional classification. PRODISTIN classes on the circular classification tree have been colored according to their 
corresponding 'cellular role'. Protein names have been omitted for clarity (see Additional data file 1 for details of the classes). Classes corresponding to 
two different 'cellular roles' are colored according to the first annotation used in Additional data file 1.
Genome Biology 2003, 5:R6
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Figure 2 (see legend on previous page)
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that exhibit similarity in their sequences. Pairwise alignments
between the sequences of the 602 yeast proteins classified by
PRODISTIN were computed using a global and a local align-
ment algorithm. Given that the obtained distances (expressed
as the percentage of similarity for global and the score for
local alignments, respectively) do not fit with tree distances,
the tree model is not appropriate to represent these huge
alignments [22]. We thus directly compared the distance val-
ues obtained with PRODISTIN, the global and the local align-
ments (as described above), by identifying for each distance
matrix the nonredundant pairs of proteins (x, y) for which y is
the closest neighbour of x or vice versa.

Among the 611 closest pairs of proteins identified with PRO-
DISTIN, the 546 obtained with the global and the 527
obtained with the local alignment, 112 are shared between
both alignments (21.2%), 32 between PRODISTIN and the
global alignment (5.8%) and 38 between PRODISTIN and the
local alignment (7.2%). This result strongly suggests that
sequence alignments do not cluster the same proteins that
PRODISTIN does, leading to the conclusion that PRODISTIN
clustering is only moderately dependent on sequence
similarity.

As sequence similarity is not a key determinant of PRODIS-
TIN clustering, we then investigated the capacity of PRODIS-
TIN to cluster proteins with identical or related functions. To
do so, we separately analyzed PRODISTIN classes using two
types of protein functional annotations described in the Yeast
Proteome Database (YPD) [23]: the 'functional category' cor-
responding to the biochemical function(s) and the 'cellular
role' describing the cellular function(s) (see [19,24] for dis-
cussions about the notion of function). Both types of function
are known for 420 proteins in the tree. For comparison, PRO-
DISTIN classes were separately constructed as defined above
according to either the cellular or the biochemical function of
proteins, using the 420/602 proteins annotated for both
types of function (Figure 2a). Among the total of 369 proteins
belonging to PRODISTIN classes, 212 (57%) are clustered
according to both types of function, and 157 (43%) according
to only one type of function. Strikingly, 69% of the latter (108/
157) are clustered according to the cellular function whereas
the remaining 31% (49/157) are grouped according to the bio-
chemical function. Therefore, the PRODISTIN method clus-
ters proteins more efficiently by their cellular function than
by their biochemical function. This result is further validated
by the following observations. First, when the subcellular
localization of the classified proteins is investigated, proteins
belonging to the same subcellular compartment are found
clustered in the tree, as would be expected from clustering
based on cellular function (data not shown). Second, when
the biochemical function of proteins is considered, proteins
with functions such as 'protein kinase' or 'hydrolase' are
found broadly scattered in the tree. Given that proteins with
such biochemical functions are likely to be involved in a large
number of different cellular processes, their scattering

throughout the tree is to be expected from clustering on the
basis of the cellular function. Third, sequence-similarity clas-
sification of proteins differs from PRODISTIN protein clus-
tering, as described above. Consequently, from now on, we
will only consider PRODISTIN classes based on the cellular
function of proteins.

Classification of the S. cerevisiae proteome: integrated 
analysis of cellular processes and their cross-talk
Using the 509 yeast proteins of the tree annotated in YPD for
'cellular role', 64 different PRODISTIN classes were con-
structed, containing 3 to 36 members each. They contain two-
thirds (408/602) of the tree proteins and cover 29 different
'cellular roles' out of 44 possible (Figure 2b; see also Addi-
tional data file 1). Whereas some 'cellular roles' are associated
with only one class in the tree (such as 'meiosis', which is class
27 (Figure 2b, see also Additional data file 1)), several classes
have the same cellular role. This generally corresponds to dif-
ferent aspects of a given cellular process: for instance, the six
classes accounting for 'vesicular transport' (Figure 2b) are
specifically devoted to autophagy (class 45), structural pro-
teins related to actin (class 55), endoplasmic reticulum to
Golgi transport (classes 56, 57), endocytosis (class 58) and
exocytosis (class 59), respectively (see Additional data file 1).

