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Abstract

Background: A common approach for time series gene expression data analysis includes the clustering of genes
with similar expression patterns throughout time. Clustered gene expression profiles point to the joint contribution of
groups of genes to a particular cellular process. However, since genes belong to intricate networks, other features,
besides comparable expression patterns, should provide additional information for the identification of functionally
similar genes.

Results: In this study we perform gene clustering through the identification of Granger causality between and within
sets of time series gene expression data. Granger causality is based on the idea that the cause of an event cannot
come after its consequence.

Conclusions: This kind of analysis can be used as a complementary approach for functional clustering, wherein
genes would be clustered not solely based on their expression similarity but on their topological proximity built
according to the intensity of Granger causality among them.

Background
Gene network analysis of complex datasets, such as DNA
microarray results, aims to identify relevant structures
that help the understanding of a certain phenotype or con-
dition. These networks comprise hundreds to thousands
of genes that may interact generating intricate structures.
Consequently, pinpointing genes or sets of genes that play
a crucial role becomes a complicated task.
Common analyses explore gene-gene level relationships

and generate broad networks. Although this is a valu-
able approach, genes might interact more intensely to
a few members of the network, and the identification
of these so-called sub-networks should lead to a better
comprehension of the entire regulatory process.
Several in silico methodologies are available for the

identification of sub-networks, or clusters, within a given
dataset [1-5]. Most of the times, the identified clusters
group genes based on similar patterns of expression in
time. In a different manner, the identification of Granger
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causality [6] within a network allows the clustering of
genes based on their topological proximity in the net-
work [7,8]. Briefly, Granger causality [6] analysis identifies
interaction in terms of temporal precedence (the cause
comes before its effect) [6] and may generate a set of sub-
networks within whichGranger causality is intense among
genes. As a result, genes are grouped depending on how
close they are in terms of Granger causality. Figure 1a
illustrates the clustering based on the network topological
proximity while Figure 1b shows the clustering based on
similar expression patterns.
The concept of Granger causality [6] has been previ-

ously shown to help in the identification and interpreta-
tion of regulatory networks in time series gene expression
datasets [9-18]. The main advantage of Granger causal-
ity analysis in the context of gene expression datasets
consists in the fact that each edge of the network repre-
sents the information flow from one gene to another [19].
Nevertheless, it is necessary to point out that Granger
causality is not effective causality in the Aristothelic sense
because it is based on prediction and numerical calcu-
lations. Fujita et al. [20-22] suggested a concept for the
identification of Granger causality between groups of time
series. The application was, however, limited to scenarios
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Figure 1 Regulatory networks. (a) Functional clustering. Genes are
clustered based on their topological proximity given by Granger
causality. (b) Usual clustering. Genes are clustered based on the
similarity between gene expression levels.

when clusters could be previously defined based on par-
ticular data characteristics. Here, we propose a method to
define clusters by their topological proximity in the net-
work. For this purpose we introduce an extension of the
concept of functional clustering, initially proposed by [23]
in neuroscience. In [23], they applied mutual information
in order to group the most active brain regions. We are
interested in clustering the genes by using the concept
of information flow [19] between sets of time series [20].
The gene expression time series are grouped depending
on the hidden structure underlying the network topol-
ogy, in a way that genes which are topologically close in
terms of Granger causality are clustered (Figure 1a). We
use the generalization of Granger causality for sets of time
series datasets proposed by [20,21] in order to define con-
cepts of distance, degree and flow useful to determine
gene sets that highly interact in terms of Granger causality.
In other words, we will derive the Granger causality-based
functional clustering directly from the time series gene
expression data. For this purpose, an approach that allows
the identification of the optimum number of clusters for a
given dataset is also presented.

Materials andMethods
Granger causality for sets of time series
Granger causality identification is a potential approach
for the detection of possible interactions in a data driven
framework couched in terms of temporal precedence. The
main idea is that temporal precedence does not imply, but
may help to identify causal relationships, since a cause
never occurs after its effect.

