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Functional clustering by Bayesian wavelet methods
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Summary. We propose a nonparametric Bayes wavelet model for clustering of functional data.
The wavelet-based methodology is aimed at the resolution of generic global and local features
during clustering and is suitable for clustering high dimensional data. Based on the Dirichlet pro-
cess, the nonparametric Bayes model extends the scope of traditional Bayes wavelet methods
to functional clustering and allows the elicitation of prior belief about the regularity of the func-
tions and the number of clusters by suitably mixing the Dirichlet processes. Posterior inference
is carried out by Gibbs sampling with conjugate priors, which makes the computation straight-
forward. We use simulated as well as real data sets to illustrate the suitability of the approach
over other alternatives.

Keywords: Functional clustering; Mixture of Dirichlet processes; Nonparametric Bayesian
model; Wavelets

1. Introduction

Functional data arise in a wide variety of applications and are often clustered to reveal differ-
ences in the sources or to provide a concise picture of the data. For instance, clustered gene
expression profiles from microarrays may point to underlying groups of functionally similar
genes. Model-based clustering relies largely on finite mixture models to specify the cluster-
specific parameters (Banfield and Raftery, 1993; Yeung et al., 2001) assuming that the number
of clusters is known in advance. This approach is unreasonable in practice, as it relies on one’s
ability to determine the correct number of clusters. Medvedovic and Sivaganesan (2002) used
the Dirichlet-process- (DP) based infinite mixture model to overcome these deficiencies. None-
the-less, all these approaches use multivariate normal distributions for modelling and disregard
the functional form of the data.

This ‘functional’ approach was pursued only recently in a mixed effects spline model by
James and Sugar (2003) and in the context of yeast cell cycle data analysis using periodic basis
modelling by Wakefield ez al. (2003). However, shifts in global and local characteristics in the
functional data may not be detectable in these frameworks. As an example, the gene expression
profiles of yeast cell cycles may occasionally depart from the usual cyclic behaviour and these
shifts will be overlooked, in general, by the periodic basis model.

The Bayesian wavelet modelling that is used in this paper manages to overcome these limi-
tations as wavelets have nice approximation properties over a large class of functional spaces
(Daubechies, 1992) that can accommodate almost all the functional forms that are observed in
real life applications. Indeed, this richness of the wavelet representation provides the back-bone
for the popular frequentist wavelet shrinkage estimators of Donoho and Johnstone (1994, 1995),
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which are the precursors of the more recent Bayesian wavelet estimation models (Abramovich
et al., 1998; Vidakovic, 1998; Clyde and George, 2000; Clyde et al., 1998). Wavelet represen-
tations are also sparse and can be helpful in limiting the number of regressors. Dimension
reduction is not inherent in other models; for example, this was done in James and Sugar (2003)
by attaching an additional dimension reducing step on the spline coefficients. In Bayes wavelet
modelling this is effortlessly achieved by a selection mixture prior to isolate a few significant
coefficients for the collection of functions.

The nonparametric Bayes clustering model that is presented here is based on the mixture
of DPs (Ferguson, 1973; Antoniak, 1974). The DP provides a rich two-parameter conjugate
prior family and much of the posterior inference for a particular parametric conjugate family
applies, when the same prior becomes the base measure for a DP prior, which is used instead.
The base prior modelling of the wavelet coefficients can be motivated by traditional hierarchical
wavelet models and allows the specification of the smoothness and regularity properties of the
functional realizations from the DP. There are several advantages in the context of clustering.
The computation is straightforward owing to the Gibbs sampling schemes that were proposed
in the mid-1990s (Escobar and West, 1995) and the numbers of clusters are automatically deter-
mined in the process. In addition, the Bayesian methodology provides a direct way to predict
any missing observations, extending the applicability of the model to incomplete data sets.

The paper is organized as follows. In Section 2, we overview the parametric Bayesian models
for wavelet shrinkage. This is later extended to the DP-based nonparametric model in Section 3
and the posterior inference is detailed in Section 4. Some properties of the clustering model
are discussed in Section 5. Finally, Section 6 addresses the simulations with a discussion of the
model selection and the missing data case.

2. Hierarchical wavelet model

Consider a collection of unknown functions { f;}, i € {l,...,n}, on the unit interval that are
observed with white Gaussian noise at m equispaced time points as

ik = fik/m)+eir, eix ~ N0,07)

where k€ {1,...,m} and misa power of 2. In a gene microarray, for example, the observed curve
yi.k 1s the response profile at the kth time point for the ith gene. In nonparametric estimation,
the functions are analysed in the sequence space of coefficients in an orthonormal wavelet basis
for L,([0, 1]). Restriction of the functions to the unit interval introduces discontinuities at the
edges. Boundary artefacts can be avoided by periodized bases when the functions are periodic
(Daubechies, 1992); otherwise boundary folding or reflection extensions are used to improve
the behaviour at the boundaries.

Wavelet representations are sparse for a wide variety of function spaces and their multireso-
lution nature enables us to combine results from different resolutions and to make conclusions
for the estimation problem. In particular, the sparseness implies that, when the wavelet basis
is orthogonal and compactly supported (Daubechies, 1992), the independent and identically
distributed (IID) normal noise affects all the wavelet coefficients equally, whereas the signal infor-
mation remains isolated in a few coefficients. In shrinkage estimation, these small coefficients,
which are mostly noise, are discarded to retrieve an effective reconstruction of the function. The
expansion of f; in terms of periodized scaling and wavelet functions (¢, 1) has the dyadic form

J 27!

fi() = Bioo oo+ > > Bijk ¥ j(® (1

j=1k=0
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where oo is the scaling coefficient, §; i are the detail coefficients and J =log,(m) is the finest
level of the wavelet decomposition. Wavelets also provide a direct way to study the functional
smoothness in that the wavelet representation usually contains all the information that can tell
whether f; lies in a smoothness space.

2.1. Wavelet estimation models

Wavelet shrinkage estimation was popularized by Donoho and Johnstone (1994, 1995), who
showed that thresholding rules on the empirical detail coefficients provide optimal estimators
for a broad range of functional spaces. Bayesian wavelet shrinkage proceeds by eliciting mixture
priors over the detail coefficients §;  (j > 0), with a degenerate mass at zero (Abramovich et al.,
1998; Clyde and George, 2000) for selection,

Bijk~7er(0,gj02)+(1—7rj)60. 2

The scaling coefficients (o0, in contrast, are usually modelled by a vague prior. The selection
probabilities 7; and the scaling parameters g; allow us to place our prior belief by level, pro-
ducing a simple estimation strategy that is more adaptive than the classical analogues of hard
or soft thresholding.

In linear model notation, if Y; = (y;1, ..., yi,m) is the vector of m observations from the ith
unit, the regression model is

Y =X3,; +ei, i=1,...,n, 3)

where 3; = (600, 5i10, 5i20, Bi21» - - )T are the wavelet coefficients for f; after the discrete wavelet
transformation X and €; ~ N(0, a,-zlm). The selection priors (2) are conveniently incorporated as
a scale mixture with latent indicator variables «yj that equal 1 with probability 7; (Clyde and
George, 2000; Clyde et al., 1998; De Canditiis and Vidakovic, 2004). The effective joint prior
for the coefficients and the model variance is

Bi, 0}V ~NIG(0, V; u, v)

where NIG denotes the normal-inverse gamma prior—the product of the conditionals 3;| al-z, vV~
N(Q, al-zV) and aiz ~1G(u,v) with u and v as the usual hyperparameters for the inverse gamma
prior.