A detailed analysis of the PRODISTIN classes shows that sev-
eral types of classes are encountered when class functional
homogeneity is considered. In the simplest case, proteins are
associated with the same molecular complex or involved in a
particular cellular process. Nearly half of the classes fall into
this category; for instance, class 23 (Figure 3a) consists solely
of five members of the peroxisomal import complex [25], and
class 22 'DNA synthesis' (Figure 3d; see also Additional data
file 1) contains 9 out of 12 proteins involved in DNA replica-
tion (labelled with an asterisk on Figure 3d). The two other
characterized proteins belonging to this class are implicated
in related and/or overlapping processes such as 'cell cycle
control' and 'chromatin and chromosome structure' (Cdc23
and Spt2, respectively).

The second case corresponds to classes annotated with two
different cellular roles. These classes either cluster multifunc-
tional proteins that are doubly annotated (all the peroxisomal
proteins forming class 23 are involved in 'lipid fatty acid and
sterol metabolism' as well as in 'protein translocation' (Table
1; see also Additional data file 1) or contain at least 50% of the
proteins annotated for a cellular role, at least 50% annotated
for another cellular function, and certain proteins annotated
for dual functions (Table 1). For instance, three out of six
proteins in class 17 'chromatin and chromosome structure/
mitosis' (Figure 3b) are associated with the kinetochore
(Dam1, Spc19 and Spc34, annotated 'chromatin and chromo-
some structure'), and five play a part in the maintenance of
the spindle-pole body (Dam1, Spc19, Dad2, Dad1 and Duo1,
annotated 'mitosis'), with two proteins involved in both proc-
esses (Dam1 and Spc19). Such situations illustrate cross-talk
Genome Biology 2003, 5:R6
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between superimposed or partially overlapping cellular proc-
esses, via the dual function of some proteins.

Finally, a third case is encountered, in which small classes are
nested within larger classes (Table 1) representing another
example of cross-talk between cellular processes. The exam-
ple given is for class 1 'amino acid metabolism' (Figure 3c; see
also Additional data file 1). The metabolism of amino acids is
related to cell-cycle control (class 3, Figure 3c) through the

ubiquitin-dependent proteolysis pathway mediated by the
ubiquitin protein ligase complex SCF (Skp1-Cdc53-F-box
protein). This complex contains two core proteins - Skp1 and
Cdc53 - and a F-box motif-containing protein required for the
specific targeting of certain proteins to the degradation path-
way [26]. Consequently, a 'cell cycle control' class containing
Skp1, Cdc53 and the F-box protein Cdc4, which targets Sic1 to
degradation at the G1-S transition of the cell cycle, is nested
within an 'amino acid metabolism' class enclosing the F-box
protein Met30, which targets the transcription activator Met4
towards degradation during methionine biosynthesis. It is
interesting to note that these classes encompass the unchar-
acterized F-box-containing protein Flm1 which, on the basis
of its position in the classification tree (Figure 3c), is a candi-
date to target Csm3, a protein needed for chromosome segre-
gation at meiosis [27], towards the ubiquitin-dependent
proteolysis pathway.

The detailed analysis of the classes shows that the PRODIS-
TIN method clusters proteins belonging to the same molecu-
lar complex, pathway or cellular process, and underlines
cross-talk between functions. Therefore, the method enables
the extraction of complex functional information from inter-
action networks by considerably reducing their complexity.

Functional predictions and their biological relevance
Among the 602 tree proteins, 93 had no defined 'cellular role'
in YPD when we retrieved annotations (see Materials and
methods). As 42 of them belong to a defined PRODISTIN
class, a cellular function could consequently be proposed. Our
predictions (Table 2; see also Additional data file 2) were
compared with predictions obtained by others using several
bioinformatics methods [8,18,28], the association of the pro-
tein to a complex of known functions [29] and recent experi-
mental results described in the literature and reported in the
Saccharomyces Genome Database (SGD) [30].

For two proteins (5%), no cellular function has ever been pro-
posed by any other method. For 27 proteins (64%), our pre-
diction is in accordance with or related to previously
proposed ones, or the experimental results. For 13 proteins
(30%), our predictions disagree (Table 2; see also Additional
data file 2). When only the 19 experimentally determined
functions are considered, PRODISTIN predictions are in
accordance with 11/19 (58%) of them. Noticeably, when the
functional predictions obtained by the global optimization
method (GOM [18]) for the same proteins are considered,
only 4/13 (31%) predictions are in accordance with the exper-
imentally determined functions. Taken together, these
observations strengthen the relevance of the PRODISTIN
predictions for the uncharacterized proteins.

Interestingly enough, the PRODISTIN method also reveals
the existence of clusters containing only proteins of unknown
function. In one case, a cellular function can now be proposed
for the entire cluster: as class 62 (annotated 'unknown') is

Examples of PRODISTIN classesFigure 3
Examples of PRODISTIN classes. (a) Class 21 'lipid and fatty acid 
metabolism/protein translocation'. (b) Class 20 'DNA synthesis'. (c) Class 
50 'RNA processing/modification'. Asterisks indicate founder proteins of 
the class (that is, annotated in YPD with the 'cellular role' given to the 
class). Computed class robustness indexes (CRIs) are shown in front of 
nodes.
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nested into class 56 (annotated 'vesicular transport'), all its
members can therefore be associated with 'vesicular
transport' and a posteriori recent experimental results
strengthen our predictions (Table 2) [31,32].