The diagonal matrix V can be used to obtain a scale mixture prior; we let

V =diag(~) diag(g)

where v = (Y00, 710, 720,721, - - -) 18 @ vector of latent indicator variables for selection of each
coefficient and g = (g9, 91, 92, 92, . . .) comprise the corresponding scaling parameters given by

v,k ~ Bernoulli(r;),
9;~1G(rj,s5)

where (r},s;) are hyperparameters that are specified levelwise. This hierarchical layer is espe-
cially useful for modelling sparse wavelet representations, which otherwise requires Laplace-like
sharp non-conjugate priors (Vidakovic, 1998). In particular, there is the flexibility of controlling
our prior belief about the scaling coefficient ;o9 by letting 7y =1 and tuning (rg, s9) to vary
var(go).
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To summarize the hierarchical wavelet model, we have
YilB:, 07 ~N(XB;,071n),
Bi,07 17,8~ NIG(0,V;u,v),
9;~1G(rj,s)),
7).k ~ Bernoulli(7 ),

forie{l,...,n}, je{0,...,J} and ke {0,...,2/71},

3. Wavelet clustering model

In the clustering model, the parameters 6; = (3;, oiz) for the underlying functions f; are elicited
by DP priors. DPs are almost surely discrete and comprise a certain partitioning of the parame-
ter space that is needed for clustering. More precisely, the sequence of parameters 81,65, ...,0,
comes from a random distribution F that is a realization from a DP D(«, Hy) depending on a
precision parameter « and base prior Hy = E(F) with ¢ as the parameters of H. The nonpara-
metric hierarchical model is completed by mixing the base prior for the DP with the hyperpriors
of Section 2.1 and is described as

Yi|B:,07 ~ NXBj, 07 1), “
0,,0,,...,0,~F,
F~ D{a,NIG(0, V;u,v)}, (5)
g9;i~1G(rj,s)), (6)
7).k ~ Bernoulli(r ),
a~G(do,no)-

Here ¢ ={g.~}.

The underlying clustering properties of the DP are easier to appreciate in its Polya urn rep-
resentation (Blackwell and MacQueen, 1973). This connection is also used later to perform
sequential flexible Gibbs sampling of the clustering parameters 8; as in Escobar and West
(1995). In a sequence of draws 01, 0,, ... from the Pdlya urn the nth sample is either distinct
with a small probability a/(a+n — 1) or is tied to a previous sample with positive probability
to form a cluster. Let _, ={01,...,0,}\0, and d,_; be the number of pre-existing clusters of
tied samples in _, at the nth draw; then we have

0,10, 1. & ® _H +d"i N s %)
0, = —— — 65
e atn—1"2" S a+n—10

where Hyp =NIG(0, V;u, v) is the base prior, ¢ ={g,~} and the ith cluster has n; tied samples
that are commonly expressed by 8; = (3;, 51.2) and

dy—1
> ni=n—1.
i=1

In the long term of sequential draws, the number of clusters d,, is much less than n and is deter-
mined by the precision «v. We also use the set C, containing the clustering profile at the nth draw,
such that C, (i) is the set of indices of all the curves in the ith cluster.
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The modelling of the base prior Hy isimportant and is reflected in all the realizations from the
DP which are centred at Hy = NIG(0, V;u, v). As before, the detail coefficients are conveniently
modelled by a selection prior. The scaling coefficients are modelled by using priors for which the
hyperparameters are empirically estimated and in Section 6 we show that this in general works
better than vague priors.

We consider two models that differ in the way that the error terms are modelled. Model 1
is a heteroscedastic model with 8; = (3;, oiz) and can be useful to handle potential fluctuations
in variability across clusters or to check the normality assumptions in model (3). Model 2 is
an oversmoothed homoscedastic model with o7 = o2 for all i, which is computationally more
straightforward. The fact that the d,, separate draws of variance in model 1 are replaced by a
single draw imparts more stability to the Markov chain. This makes it suitable for cases where
the population is not overly heteroscedastic.

The nonparametric model does not allow direct control over the number of clusters, but it
offers the parameter « that determines the expected and the asymptotic number of clusters:
dy/log(n) — « almost surely (Korwar and Hollander, 1973). Minor subjective reservations
aside, we think that this vagueness does not affect the inference in practice.

3.1. Choice of hyperparameters
The specification of (g;,7;) represents our prior belief about the collection of curves at each
level. A variety of scale mixture or shrinkage priors (Vidakovic, 1998; Clyde and George, 2000)
have been proposed for robust and heavy-tailed modelling of wavelet coefficients. All these spec-
ifications comprise different ways of modelling the decay of wavelet coefficients, relating them
to functional smoothness. In particular, Abramovich et al. (1998) showed that these param-
eters can be specified such that the functions fall in Besov spaces—a valuable back-bone for
modelling a broad range of smoothness and spatial adaptation properties. For the Besov space
ny’q (I>0,1<p,g<00),1 gives the order of smoothness in L,([0,1]), p controls the spatial
inhomogeneity and the parameter ¢ allows fine distinctions in the smoothness of fixed order /.
In general, for a function with an almost surely finite wavelet representation the smoothness
is the same as that of the mother wavelet 1. Suppose that ) € B (1< p,g<00) has ¢ vanishing
moments satisfying max (0, 1/p — f) <l<(.For j>0,fixing g; —2 4Jcy and m;=min(1,27 bicy)
with ¢1,¢2,a>0 and b > 1 gives an almost surely finite wavelet series and f; also belongs to
ny’q. Abramovich et al. (1998) extended the equivalence for b [0, 1], if (a,b) are chosen to
satisfy

(b-1/p+@-1)/2=1-1/p ®)

with equality when ¢ = oo and 1 < p < co. For convenience, we shall refer to (a, b) as the Besov
parameters.

For any (a, b) the realizations lie in a family of Besov spaces that are described by relationship
(8). By fixing a, we see a direct relationship between b and the positive range of p. In effect b
controls the sparseness and the spatial inhomogeneity of the functional realizations. In a similar
manner, a defines the positive range of / and therefore controls the overall decay of the wavelet
coefficients and the smoothness. This analogy can be drawn directly by looking at the decay of
the wavelet coefficients that are realized by the prior distributions. Loosely, by increasing a or
b we realize functions with higher effective smoothness, since in inequality (8) /> 1/p implies
that functions in B! are continuous. Apart from the interesting connection with smoothness,
in practice, greater flexibility is achieved by updating the probabilities 7;. These parameters can
also affect the model’s ability to identify clusters. For instance, smoother functions on average
cluster more tightly and should result in a drop in the number of clusters.
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Recall that, in our hierarchical model, the scaling parameters g; were mixed by a conjugate
prior (6) and, in general, this imparts greater flexibility than subjective deterministic specifica-
tions. It also allows modelling within the Besov spaces through restrictions that are imposed on
the inverse gamma hyperparameters (r;,s;). For j>0 and a fixed integer p > 1, if the hyper-
parameters satisfy

1/2
Ry

E(a?//p — J —o—aj d o —min(l.2-bi
W) {(sj=2)(sj—4)...(sj— p)}/P cr and 7;=min(l, )

with (a, b) satisfying distribution (2), then the Besov correspondence still holds. The proof (see
Appendix A) is similar to that of Abramovich et al. (1998), except for the use of the marginal
t-distribution after averaging out g;. A simple way to choose the inverse gamma hyperparam-
eters is to fix s; = p+ 1 and to calculate r; to satisfy the foregoing relationship for given values
of ¢y and a.

Abramovich et al. (1998) used fixed values of (a, b) based on the prior knowledge about the
function’s regularity, followed by method-of-moments estimators to calculate the constants c|
and ¢>. We maximize the marginal likelihood (Clyde and George, 2000) with respect to the base
prior Hy to estimate the constants while fixing @ and b:

n
L(c1,ca) oc—log |V¥| — (v+mn) log{u + Z Y)Y — N:/(V:)lu,’f}

i=1
where

n
py =V, 2 XY,
i=1

and
Vi=vlynr,) "

For fixed values of @ and b, a gridded maximization procedure can lead to estimates of ¢; and c;.
Moreover, an objective selection of the hyperparameters (a, b) can be performed by extending
the maximization procedure to a grid in (a, b), as illustrated in Section 6.5. Ideally, the marginal
likelihood can be calculated for the DP priors by using the collapsed sequential importance
sampling methods of Basu and Chib (2003). This procedure can be computationally intensive
depending on the size of the data set. In general, for small data sets, it leads to estimates that
are comparable with the marginal maximum likelihood estimates using Hy.

4. Posterior inference

Adopting base priors that are conjugate to the likelihood expedites the posterior sampling of
the clustering parameters 6; from the Polya urn. We also retain the computational advantage
of the scale mixture form of the base prior and the conditional posteriors for all the indicator
variables 7 and the scale parameters g; are in standard form.

The conditional posterior distributions for the heteroscedastic case are derived here. The
corresponding conditionals for the special homoscedastic case easily follow from these deriva-
tions.
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4.1. Conditional distributions for clustering
To update the clustering parameters 8,, = (3, 02),,, we combine likelihood (4) with the P6lya urn
prior (7):

dp—1
(ﬁ’ Uz)n|(ﬂs Uz)—ns a, ¢)a Y, X gno H:;,n(ﬁs 02) + Z qnié(B, 52); (9)
i=1

where H; L =NIG(u™, V*iu), v¥) is Hy a posteriori with

VE=(V 4+ L)~

ll’* — V* X/Yn ,
= u+Y, Yy —p* (V)
v =v+m.

The weights g,. follow from the likelihood and its marginals in the normal-inverse gamma con-
jugate family (Escobar and West, 1995) and determine the posterior inclination towards new
distinct samples. We have

ni i $(YulXB;, 57 1)
as the conditional distribution of Y,, given the ith cluster or distinct sample (3, 5%); and
gno X {0, u (L, +XVX')}

is the marginal distribution.
Similarly, setting Hyp = N(0, o2V) for the homoscedastic model gives

H}, =N(p*,o*V*)
with
gno o< {0, 0% (L, +XVX)},
qni Xn; ¢(Yn |XBi; Uzlm)-

The posterior distribution of o2 is simply (02|Y, ) ~IG(u*, v*) where

dy
u*=u+2{ ) Y}Yj—u?"(V?‘)‘luf‘},
i=1 "~ jeC,(i)

v¥=v+mn,

w=VvVE Y Xy,
0]

VE=(Vl4nl1,)" L

Sampling requires computation of the mixture probabilities g,; for the distinct pre-existing
parameter values, which are small compared with n. The sequential update of model parame-
ters from the Polya urn model can be randomized to preclude any ordering-related bias. This
is followed by a resampling step (Bush and MacEachern, 1996) that expedites model mixing by
literally shaking up the converged mixture model.

4.2. Posterior sampling of the mixing parameters
For notational convenience, the parameters are grouped by the dyadic levels j of the wavelet
decomposition —y; = {7 : Yk} and B;; = {B;x : Yk} for j > 0. To obtain the conditional poste-
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riors for the scaling parameters g; and the indicator variables ~yj, we exploit the conditional
independence of the distinct cluster parameters {(ﬁ,, 2)}d” given the clusters C,,. Korwar and
Hollander (1973) showed that conditional on C,, the dlstlnct parameters are IID Hg.

For the heteroscedastic case, the scaling parameters g; are updated levelwise by combining
the base prior and distribution (4):

9717 j:Cu {57, B}y ~1G(rE s%),
where

2J-1

%

sT=dn 3 Vjkt+Sj,
k=0

2Jj-1

d, 2.
—— 2 22
':ZU ZO jkﬁljk_l_rj'

For model 2, the &izs are replaced by a single o2. Observe that these updates combine the
information at the jth resolution across all the distinct functions and the average shrinkage is
conservative and depends on the total variation at any resolution.

Similarly, for each level, the indicators « ; are updated conditionally on the indicators at other
levels v_;:

dy
where

(v+mn;)/2
wil (10)

IV |1/2 -
FQY j}jee, 178 Co) < Cimsry {u+ > OYY —pFvhH™!
Vi J€Cati)

is the marginal likelihood for the ith cluster with
{(v+mn;)/2}

Ci= qnim/2

and Y depicts the collection of all responses {Y;}"_,. The update is similar in form for model
2. Again, the selection of 7 is more conservative and is decided by the proportion of variation
explained by the coefficients 3; y at location (j, k) for all i.

4.3. Posterior sampling of precision o
We update the precision « as in Escobar and West (1995). The posterior distribution is derived
by combining a gamma prior for a with the distribution of d,,:

I'(o) d
d dp) ————a“r nl.
Sfldpla,n)=cu( )F( L
It resembles the Cauchy formula for counting permutations and has been calculated indepen-

dently by several researchers, including Antoniak (1974). Combining equation (11) with f(«),
the prior for a, it can be shown that posterior

an

1
flaldy,m) 0<f(a)of’"‘1<a+n)/ X (1-2" " dx.
0

Equivalently, there is a beta random variable n such that
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ftaldymy= [ anidy.m d

Thus « can be updated in two steps. First, conditionally on « and d,,, update 7. Second, con-
ditionally on the last sampled value of n and d,,, draw a. When a ~ G (dy, 179), both conditional
distributions are in standard form, given by

(aln, dn) ~ pnG{do +dn,m0 —log(m) } + (1 — pu) G{do +dn — 1,10 — log(n) },
(nla, dy) ~beta(a+ 1,n)
where
Pn doy+d,—1
I—pn  nfno—log®m}

5. Properties of the clustering model

When sequentially sampling from the Polya urn (9) the mixture probabilities g,,. are based on
the I,-distance between the nth observed function and the d,,_; previously sampled functions.
Most classical clustering algorithms such as k-means and neural network clustering, or even sta-
tistical models with normal likelihoods (and priors), inherently use the /-distance as a measure
of distance between two curves. Likewise, in James and Sugar (2003) the decision of choosing
a cluster was based on the squared distance between spline coefficients.

In this section, we ascertain whether, in the long term of sequential draws, there is a min-
imum squared distance that would ensure a distinct sample. This distance may be viewed as
the eventual minimum separation between clusters and is referred to as the sampling resolution.
As n becomes larger the collection of sampled functions becomes populated and we expect the
resolution to grow, i.e. for a new sample to be distinct it must distinguish itself more clearly
from increasing population as n becomes large. The rate of this growth gives an idea about the
adaptation of the clustering model. The following theorem, which is proved in Appendix A,
characterizes the resolution of the DP without any mixing, i.e. while fixing the parameters g,
and a.