Finally, the putative involvement of proteins of already
known function in new cellular processes is also encountered.
Class 52 (Figure 3e) contains proteins involved in RNA
processing, including the members of the two LSM complexes
which play a part in mRNA decapping (Lsm1-7) and pre-
mRNA splicing (Lsm2-8) [33]. Given that two small subunit

ribosomal proteins Rps28A and B have been found to interact
with Lsm2, Lsm4, and Lsm8 in the two-hybrid screen from
Uetz et al. [15], these authors suggested either a possible
involvement of Lsm proteins in translation/ribosomal bio-
genesis or an unforeseen role of the ribosomal proteins in
RNA splicing. As both proteins share all their interactors with
Dcp1 (mRNA-decapping enzyme), PRODISTIN rather sug-
gests a novel implication of Rps28A and B in mRNA decay.

Altogether, these results lend further support to the ability of
the PRODISTIN method to directly derive a cellular function

Table 1

Cross-talk between cellular processes after PRODISTIN classification

Cellular processes PRODISTIN classes

Superimposed cellular processes PRODISTIN classes composed of doubly annotated proteins

Cell stress ⇔ other metabolism 10

Cell structure ⇔ protein folding 14

Lipid fatty acid metabolism ⇔ protein translocation 23

PolII transcription ⇔ protein degradation 34

RNA processing and modification ⇔ RNA splicing 50

Partially overlapping cellular processes PRODISTIN classes composed of at least three proteins annotated for a 
cellular role, three proteins annotated for another one, with some doubly 
annotated

Cell polarity ⇔ cell structure 7

Cell polarity ⇔ mating response 9

Cell Structure ⇔ protein complex assembly 13

Chromosome and chromatin structure ⇔ mitosis 17

Mating response ⇔ differentiation 24

Protein degradation ⇔ vesicular transport 45

Nested cellular processes Nested PRODISTIN classes

Aging ⊂ Signal transduction 0 ⊂ 54

Cell cycle control ⊂ Amino acid metabolism 3 ⊂ 1

Cytokinesis ⊂ Cell polarity 20 ⊂ 8, 21 ⊂ 8

Mating response ⊂ Cell polarity 25 ⊂ 8, 26 ⊂ 8

Cell polarity/Mating response ⊂ Signal transduction 9 ⊂ 54

Cell stress ⊂ Protein degradation/Vesicular transport 11 ⊂ 45

Cell stress ⊂ Signal transduction 12 ⊂ 54

Cell structure/Protein complex assembly ⊂ Mitosis 13 ⊂ 28

Chromatin/Chromosome structure ⊂ PolII transcription 16 ⊂ 35

Mating response/Differentiation ⊂ Signal transduction 24 ⊂ 54

PolIII transcription ⊂ PolII transcription 42 ⊂ 39

RNA processing and modification ⊂ Nucleus-cytoplasm transport 51 ⊂ 31

RNA splicing ⊂ RNA processing/modification 53 ⊂ 52

Vesicular transport ⊂ Cell polarity/cell structure 55 ⊂ 7

Vesicular transport ⊂ Cell polarity 59 ⊂ 8

Unknown ⊂ Cell structure/protein folding 60 ⊂ 14

Unknown ⊂ Vesicular transport 62 ⊂ 56
Genome Biology 2003, 5:R6
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Table 2

Functional predictions and comparisons with predictions obtained by other means

Protein name Class Predicted function (this study) Prediction
after [8]

Prediction
after [28]

Prediction
after [18]

GO annotations, September 2003 [30] and 
predictions after [29]

FLM1 1, 3 Amino acid metabolism, cell cycle 
control (0)

≈ (0) ≠ (0) Mitochondrion organization and biogenesis

VTS1 4 Cell cycle control (0) ≈ (0) Protein-vacuolar targeting

YPR171W 7 Cell polarity (1) ≈ (1) Cell polarity and structure, actin cytoskeleton 
organization and biogenesis

YBR108W 7 Cell polarity ≈ Unknown

YGR268C 7, 55 Cell polarity, cell structure, 
vesicular transport

≈ Unknown

DSE1 8, 25 Cell polarity, mating response (1) Cell wall organization and biogenesis