Theorem 1. For the homoscedastic model with the base prior Hy such that || 3;» < oo almost
surely Vi=1,2,..., the posterior sampling resolution is o> O[log{log(n)!*°}], for any 6 > 0.

Remark 1. The slow rate of increase suggests good adaptation properties of the model that
does not change drastically as n becomes large.

Remark 2. Note that the condition of bounded /;-norm can be achieved by choosing hyper-
parameters from distribution (2).

Remark 3. The error variance directly affects the separation between clusters in that a higher
variability means that the clusters are more spread out.

6. Examples

We analyse one synthetic and two real data sets to illustrate the practical potential of the func-
tional clustering model. The virtues of wavelet modelling are emphasized by using data sets that
exhibit different degrees of smoothness and spatial inhomogeneity. The Besov class of priors
that was mentioned in Section 3.1 easily accommodates the three extremes that are listed below
in that b controls the inhomogeneity and the overall smoothness can be attributed to a.
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(a) Smooth but inhomogeneous: the synthesized Doppler signals, although intrinsically con-
tinuous, the finite sampling along with the changing intensity of oscillations make the
function spatially inhomogeneous.

(b) Not smooth and inhomogeneous: yeast cell cycle gene expression profiles in the second
example may be far from continuous and are characterized by varying degrees of tempo-
ral fluctuation.

(c) Not smooth but homogeneous: the third example analyses a meteorological precipitation
data set that exhibits a certain homogeneity in the prevailing bumpiness.

For evaluating performance the number of clusters and the misclassification rate (in super-
vised conditions) are reported. In addition, the robustness to missing observations is checked
for synthetic data sets with different amounts of missing points and a yeast cell cycle microarray
data set. All the results reported are averaged over 100 simulations with 10000 iterations per
simulation and a burn-in period of 1000. In general, these specifications must vary depending
on n, m and the prior estimate of the model variance. The Markov chain Monte Carlo (MCMC)
algorithm mixes fairly well in all these examples and the chains seem to converge much before
the allotted burn-in time. Excepting the microarray data set that is analysed below, a nearly sym-
metric Symmlet wavelet basis with eight vanishing moments was used in all the experiments.

6.1. Mixed effects spline model

In some cases, the results are compared with the mixed effects spline model of James and Sugar
(2003) that is given by

Y; =SB, +SBy; +¢i, i~ N(O0,071,), (12)

where S (m x p) is a natural cubic spline design with suitably chosen knots, 3;; are cluster-
specific coefficients (i.e. all responses in a cluster have the same 3;;) and coefficients 3,; account
for individual variations in the functions within each cluster. We do not consider the addi-
tional dimension reducing transformation that was used by James and Sugar (2003) but instead
compensate with a smaller number of knots to fit higher order splines. Since the original EM
implementation of this model was unavailable, Bayesian modelling was used to expedite the
comparison and the following conjugate priors were used:

ﬁlin, PNDP{O[,N(O,O'IZI‘l)}, FINIW(Rl,Sl),
Bai ~ N(0,07Ty), ) ~IW(Ry, 52).

The posterior conditionals for 3;; and I'; follow closely from the derivations in Section 4 and
inverse Wishart posteriors take the place of the inverse gamma posteriors. Conditional on the
clusters—the distinct 3;s and I'y, there are n additional conjugate normal draws of 3,; followed
by another inverse Wishart draw of T';. In the simulations, Ry =10.0I and s = 5, to give a diffuse
prior for I';. Averaging out 34; with respect to the base prior, and 3,; with respect to its normal
prior, the hyperparameters R, and s, are estimated by empirical Bayes methods.

6.2. Priors for scaling coefficients
Prior modelling of the scaling coefficients determines the sensitivity to the locational differences
in the data set. We compare the traditional choice of vague or diffuse priors with a prior for
which the hyperparameters have been empirically estimated.

The prior scale parameter gg for the scaling coefficients ;0o follows an inverse gamma distri-
bution with parameters (rg, sg). For diffuse priors these parameters are adjusted for large prior
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variance. An approximate empirical estimation of these hyperparameters can be carried out by
marginalizing the likelihood with respect to the base prior (of the DP) individually for each curve
and then applying moment matching on the population of estimated gos to estimate (ro, s50). The
marginal likelihood follows by combining the model likelihood (4) 61 Kk ~NBij,o 2, written
in terms of the empirical wavelet coefficients ﬂ, ik, with the prior 3y ~ N(0,vjkgjo 2). For the
scalmg coefﬁ01ents we have 300~ N {0,(1+ go)az} and g for the ith curve is simply estimated
as (32 500 /o2 — 1, where o2 can be estimated from the finer levels of wavelet decomposition. The
median and the one-third range of the population of # such estimates are matched with
ro
E =—,
(90) 502
Zr%
(s0—2)%(so—4)

respectively, to generate rough estimates of (rg, sg).

From a comparative study of the two priors applied to various example data sets, the empir-
ically estimated prior seems to be a more reliable choice and to lead to better cluster estimates
than the diffuse prior. In all the examples that are furnished below, empirically estimated priors
were used for the scaling coefficients. For illustrative purposes, a comparative study is also
discussed in one of the examples.

var(go) =

6.3. Model choice
The state space of possible clustering combinations can be very large and some model selec-
tion criterion is required to decide between the best models. Recently, Quintana and Iglesias
(2003) provided a search algorithm to approach the best model by minimizing a penalized
risk; however, for large data sets the computational constraints can be prohibitive. Traditional
approaches, such as using model marginal likelihoods for model comparison, seem to be more
practicable considering the large data sets that are commonly encountered in clustering prob-
lems.

The marginal likelihoods conditional on the specific clustering configurations follow directly
from the calculations in Section 4.2. For a fixed cluster configuration C, simple Monte Carlo
averaging of marginal distributions (10) gives

Y10~ — kZ 174} jeco ™. 8@, 0), (13)
= i

where N is the total number of MCMC samples. Here a large state space of the indicators
v €{0,1}" would ideally require a very large number of MCMC samples. In general, it is
observed that the Markov chain of the indicator variables mixes well like most hierarchical
wavelet models, with little change in the convergent states across simulations. This is essentially
due to the sharp localization of features on the wavelet scale. In such cases, a reasonable estimate
of the marginal likelihood (13) is achieved by averaging over the Markov chain for a previously
estimated ~y.

6.4. Missing data interpolation

It is common to encounter missing values in clustering and to supplement the model with a
Bayesian imputation step is useful. There has been some work for wavelet methods on un-
equispaced grids (Kovac and Silverman, 2000; Pensky and Vidakovic, 2001); however, we limit
ourselves to the case where points are missing from a fixed equispaced grid.
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Missing data imputation is expedited by Gibbs sampling under the a priori independence
of the d, distinct parameters. Gibbs sampling starts with a random-clustering configuration
and randomly imputed missing points. Conditionally on the imputed data set, the Pélya urn
samples the cluster parameters 6;. After n such steps of sequential sampling the initial cluster-
ing configuration C, is completely updated. Next, conditionally on C, the posterior predictive
distribution is used to perform the imputation. For instance, for an incomplete response (say
the jth response) that was assigned to the ith cluster in the preceding step of the Gibbs sampling,
we use

Y18;,5% ~ N(XB;, 571

and
B N©.53V),
to write the marginal
Y;l67, 2,7~ N{0,52 (L, + XVX))}.