YKL082C 8 Cell polarity ≈ Unknown

YMR322C 10 Cell stress, other metabolism ≈ ≈ Unknown

VPS64 14, 
60

Cell structure, protein folding (1) ≠ (1) Protein-vacuolar targeting, cell cycle arrest in 
response to pheromone

YFR008W 14, 
60

Cell structure, protein folding (0) ≠ (1) Cell cycle arrest in response to pheromone

YNL127W 14, 
60

Cell structure, protein folding (0) ≈ (1) Cell cycle arrest in response to pheromone

YJL019W 22 DNA synthesis (1) ≈ (1) ≈ (1) Spindle pole duplication

PST2 24, 
54

Mating response, differentiation, 
signal transduction

≠ ≈ Unknown

YLL049W 29 Mitosis ≠ Unknown

YNR069C 29 Mitosis Unknown

NIS1 30 Nucleus-cytoplasm transport (0) ≠ (0) Regulation of mitosis

YKL061W 30 Nucleus-cytoplasm transport ≠ Unknown

YDR489W 30 Nucleus-cytoplasm transport (0) ≠ (0) DNA-dependent DNA replication

YHL018W 33 PolI transcription Unknown

YDR179C 35 PolII transcription (1) ≠ (0) Protein synthesis turnover, protein 
deneddylation

YMR025W 35 PolII transcription (1) ≠ (0) Protein synthesis turnover, protein 
deneddylation

YJL058C 36 PolII transcription ≠ Unknown

SOH1 37 PolII transcription (1) Transcription from polII promoter, DNA 
repair

YJR083C 37 PolII transcription ≈ Unknown

YGL230C 38 PolII transcription ≠ Unknown

VAC14 43 Protein degradation (0) ≠ (0) Intermediate and energy metabolism, 
transcription, DNA maintenance, chromatin 
structure, phospholipid metabolism, vacuole 
inheritance

AKL1 43 Protein degradation ≠ Unknown

YHR115C 43 Protein degradation ≠ Unknown

YPL105C 48 Protein synthesis ≠ Unknown

YLR424W 49 RNA processing and modification ≈ Unknown

YKR022C 49 RNA processing and modification ≈ Unknown

AIR2 52 RNA processing and modification 
(1)

RNA metabolism, mRNA nucleus export

DHH1 52 RNA processing and modification 
(1)

Deadenylation-dependent decapping, NOT 
mRNA catabolism, nonsense mediated

YEL015W 52 RNA processing and modification 
(1)

≈ (1) = (1) ≠ (0) RNA metabolism
Genome Biology 2003, 5:R6
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for proteins from the information contained within the inter-
action network, without using any additional sequence or
structure information.

Statistical evaluations of PRODISTIN clusters
To evaluate the quality of PRODISTIN classifications and
predictions on a more statistical basis, four different types of
control experiments have been performed in order to assess
the influence of various parameters.

First, given that annotations taken from databases may con-
tain inconsistencies, our classification for the yeast proteome
(originally established with YPD annotations) was further
tested using the Gene Ontology (GO) annotations [34]. We
used the GO Term Finder tool from the SGD database to
search for significant shared GO terms (or their parents) used
to describe the genes of interest and to calculate a p value for
the occurrence of common terms (for details see Help in
[35]). Lists of genes constituting all PRODISTIN classes were
successively processed with the GO term finder for the
'biological process' ontology. On average, for 87.3% of the
PRODISTIN classes, the best hit, that is, the common GO
term with the lowest p value, is in accordance with the class
annotation proposed using YPD annotations. These terms are
highly statistically significant as a p value < 1e-6 is encoun-
tered for 83.63% of the classes. Moreover, these terms
applied to 77% of the class members on average. As GO terms
represent an independent source of functional annotation
from YPD, these congruent results confirm that PRODISTIN
efficiently clusters proteins having common or related cellu-
lar functions.

In a second control experiment, the overall accuracy of our
functional predictions was estimated on the basis of the abil-
ity of PRODISTIN to predict correctly the function of already
known proteins. For this, we first supposed that members of
a given PRODISTIN class all perform the function attributed

to the class (independently of their actual function) and then
compared these predictions to the known functions. We
defined the prediction success rate as the ratio between the
number of correctly predicted functions and the total number
of predictions. In this test, PRODISTIN performances were
compared with those of a 'majority rule' algorithm (MRA
[28]), which assigns to a given protein the function most
frequently found among its neighbors in the original protein-
protein network. As shown in Table 3, the highest success rate
for function predictions is attained with PRODISTIN. In fact,
67% of the predictions made with PRODISTIN are correct
against only 43% of the ones proposed by the MRA.