Let Y;; and Y j; be the known and missing parts of Y ; respectively; then from standard normal
distribution theory the posterior predictive distribution is given by

(Y1Yj1,57,8,7,Co) ~ N{A2 AT Y 1,672 (Aon — A AT A1) ),

where A;; are obtained by partitioning the marginal covariance as

A1 A12>
I, +XVX' = .
" (AZI Ao

We can use this technique to predict unobserved portions of any curve with uncertainty intervals
accurately. The effectiveness of our method is shown in one of the examples.

6.5. Shifted Doppler signals
The first data set is motivated by similar examples in Donoho and Johnstone (1994, 1995) and
consists of 200 shifted Doppler signals with the common form

Fi (0 =—0.025+0.6/{t(1 =} sin{2.107/(t — 1) }

and the phase #( is continuously varied in eight disjoint intervals equally interspersed in [0, 1]
to generate the 200 signals. In one of these intervals, three functions were perturbed to assess
the model sensitivity to small local fluctuations. This created a total of nine distinct classes of
functions that have been equisampled on a common grid of 128 points. For simulation, noisy
data were generated by adding independent normal noise &; x ~ N(O, 02) to each of the 200
Doppler signals at 128 points. Later, with a fixed probability p,,, points were randomly selected
and dropped from each function to evaluate the robustness to missing observations.

Table 1 shows the estimated number of clusters d,, and the percentage of misclassifications
for various amounts of randomly missing data across o =0.1,0.06, 0.02 when the data are fitted
with model 2. These figures were averaged over the best models from 100 simulations for each
combination of ¢ and missing data probability p,,.

Fig. 1 shows the model log-marginal-likelihoods for various values of p,, when o =0.06. The
most favoured models on the basis of log-marginal-likelihoods had nine clusters followed by
models with 7-11 clusters. First, the case p,, =0.0 with no missing observations is discussed.
Fig. 2 shows the nine clusters estimated in one of the simulations at c =0.1. In most of the
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Table 1. Performance of the wavelet model at different signal-
to-noise ratios and percentage of missing observationst

o dy for the Misclassifications (%) for
following values of pp: the following values of py,:

0.0 01 02 03 00 0.1 0.2 0.3

0.1 84 79 65 55 105 145 200 26.1
006 91 89 84 15 8.3 98 122 174
002 91 91 &7 8.1 3.1 5.2 7.5 105

tpm is the proportion of missing points in each curve. o is the noise
standard deviation. d, is the estimated number of clusters. The
actual number of clusters is 9.
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Fig. 1. Model log-marginal-likelihood versus number of clusters for the shifted Doppler signals data (o =
0.06): ——, pm=0.0;— —, pm=0.1;-—-—- , Pm=0.2;------- ,Pm=0.3

situations the wavelet model performs better than the spline model (Table 2) and the estimated
number of clusters d,, is consistently close to 9. The wavelet model also has lower misclassifica-
tion rates than the spline model, indicating its robustness in high noise situations.

The Besov parameters (a, b) are obtained by running the maximization procedure that was
outlined in Section 3.1 on a 2 x 2 grid of (a, b) pairs and we obtain the estimates as a =1.90 and
b=1.20. We present the log(Bayes factors) to compare the model at (a, b) =(1.90, 1.20) with
some other neighbouring values of (a, b) in Table 3.

6.5.1.  Results for the missing data case

To evaluate the effects of missing data, points from each function were randomly selected and
dropped with probabilities p,,. Tables 1 and 2 summarize the results from three separate sim-
ulations performed with p,, =0.1, 0.2, 0.3. At p,, =0.1, our method performs similarly to the
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Fig. 2. Nine estimated clusters for the shifted Doppler signals at c =0.1

Table 2. Performance of the mixed effects spline model at
different signal-to-noise ratios and percentage of missing

observationst
o dy for the following Misclassifications (%) for
values of pm: the following values of pp:

0.0 0.1 02 03 00 0.1 0.2 03

0.1 73 68 52 48 184 225 249 363
006 95 89 75 63 115 161 204 274
002 91 86 76 69 4.0 74 11.0 17.0

Tpm is the probability that a point is missing in each curve; 20
quantile knots. o is the noise standard deviation. d,, is the esti-
mated number of clusters. The actual number of clusters is 9.

complete-data case, with a small deviation in the estimated size and a marginal increase in the
misclassifications even at o =0.1. At p,, =0.2 and p,, = 0.3, the number of misclassifications
increases and there is a drop in d,,. Notably, the deterioration in the wavelet model (Table 1)
with higher amounts of missing data is less drastic than in the spline model (Table 2).

6.5.2. Predictive inference with missing data
A major advantage of the functional clustering procedure is that it can accurately predict un-
observed portions of a curve. We demonstrate another contrived example where a portion of
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Table 3. Estimated 2 IOg(M1 90,1 .ZO/Ma,b) for
the shifted Doppler signal datat

a Results for the following values of b:

1.00 110 1.20 130 140

1.75 16.78 1324 953 12.63 15.95
1.85 14.07 12.64 3.79 598 14.47
1.90 1452 10.80 — 6.44 13.74

5 1945 1798 15.84 12.17 15.61

M, is the marginal likelihood of the model
with hyperparameters (a, b).
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Fig. 3. MCMC prediction bands for a partially observed curve in the shifted Doppler signals example (noise
standard deviation 0 = 0.1): (a) 12.5% missing points; (b) 25% missing points; (¢) 37.5% missing points

a curve is missing; we examine missing data prediction and its effects on clustering. A fixed
portion of the tail from a curve in the shifted Doppler example is dropped and prediction bands
are generated from the MCMC samples. We expect the clustering algorithm to be reasonably
stable when a few curves are partially observed owing to the shrinkage within clusters and
this is confirmed in the prediction bands that are plotted in Fig. 3. With 12.5% missing points
the effect of missing data prediction is hardly visible and, although the bands widen with an
increasing number of missing points, it is only when this number reaches 37.5% that the curve
is occasionally thrown into a distinct cluster.

6.5.3. Effect of scaling coefficients
Three types of shifted Doppler data sets are considered (Fig. 4) for the analysis with the first
two types (Figs 4(a) and 4(b)) having curves that differ either in their scaling coefficients or
detail coefficients. The data set for Fig. 4(c) has differences in both the scaling and the detail
coefficients. Each curve is replicated five times in normal noise (o = 1) so that the sample size n
is 15 for each data set.

For diffuse specifications in all the three cases, we set rp =2.2 and 5o =4.2 with a prior mean
E(gp) =1 and variance var(gg) = 10. The empirical estimates of (rg,sg) for the three data sets
calculated in the aforementioned manner are (7.991, 6.695), (5.7961, 11.315)and (5.110, 6.5823).
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Fig. 4. Three different Doppler signal data sets with three classes used to assess the model sensitivity to
scaling coefficients

Table 4. Comparison of prior choices
for the scaling coefficients for various
Doppler signalst

Set Misclassifications (%)
for the following priors:

Estimated Diffuse
(€))] 7.0 12.2
(b) 13.5 14.1
(©) 4.6 10.5

FThe actual number of clusters is 3.