Third, we tested the robustness of PRODISTIN towards the
presence of both spurious and missing interactions in the
dataset because, despite the fact that it was carefully assem-
bled (see Materials and methods), the actual accuracy of our
dataset is difficult to estimate. This prompted us to test PRO-
DISTIN's reliability when the topology of the network is dis-
turbed by false or missing edges. For this, we rewired the
network by randomly removing edges and putting them back
in between pairs of proteins not already connected. PRODIS-
TIN and the MRA were applied to these rewired networks and
the pattern of change of the prediction rate was monitored
when the percentage of modified edges gradually increases
from 0 to 50%. Interestingly, the rate of correct predictions
stays remarkably even (between 64 to 67%) (Figure 4). The
number of proteins for which a prediction is possible
(because they belong to a PRODISTIN class of known func-
tion) also remains quite stable (from 389 for the initial net-
work to 471 on average for 50% rewired networks), although
the actual number of proteins in the tree increases from 601
to 1,493 on average for 50% rewired networks. Comparison
with the MRA clearly shows that, although this algorithm is
able to offer a prediction for a larger number of proteins in the
network, its success rate is always two to three times lower
than that of PRODISTIN. In addition, it is also very sensitive

YOR285W 54 Signal transduction ≠ Unknown

YGL161C 56 Vesicular transport ≈ ≈ Unknown

YDR100W 56 Vesicular transport ≈ ≈ Unknown

YDR425W 56 Vesicular transport (1) Protein, transport

YDR084C 56 Vesicular transport ≈ Unknown

YGL198W 56 Vesicular transport ≈ Unknown

YPL246C 56 Vesicular transport ≈ Unknown

YLR285W 57 Vesicular transport (0) ≠ (0) Chromatin silencing at ribosomal DNA, 
nicotinamide metabolism

=, ≈, ≠, are used to indicate when prediction from other bioinformatic methods are the same, almost the same, or different from PRODISTIN 
predictions. The number in parentheses indicates when the prediction is in accordance or related to (1), or different (0) from functions 
demonstrated experimentally.

Table 2 (Continued)

Functional predictions and comparisons with predictions obtained by other means
Genome Biology 2003, 5:R6
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to the introduction of false interactions, as its success rate
drops dramatically from 43% for the initial network to 20%
on average with 50% rewired networks. In summary, it is pos-
sible to conclude that clustering proteins within classes
according to their cellular functions has a positive buffering
effect on the prediction rate and that PRODISTIN is thus very
robust against the presence of false interactions in the
dataset.

We then tested PRODISTIN's performance on random net-
works of identical topologies in order to assess whether PRO-
DISTIN clustering would have occurred by chance. For this,
all protein names were reshuffled and randomly assigned to
nodes in the network. The PRODISTIN analysis of such net-
works only allows the construction of a tiny number of classes
(15 on average, instead of 63), consequently leading to a very
low number of proteins for which a prediction is possible (51
on average instead of 389 in the current study). Finally, the
prediction rate drops to 60%. This clearly indicates that ran-
dom interaction networks never lead to both a high number
of PRODISTIN classes and a correct prediction rate, as true
networks do.

A final statistical assessment of PRODISTIN has been per-
formed by measuring the robustness of the protein clusters
with another criterion based on tree topology (see Materials
and methods for details). For this, we applied PRODISTIN to
the protein-protein interaction network of the bacterium
Helicobacter pylori [14], for which information on putative
true/false positives is available. Using the PBS® algorithm,
these interactions had been ranked in five experimental cate-
gories of decreasing biological confidence (from A to E) [14].
A recent assessment has further confirmed the existence of a
positive correlation between this reliability score and the
true-positive rate [36]. Classification trees built with five
datasets corresponding to the interactions of categories A,
A+B, A+B+C, A+B+C+D, and A+B+C+D+E were computed
and tested for the robustness of their subtrees and the average
robustness value was calculated for each tree (see Materials

and methods for details). As expected, this value decreases as
more interactions of lower biological significance occur in the
dataset (Figure 5). This correlation between PBS categories
and the average statistical robustness of the trees represents
a fourth and independent support for the reliability of the
PRODISTIN approach. In addition, the fact that the average
robustness value of the yeast tree is almost equivalent to that
of the H. pylori A tree reinforces the conclusion that the Sac-
charomyces tree is biologically meaningful.

Discussion
Protein-protein interactions as good indicators of 
protein cellular function
We present here a new bioinformatics method that is able to
compute a functional clustering of proteins on the basis of
protein-protein interaction data. When applied to the yeast
interactome, our method classified 602 proteins, represent-
ing a significant part of the proteome (11%), into 64 classes of
functionally related proteins.