The corresponding priors means of gg are 1.7019, 0.6222 and 1.1153 and the prior variances
are 2.1491, 0.10584 and 0.96344.

Table 4 summarizes the performance of these priors applied to the three data sets. In data set
(a) only the scaling coefficients play a role in the clustering. The tighter empirically estimated
prior produces better estimates of d,, with lower misclassification rates than the diffuse prior.
The differences between the curves in data set (b) are almost entirely encoded in the detail
coefficients and the prior modelling of scaling coefficients does not play a role in the clustering,
as shown in Table 4. In data set (c), both the scaling and the detail coefficients differ with clear
evidence of three clusters in the latter. Although the role of scaling coefficients is diminished,
the empirically estimated prior still manages to outperform the diffuse prior.

6.6. Yeast cell cycle data

Recently there has been huge interest in the analysis of gene expression data from deoxyribo-
nucleic acid (DNA) microarray experiments. When microarray experiments are performed
consecutively in time, we call this experimental setting a time course of gene expression profiles.
Clustering of the time course data gives insight about genes that behave similarly over the course
of the experiment. By comparing genes of unknown function with profiles that are similar to
genes of known function, clues to function may be obtained. Hence, the coexpression of genes
is of interest.
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We analysed a similar data set to that of Spellman ez al. (1998) which measures the relative lev-
els of messenger ribonucleic acid over time from 6178 genes in a-pheromone synchronized yeast
cell cultures. Of interest are the connected genetic regulatory loops controlling the Saccharo-
myces cerevisiae pheromone response pathway (PRP) and whether the genes involved can be
identified by their characteristic expression profiles in one or more clusters. In the sexual repro-
duction of yeast there is an essential role of pheromone response and mating pathways that
ultimately target the protein STE12 and bind DNA as a transcriptional activator for a number
of other genes. This is a natural choice for our methodology because the intergenic regions in the
yeast genome that are bound to STE12 are known from genomic location analysis in the pres-
ence of pheromone (Ren et al., 2000). With the induction of the a-pheromone, the expression
levels for the PRP genes show a steep rise, until an internal stabilizing mechanism is triggered
and the fervour dies down. The result is a spiky event (or, more contextually, a temporal singu-
larity) in an otherwise smooth expression profile which, for the most part, is comparable with
the response of genes that do not participate in the pheromone response signalling and yeast
mating.

The wavelet transforms give a time—frequency breakdown of information and the coefficients
may reveal new patterns in frequency as well as time. For example, Klevecz (2000) performed
a detailed wavelet analysis of the yeast cell cycle data and found significant high frequency
artefacts that were isolated in time, contrary to the earlier notion that yeast cell cycle profiles
are representative of slowly varying biological events. The hierarchical clustering model can eas-
ily delineate profiles with increased levels of gene expression occurring uniformly throughout the
cycle from profiles that are characterized by sporadic bursts of spiky events (when relatively more
messages are synthesized). The latter, being a characteristic of the PRP genes, is more important
here. Note that this extremal behaviour is easily accommodated within the Besov spaces.

In the experiments, 16 (of the 18) equisampled measurements over two cell cycles (lasting
roughly 140 min) from 600 significantly expressed genes were considered. Some expression
profiles were incomplete with a maximum of eight missing expressions per gene. To allow for
possible deflections in the error variance in the population of gene expressions, we resorted to a
heteroscedastic model (model 1) and found that the estimated variance varies between clusters.
This may be attributed to the significant deviations in the sizes of cluster and the relatively short-
sized expression profiles.

In general, the normality assumptions do not hold for microarray experiments and some
preprocessing steps are necessary. For example, for the yeast data a log-transformation seems
to suffice. This is confirmed by a Bayesian analysis (Chaloner and Brant, 1988) of the resid-
uals. The residuals in the normal likelihood (3) are sampled from their posterior distribution
conditionally on the clustering configuration. From standard distribution theory, this posterior
distribution is normal with mean Y; — Xp} and covariance o>V* (u} and V* are defined in
expression (9)). A multivariate y>-test is then performed to check the normality of the sampled
residuals for each curve. The p-values (at a level « =0.05) from each curve are provided in Fig. 5
and show that most of the vector responses satisfy the normality assumptions.

The clustering algorithm showed maximum preference for models with 6-9 clusters (Fig. 6),
of which two models with eight clusters dominated the others in terms of the model log-
marginal-likelihoods (listed in Table 5). Using a grid maximization procedure, the Besov param-
eters (a, b) were set to (1.45, 0.5) and this explains the spatial inhomogeneity in the expression
profiles that is noticeable in the eight clusters (for one of the best models) that are plotted in
Fig. 7. The plots can be divided between periodic (Figs 7(a)-7(d)) and non-periodic (Figs 7(e)-
7(h)) patterns. The two clusters in the second category can be identified with the early on—off
switch patterns and pertain to almost all the PRP genes that were mentioned above.
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Fig. 5. p-values versus curves from the multivariate test of normality for the yeast data
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Fig. 6. Histogram showing the preferred number of clusters for the yeast cell cycle data over 10000 MCMC
iterations

6.6.1. Comparison with the spline model

The James and Sugar (2003) model is fitted with four quantile knots. The most preferred models
vary in size from 5 to 7 and suggest oversmoothing and the models’ incapacity to adjust to sharp
fluctuations. The log(Bayes factor) of the best wavelet models compared with the best spline
model was much larger than 10. In the results, which are not detailed here, there is a tendency
for clusters (b)—(e) and (f)-(h) in Fig. 7 to merge into one cluster. To emphasize this point, we
fit three models differing in spatial adaptation to three (of the eight) clusters that were obtained
from the wavelet model. The first cluster has periodic and smooth profiles, the second cluster
is smooth but not periodic and, finally, the third cluster is totally irregular and comes with a
sharp on—off pattern of the PRP genes. Figs 8(a)-8(c), 8(d)-8(f) and 8(g)-8(i) plot the fits by a
periodic (Fourier cosine series) basis, a spline basis and a wavelet basis divided in three columns
corresponding to the three clusters. In the first column, we see that all three fit equally well,
whereas, in the second column, the periodic basis fit (Fig. 8(b)) shows considerable bias at the
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Table 5. Log-marginal-likelihoods of the
best models for the yeast cell cycle data

dn Best Log-marginal-
models likelihood
8 1,2 —8.697 x 104
3,4,5 —8.699 x 104
7 1 —8.700 x 104
2,3 —8.701 x 104
6 1,2 —8.701 x 104
9 1 —8.703 x 104
2 —8.704 x 10%
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Fig. 7. Clustering of the a-synchronized yeast cell data (eight clusters) for the 600 expression profiles with

18 time points and a maximum of eight missing points: clusters (a)—(d) hold the periodic expression profiles
and (e)—(h) hold the non-periodic on—off switching patterns

-
o

boundaries. The situation deteriorates further as we move to the third column with a sharp
fluctuation at # =0.1 which is completely missed by both the periodic and the spline models.