Our method was based on the assumption that a distance for-
mula (the Czekanovski-Dice distance) that uses information
on shared interactors could potentially mirror a functional
distance between proteins. The demonstration that the classi-
fication and the protein clustering resulting from PRODIS-
TIN are essentially driven by the cellular function of proteins
gives strong support to our initial assumption. This also may
be explained by the fact that the chosen distance formula
makes it possible to take into account not only the functional
information carried by the nearest neighbors in the protein-
protein network, but also by proteins two edges away.

Table 3

Success rates for PRODISTIN vs majority rule

MR PRODISTIN

Success rate 0.43 0.67

Predictions

Totally in accordance 0.23 0.35

Partially in accordance 0.69 0.76

In disagreement 0.31 0.24

Number of proteins on which a prediction is 
possible

520 346

Robustness of PRODISTIN towards false interactionsFigure 4
Robustness of PRODISTIN towards false interactions. The prediction rate 
(number of correct predictions divided by number of predictions) was 
measured for PRODISTIN (yellow curve) and for the majority rule 
algorithm (green curve) on networks on which a certain percentage of 
interactions were randomly 'rewired' (from 10 to 50%) (see text). The 
number of proteins for which a prediction is possible is also reported as a 
histogram (dark red, PRODISTIN; blue, majority rule). The values 
correspond to an average of 50 experiments for each percentage of false 
interactions introduced into the dataset.
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Therefore, the obtained distance values, once clustered, are
able to highlight subgraphs in the network, such as those
formed by proteins involved in the same pathway(s) or cellu-
lar process(es).

As we also showed that the PRODISTIN functional distance
clusters proteins independently of their sequence similarities
and their actual biochemical function, we now have the
opportunity to quantify functional relationships between pro-
teins in the same way that sequence alignments make it pos-
sible to quantify protein-sequence similarity. PRODISTIN
thus represents a useful complement to sequence-compari-
son methods, which rather point towards proteins that have
the same molecular function. It is interesting to note that the
majority of proteins with the same biochemical function are
not clustered in the tree despite their sequence similarity.
This moderate dependence of cellular function on sequence
similarities clearly means that many functional similarities
are at present missed by sequence-based methods,
emphasizing the importance of using other types of data than
sequence and structure as a basis for function assessment.

Two major advantages result from the fact that PRODISTIN
computes all interactions constitutive to an interaction
network at once. First, it produces a large functional tree,
allowing direct comparison in terms of cellular function for
any pair or group of proteins. Second, it makes it possible to
visualize a large number of cellular processes and their main
actors in a single integrated view, thus offering the possibility
of examining the links between cellular functions, and more
broadly, the organization of cellular functions within the
interaction network. In doing so, PRODISTIN functional
trees can capture the essential part of the functional informa-
tion buried in complex interaction networks, something
which is at present impossible to deduce from the intricate
graphical representations. Consequently, PRODISTIN can be

considered to be one of the first cellular bioinformatics tools
available that allows not only comparison of the function of
individual proteins but also the ability to study cell function
more globally. For instance, the dissection of given cellular
functions into sub-functions visible at network level or the
study of the functional relationships between known cellular
functions can be investigated. As discussed in Results, PRO-
DISTIN has shown that the 'vesicular transport' general func-
tion can be separated into distinct subfunctions. An analytic
approach of this kind could be systematically undertaken for
all known yeast cellular functions, as they are statistically rep-
resented in the tree, and later on for those of other organisms.
As far as the second question of the relationships between
functions is concerned, PRODISTIN could represent a
valuable functional data-mining tool. It is, for instance, inter-
esting to note that, although there exist 44 different YPD 'cel-
lular roles' to describe the complete yeast proteome, of which
42 are represented by more than one protein in the tree, our
PRODISTIN classes at present cover only 29 of them. Despite
the existence of biases in the interaction dataset generally,
due to a deeper investigation of certain proteins and to meth-
odological flaws, this observation could suggest a
predominant role for these 29 cellular functions in the organ-
ization of the network.

Comparison of the PRODISTIN method with recent 
functional prediction methods
Comparison of the results of PRODISTIN with those of other
computational methods for assessing and comparing protein
functions is not straightforward. Because of the lack of com-
mon interaction sets, functional annotations, common evalu-
ation tools and sometimes insufficient description of the
algorithms used, no simple benchmarking comparative anal-
yses are yet possible. However, in an attempt to evaluate the
relative advantages and disadvantages of the different meth-
ods, we compared their results when available. For this pur-
pose, we evaluated PRODISTIN against the MRA [28] and
two networks-based methods, the GOM [18] and the Rives
and Galitski method (RGM [17]). We measured their relative
behavior in terms of success rate in the prediction of the func-
tion of already known proteins (PRODISTIN vs MRA vs
GOM), functional assignment of unclassified proteins (PRO-
DISTIN vs GOM), and ability to cope with false-positive and
false-negative interactions in the dataset (PRODISTIN vs
GOM vs MRA).

Our results (see Table 3) and those of the GOM (Table 1 in
[18]) both agree that the MRA has a lower success rate than
PRODISTIN or GOM in predicting the function of known pro-
teins. When the ability of GOM and PRODISTIN to predict a
function for 42 otherwise uncharacterized proteins is com-
pared to recently published experimental results as a refer-
ence, the latter performs better (Table 2). We found that 58%
of PRODISTIN predictions are in accordance with the litera-
ture, whereas only 31% of the predictions made by the GOM
are.

Evaluation of PRODISTIN robustness by analysis of the H. pylori interactomeFigure 5
Evaluation of PRODISTIN robustness by analysis of the H. pylori 
interactome. Average class robustness index (CRI) value for the five H. 
pylori trees obtained with interactions of decreasing PBS (blue histograms) 
and for the yeast tree (orange histogram).
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Finally, when robustness towards the presence of false-posi-
tive and false negative interactions is assayed by changing the
topology of the network, the MRA again performs less effi-
ciently than PRODISTIN (Figure 4). In addition, on random
networks of identical topology, both PRODISTIN and the
RGM (Table 1 in [17]) show that clustering of proteins in true
networks is always higher than clustering observed in ran-
dom networks.

Unlike GOM, PRODISTIN and RGM produce functional trees
as an output. But PRODISTIN goes one step further, by find-
ing functional classes on the tree according to two parameters
(the minimal number of annotated proteins for the same
function in the class and their minimal representation in the
class - 3 and 50%, respectively, in this study). This considera-
bly facilitates the process of function assessment, as it mini-
mizes the ambiguity inherent in tree representation. This
class construction also has a positive buffering effect that lim-
its the influence of false interactions on the classification and
makes it possible to maintain high prediction rates, as already
discussed. One may argue that constructing classes limits the
number of proteins for which a prediction is possible. It is
then important to note that PRODISTIN settings may be
changed easily at different levels. Depending on the goal of
the user (favoring class coverage of the tree, for instance), the
number of proteins per class can be increased by juggling with
the two parameters defining the PRODISTIN classes, but at
the unavoidable price of a slight decrease in the overall accu-
racy of the predictions. Switching from the YPD annotation
system to the GO system using GO slim categories also
increases the number of classified proteins in the tree and
consequently, of possible predictions (D.M., B.J. and C.B.,
unpublished data).

Conclusions
As more interactions become available, the coverage of the
proteome and the mean number of interactions per protein
will increase, therefore improving the relevance of the protein
clusters found by the PRODISTIN method. Noticeably, it can
be anticipated that using interactions recently described in
the literature as well as new interactions produced by large-
scale approaches could rapidly lead to the classification of the
majority of the yeast proteome. As far as the PRODISTIN
method is concerned, work presently in progress in our labo-
ratory will soon totally automate the tedious task of manually
constructing PRODISTIN classes on the tree.

Finally, PRODISTIN can be applied not only to the proteomes
of unicellular organisms (this study) but also to those of
metazoans. The classification trees recently obtained on the
Drosophila and the human proteome (C.B., S. Siret, P.
Mouren and B.J., unpublished data) show protein clusters
having a true biological significance. Furthermore, other
types of interaction networks such as genetic interaction
networks (A. Baudot, B.J., C.B., unpublished data) and tran-

scriptional networks can also benefit from the application of
our general method. These new developments will allow
PRODISTIN to be applied to a large variety of biological ques-
tions, such as the evolutionary fate of duplicated genes, the
functional aspects of horizontal transfer of genes from one
species to another, the integration of signaling pathways and
the evolutionary comparison of gene networks.

Materials and methods
Protein-protein interaction data sets
Yeast protein-protein interactions were extracted from the
MIPS database [37]. Only direct binary interactions were
selected, based on the method used for their identification
(two-hybrid, excluding high-throughput experiments, in
vitro binding, far western, gel retardation and biochemical
experiments). For high-throughput two-hybrid experiments,
948 interactions were taken from Uetz et al. [15] and 839
from Ito's core data [12]. This yielded a total of 2,946 interac-
tions involving 2,139 proteins (average connectivity 2.6 inter-
actions per protein). The 1,517 protein-protein interactions
involving 730 proteins from Helicobacter pylori and their
corresponding PBS categories were taken from Rain et al.
[14].