6.6.2.  Further simulation study
The yeast cell cycle data is a typical complementary DNA microarray example where high noise
levels make inference difficult. Moreover, there is a marked heteroscedasticity in the data as
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Fig. 8. Comparison of fits for three types of response: (a)—(c) periodic basis fit; (d)—(f) spline fit; (g)—(i) wave-
let fit; (a), (d), (g) periodic smooth function (all the bases fit well); (b), (e), (h) non-periodic but smooth function
(the periodic basis has problems fitting at the boundary); (c), (f), (i) non-periodic and irregular function (only
the wavelet basis captures the sharp fluctuation)

indicated in Table 6, tabulating the estimated variances of the eight clusters of Fig. 7. A fol-
low-up simulation procedure is useful in such situations to validate the results. To simulate a
realistic data set for comparing the successful wavelet and spline models, we used the yeast cell
cycle data as a prototype. As realistic values of the parameters, we use the representative curves
(reproduced from the estimated wavelet coefficients) of the eight clusters that are plotted with
thick lines in Fig. 7 and replicate them in IID normal noise with the estimated variances of
Table 6 following the structure of our model to generate the responses. In other words, this is an
imitation of the original 600 gene expression profiles, to which we want to apply the algorithm
and to confirm our findings. This simulation is repeated 100 times to generate 100 different data
sets, which are later analysed by using wavelet as well as spline models to obtain the average
misclassification rates.

The estimated number of clusters averaged over 100 simulations for the wavelet model is 8.21
with a very low average ‘misclassification rate’ (the deviation from the previously estimated
clustering configuration) of 5.38%. In fact, the estimated clusters in these simulations almost
always resemble Fig. 7 with differences due to occasional switch-over of curves between clusters
(f) and (g), or the formation of new clusters out of (or from combination of) clusters (f), (g)
and (h). For the spline model, we see many clusters merging because of oversmoothing and the
average number of clusters is 5.96 with a misclassification rate of 36.42%.
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Table 6. Size and estimated var-
iance of the eight clusters for the
yeast cell cycle data

Cluster  Number of  Estimated
curves variance
(a) 124 0.3519
(b) 163 0.2996
(©) 21 0.8154
(d) 33 0.8862
(e) 59 0.2893
® 98 0.3006
() 24 0.2694
(h) 78 0.5360

6.7. Precipitation spatial time series data

We consider a National Centers for Environmental Prediction (USA) reanalysis of spatiotem-
poral data that record the daily precipitation over Oregon and Washington between 1949 and
1994 (Widmann and Bretherton, 2000). The gridded observations represent area-averaged pre-
cipitation on a 50 km x 50 km grid. Bi-weekly averages of the daily observations from 179
locations are used, with a total of 512 time points over a time span of roughly 5 years between
1989 and 1994.

The example illustrates the potential application of functional clustering for the topograph-
ical categorization of meteorological factors such as precipitation, temperature and snowfall.
It is usually difficult to generate topographical contour maps of precipitation versus elevation
although these are of great interest in climate analysis. A functional clustering model provides
a natural way to group similar precipitation patterns viewed as functions and to associate them
with elevation. This can also deal with the problem of missing points in precipitation analy-
sis. Missing points are typically interpolated with information from satellite observations and
analysis amidst the differences in the measurement errors from two sources can be problematic.

Precipitation maps are formed by using the slope of a simple regression of the average local
precipitation and the elevation. The clustered data that are plotted in Fig. 9 show a clear need
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Fig. 9. Four clusters for the precipitation data
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for non-linear modelling. This could in fact be used to delineate regions with occasional swings
in rainfall patterns—patterns that can be overlooked by other geostatistical methods such as
kriging (Rivoirard, 1994).

In many spatial models, a spatial random-effects term viewed as a random-intercept process
is introduced to capture the spatial correlation. Previously, the intercept or scaling coefficients
Bioo in our model were specified by nonparametric priors for clustering. Following Gelfand et al.
(2003), we introduce a spatial random effect a(x;) that can be interpreted as a random spatial
adjustment at a location x; (in latitude and longitude) to the overall intercept G;o9. Thus, for an
observed set of locations X1, X, ..., X,, We write

Yi=ax)1+XG;+¢;,

where the overall intercept Fjgo is an element of 3;. We assume that the prior distribution for
a is a zero-mean Gaussian process with exponential correlation function 72<I>,,. Here @, has
a special structure in that its (i, j)th entry is exp(—pl|X; — X||) where p >0 is a spatial decay
parameter. Following Banerjee (2004), we assume a gamma prior for p so that the mean of the
spatial prior range is half the maximum intersite distance in the data set, and 72 is a scaling
parameter specified by a vague inverse gamma prior distribution 1G(0.005, 0.005). The depen-
dence between the a(x;) makes them identifiable from the other intercept terms without the
need for replications.
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Fig. 10. Posterior distribution of p generated from 10000 MCMC iterations
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For posterior inference, Gibbs sampling is used to sample « and the clustering parameters
alternately. More specifically, for a fixed ac let Y =Y; — a(x;)1; then the posterior inference in
Section 4 can be performed conditionally on Y;*. In model 1, each «; is updated separately by
combining the implied conditional prior oyj|o—;, 72, p (from the prior a|72, p~ N(0, 72 P p)) with
the likelihood Y; ~ N(o;i14+X3;, oizl). For the homoscedastic case, we can directly work with the
joint prior and the joint likelihood to draw multivariate samples of . Finally, the parameters
p and 72 are updated by separate Metropolis—Hastings steps by conditioning only on c.

The NCEP reanalysis data set was fitted with model 1 and as expected there were considerable
differences in the estimated variance between clusters. The estimated value of p is 0.0182 and its
posterior distribution from MCMC sampling is shown in Fig. 10. This suggests a high spatial
correlation between different locations. The overall homogeneity that is associated with the
annual events and the local bumpiness due to fluctuations in rainfall are described well by
the estimated Besov parameters (a, b) = (0.95,0.3). The histogram of the MCMC samples for
the number of clusters from one simulation in Fig. 11 shows clear preference for models with
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Fig. 11. Histogram showing the preferred number of clusters for the precipitation data over 10000 MCMC
iterations
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four clusters. The estimated clusters from one simulation are shown in Fig. 9 and their distri-
bution on a geographical scale is contour plotted in Fig. 12 in two different orientations. Fig. 9(a)
plots the largest cluster and corresponds to a large number of stations outlined by cluster 1 in
Figs 9(a) and 9(b). The average annual rainfall in these areas has shown moderate fluctuations
over the 5-year period and is notably less than the areas in clusters 2-4. Stations in cluster 3
(Fig. 9(c)) have experienced heavier-than-usual rainfall between 1990 and 1991, but otherwise
the average rainfall is comparable with cluster 2 (Fig. 9(b)). Stations in cluster 4 (Fig. 9(d)),
although much wetter, share the same pattern as cluster 3, suggesting their geographical proxi-
mity, which is confirmed from Fig. 12.

7. Discussion

The nonparametric Bayes model offers a flexible approach to functional clustering and has
been shown to perform favourably against other functional clustering methods. Special stress
is laid on the overall applicability of the methodology in that we rely on straightforward Gibbs
sampling methods that are usable with high dimensional data, employ simple base prior mod-
elling of the wavelet coefficients to encompass a large class of functions and address the missing
data problem that is common in real life applications. In addition, the method learns about the
number of clusters in an automated manner, unlike other clustering methods where a dimension
change comes with a huge computational burden.