Classification method
Only proteins involved in at least three binary interactions
were selected for further classification. Taking into account
that the existence of false-positive and false-negative interac-
tions weights more for poorly connected proteins, and that
the estimated number of interactions per protein is close to
five [38,39], we chose to rule out proteins for which the con-
tribution of such false interactions may blur the analysis. Pro-
teins in our dataset have 2.6 interactors on average. We thus
chose to set the connectivity threshold to be classified to 3,
which means that proteins implicated in one or two interac-
tions were not classified but taken into account for the com-
putation. First, it is stated that a relation between two
proteins to be classified exists if either they interact with each
other and/or they share at least one common interactor. Sub-
sequently, a graph in which vertices are proteins and edges
correspond to this relation, was computed. The connected
components are computed and the main one containing
almost all of the proteins was selected. Second, the
Czekanovski-Dice distance between all pairs of proteins of
this class was then calculated. This classical distance on
graphs corresponds to the formula

D(i,j) = #(Int(i) ∆ Int(j))/ [#(Int(i) ∪ Int(j)) + #(Int(i) ∩
Int(j))]

in which i and j denote two proteins, Int(i) and Int(j) are the
lists of their interactors plus themselves (to decrease the dis-
tance between proteins interacting with each other) and ∆ is
the symmetrical difference between the two sets. This
distance was chosen because it increases the weight of the
Genome Biology 2003, 5:R6
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shared interactors by giving more weight to the similarities
than to the differences; it is very close to an ultrametric dis-
tance because the vast majority of distance values between
protein pairs is at a maximum (for two proteins that do not
share any interactor, the distance value is 1, the highest value,
whereas for two proteins interacting with each other and
sharing exactly the same interactors, the distance value is 0,
the lowest value). Consequently, the advantage of choosing
this distance is that it authorizes the use of tree representa-
tion. With such distance values, only one tree structure fits
the initial distance values, independently of the chosen clus-
tering algorithm. We have used the BioNJ algorithm [40] to
build a tree from our distance matrices. This is an improve-
ment of the neighbor-joining algorithm [41], which takes into
account the variance of the distance between proteins to eval-
uate the length of the branches in the tree. A circular classifi-
cation tree was then drawn using the TreeDyn package [42].

Sequence alignments and analysis
Pairwise sequence alignments have been performed on the
set of 602 protein sequences classified with the PRODISTIN
method. Both Needleman-Wunsch (global alignment) and
Smith-Waterman (local alignment) algorithms have been
applied. The programs used for the two algorithms are avail-
able at [43] and [44], respectively. The chosen alignment
matrix was BLOSUM50, and the gap-opening and gap-exten-
sion penalties were set to 12 and 2, respectively. The resulting
363,004 alignments have been processed to calculate the dis-
tance corresponding to the percentage of similarity for each
protein pair in the global alignment and for the score in the
local alignment.

Subtree robustness measurement
The robustness of each subtree was computed by measuring
its homogeneity using a criterion based on topology. Consid-
ering triples made of two elements within a given subtree and
one outside the subtree (possibly restricted to the sibling sub-
tree), we evaluated the percentage of these triples for which
the two elements belonging to the same subtree are separated
by the smallest distance value. This allowed us to calculate a
class robustness index (CRI) for each inner branch, which
was computed by the Qualitree program [22] as a measure-
ment of robustness/quality of the downward class. CRI may
be considered as functionally equivalent to the bootstrap
index usually used to assess the quality of phylogenetic sub-
trees. CRI values for PRODISTIN classes are available in
Additional data file 1. The average CRI per tree corresponds
to the sum of all triples for which the two elements belonging
to the same subtree are separated by the smallest distance
value divided by the sum of possible triples.

Annotation sources and functional tree visualization
We downloaded the 'cellular role', 'functional categories' and
'sub-cellular localization' annotation files for yeast proteins
from YPD [23] on 28 May 2002. The category labels were

then loaded into Treedyn [42] for a direct class visualization
on the trees as displayed in Figure 2b.

Additional data files
The following additional data are available with the online
version of this article: details of all the proteins and protein
classes included in this analysis (Additional data file 1), and
details of the functional predictions and comparisons with
predictions obtained by other means (Additional data file 2).
Additional data file 1Details of all the proteins and protein classes included in this analysisComposition of the 63 PRODISTIN classes. Numbers in column ''Cellular Role' Annotation' indicate founder proteins for each class (see Fig. 3 legend). When two 'Cellular Roles' are assigned to a same class, 1 and 2 indicate proteins annotated with the first one and/or the second class respectively. A question mark (?) marks proteins of unknown function. The class robustness index is indicated for each classClick here for additional data fileAdditional data file 2Details of the functional predictions and comparisons with predic-tions obtained by other meansDetails of the functional predictions and comparisons with predic-tions obtained by other meansClick here for additional data file
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