In its ability to partition the predictor space into regions of ‘IID’ data, the DP is comparable
with product mixture models for clustering. (Indeed, Quintana and Iglesias (2003) showed an
equivalence under certain regularity conditions on the DP.) This entails the use of two dis-
tinct approaches to Gibbs sampling in this paper. First, the sampling of (61, ...,0,) from the
Polya urn allows the update and clustering of these parameters in a unified way and replaces
the reversible jump sampler (Green, 1995) that is used in product models for clustering and
has a reputation for being complicated. However, conditionally on a sampled configuration
of clusters, the remaining parameters are conveniently drawn from the product mixture that is
provided by the DP.

The discrete wavelet transform (1) requires that the number of sampled points m be an integer
power of 2. The model proposed can be used with more flexible alternatives, such as the lifting
scheme (Sweldens, 1996), that do not place restrictions on the discrete support. This could addi-
tionally allow the extension of this model to unequispaced data. Another interesting research
problem would be to modify Quintana and Iglesias’s (2003) method in this high dimensional
functional clustering problem with the presence of missing data.
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Appendix A

A.1. Marginal calculations for the heteroscedastic model
Recall that Y (n x m) was used as the collection of n functional responses of length m. For convenience,
let Y¢, ) (n; x m) denote all the responses falling in the ith cluster C, (i). We can write the likelihood as
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SYB.GYE.C) = 11‘[] fYe,01B:,57,C)
and the marginal as
J(YI.9.C) =d£[1 fYe,0|B;,57.C) f(By,57) dB, A3}

Suppose that the ith cluster has n; responses and (Bi, 52) ~NIG(0, V;u,v) a priori; the ith (of the d,)
integral inside the product can be written as

(/2 — { LS XY, - X3 )}
|V| 1/2(27r)(y,im+p)/2 F(v/z) 5_i(n,'m+v+p+2)/2 25_[2 i,EC(i) i i i i
B VB +u) .~ ., [VF |12 ()22 exp (—u*/252)
XE€XPy —————F5=5 dg; dO’i = - —(n; 2)/2
2‘71' |V|l/2(27r)"""/2 F(v/2) U,(nzm+v+ /

1 . _ -
X / W“p{(ﬁi —H?)vakfl(ﬁi—ﬂf)}dﬁi dUiz

_IVHP@ e -u25))
S IVIR@nymAT ) | e
x F{(v+mn,)/2} |Vi*|l/2 (ufk)—(v+mni)/2

7-l-nim/Z |V|1/2
where

VE=(mI+V ),

* T
pi =V > XYy,
I€Ca (i)

k T *Tyrk—1, %
ur=u+ >, Y, Yr—p VT ul
i'eCy (i)

Multiplying over all d, clusters, we obtain

d T{(v+mn;)/2} |VF|'/?

SOV, € ox [T == e

i=1

#y —(v+mn;)/2
(Ml ) v+mn .

A.2. Proof for Besov priors

This is an extension of the proof for theorem 2 in Abramovich et al. (1998) for the special case of finite

Besov scales p, ¢ < co. This condition ensures that the complete metric parameter space is separable (e.g.

Blackwell and MacQueen (1973)). Also, we do not consider a third parameter p satisfying g; =2"%¢; j*.
In univariate notation, the prior on the wavelet coefficients is f(Blg;, ) =N(0,0%g D) and f(g;) ~

IG(r;,s;) implies that f(Bjc|vjx,0%) =1;,(0,r;vjc0?). We shall need the moments

EIB =5 EB)),
E(B,IP) = EB) + 3 EBufBu)’
K kK
where 3; are the coefficients at the jth resolution. If v, is the pth moment of N(0, 1), then
E(Bh) =E{E(BY19)}=2"c20"v, E(g}").

Thus, we have
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E(18;115) =2 e,070, E(g"),
E(18,1157) =2""P 201y, E(¢)) +2/(2) = 1) x 27 307713 E(gF)
<20 M ey0 1, (1420 eau,) E(gF).
Given these moments, by the Chebyshev inequality, we have, for some ¢ > 0,
Pr{ 2707|812 — oPeaw, E(g7)| > e} <2720 Pg? E(|18;112)

and applying the Borel-Cantelli lemma

S Pr{270 B, — oy, E(gh) > e} <t 30272070 E(|18;]12) < 00
j=0 Jj=0

Thus 2727|817 — cy07v,, E(gf/z) almost surely.

Since this is true for j=0,1,..., the Besov sequence norm is finite if

o . .
D 2JU+172=1/p)q o H(1=b)ja/p E(gf/z)q/” < o0.
=0

The infinite sum on the right-hand side is finite, if E(gf/ 1) /p 2743 for all j=0,1,..., where a satisfies
b-D/p+@—-1/221-1/p.
To summarize, if, for all j,
2
E(g)™)'"" = . =27,
! {(sj=2)(s;=4)...(s; — p)}'/”

where a satisfies (b—1)/p+ (a—1)/2 >1—1/p, then the Besov correspondence holds.

A.2.1.  Proof of theorem 1
We consider the conditional posterior of (3,,,[Y, B_, 1), 02) in the oversmoothed model. The probability
that 3, is not tied to any of the previous samples is

Z ¢(Yn+] |X/6i’ Uzlm) 1
i=1

<
S 1+aR* /n

qn+1= n
ad{Yu4110, 02X, +XVX) } + > 6 (Y11 1XB;, 021,)
i=1

where
* ¢{Y’l+l |07 0-2 (Im + XVX/)}
! ¢(le+1 |Xﬁ, Uzlm)

and Be{B,.....B,} subject to ||Y,,; — XB||, is minimum. Also, we can write

¢(Yn+l |X?a (TZIUI) }:| > Eﬂ |:10g{ ¢(Yn+l |X?, Ozlm) }:|
¢(Yn+1 |X/63 Uzlm) ¢(Yn+l |Xﬁ’ U2Im)

1 _
= ﬁ{llYnH = XBI3 = 1Y, 1ll3 — o> tr(V)} =1og(R,11).

log{E(R}, )} =log {Eg {

Finally, writing g, < (1 +aR,/n)~', we obtain

1
E ) SE[ ——
Y,,+|(q +1) (l—i—aR,,/n)

N 14+ aE(R,/n)
~expl2 E{log(1+aR,/n)}]’

Since R, is small for large n,

exp[2 E{log(1 + aR,/n)}|=exp{2a E(R,/n)} — O(n™?)
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and, if X3, ., is the actual function underlying Y, we have

l+a E(R./n)
exp{2a E(R,/n)}’

_ 1 -
E(R,)=exp(5||Bl5/807) exp{—tr(V)/2} exp(—ﬁﬂ%nﬂ)

Ey, (gny1) <
(14)

since E{exp(u'x)} =expu'p +uTSu/2) for x ~ N(u, ). We assume that || B2, [|8,411l2 < co almost
surely by prior specification and let p,; = [BTﬂn 41 be the inner product of the actual functional and the
closest available functional. For large n the sample space becomes dense and we expect p, 4| to increase.
Then from expression (14)

e 14 (Cs/n) exp(—pus1/20?)
Ex,, (qus1) < ,
Z B @) S 2 Gt Cumy exp(pri 209

if p,11 ~0? log{log(n)!**} for some & > 0. By the Borell-Cantelli lemma, this means that the new sample
is almost surely distinct if the inner product or the />-distance is respectively less than or greater than
o* Oflog{log(n)'**}].

C3,C4 >0,
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