A formal definition of Granger causality for sets of time
series [20] can be given as follows.

Definition 1. [20] Granger causality for sets of time
series: Suppose that �t is a set containing all relevant infor-
mation available up to and including time-point t. Let Xt ,
Xi
t and Xj

t be sets of time series containing p, m and n
time series, respectively, where Xi

t and Xj
t are disjoint sub-

sets of Xt , i.e., each time series only belongs to one set, and
thus, p ≥ m + n. Let Xt(h|�t) be the optimal (i.e., the one
which produces the minimum mean squared error (MSE)
prediction) h-step predictor of the set of m time series Xi

t
from the time point t, based on the information in �t .
The forecast MSE of the linear combination of Xi

t will be
denoted by �X(h|�t). The set of n time series Xj

t is said to
Granger-cause the set of m time series Xi

t if

�X(h|�t)<�X(h|�t\{Xj
s|s ≤ t}) for at least one h=1, 2, . . .

(1)

where �t\{Xj
s|s ≤ t} is the set containing all relevant infor-

mation except for the information in the past and present
ofXj

t . In other words, ifXi
t can be predictedmore accurately

when the information in Xj
t is taken into account, then Xj

t
is said to be Granger-causal for Xi

t .

For the linear case,Xj
t is Granger non-causal forXi

t if the
following condition holds:

CCA(Xi
t ,X

j
t−1|Xt\{Xj

t−1}) = ρ = 0, (2)

where ρ is the largest correlation calculated by Canonical
Correlation Analysis (CCA).
In order to simplify both notation and concepts, only the

identification of Granger causality for sets of time series
in an Autoregressive process of order one is presented.
Generalizations for higher orders are straightforward.

Functional clustering in terms of Granger causality
There are numerous definitions for clusters in networks
in the literature [24]. A functional cluster in terms of
Granger causality can be defined as a subset of genes that
strongly interact among themselves but interact weakly
with the rest of the network.
A usual approach for network clustering when the struc-

ture of the graph is known is the spectral clustering pro-
posed by [25]. However, in biological data, the structure of
the regulatory network is usually unknown.
In order to overcome this limitation, we developed a

framework to cluster genes by their topological proxim-
ity using the time series gene expression information. We
developed concepts of distance and degree for sets of
time series based on Granger causality, and combined
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them to the modified spectral clustering algorithm. The
procedures are detailed below.

Functional clustering
Given a set of time series x1t , x2t , . . . , x

p
t (where p is the

number of time series) and a definition of similarity wij ≥
0 between all pairs of data points xit and xjt , the intuitive
goal of clustering is to divide the time series into several
groups such that time series in the same group are highly
connected by Granger causality and time series in differ-
ent groups are not connected or show few connections to
each other. One usual representation of the connectivity
between time series is in the form of graph G = (V ,E).
Each vertex vi in this graph represents a time series gene
expression xit . Two vertices are connected if the similar-
ity wij between the corresponding time series xit and xjt
is not zero (the edge of the graph is weighted by wij). In
other words, a wij > 0 represents existence of Granger
causality between time series xit and xjt and wij = 0 rep-
resents Granger non-causality. The problem of clustering
can now be reformulated using the similarity graph: we
want to find a partition of the graph such that there is
less Granger causality between different groups and more
Granger causality within the group.
Let G = (V ,E) be an undirected graph with vertex

set V = {v1, . . . , vp} (where each vertex represents one
time series) and weighted edges set E. In the following
we assume that the graph G is weighted, that is each
edge between two vertices vi and vj carries a non-negative
weight wij ≥ 0. The weighted adjacency matrix of the
graph is the matrixW = wij; i, j = 1, . . . , p. If wij = 0, this
means that the vertices vi and vj are not connected by an
edge. As G is undirected, we require wij = wji. Therefore,
in terms of Granger causality,wij can be set as the distance
between two time series xit and xjt . This distance can be
defined as

Definition 2. Distance between two (sets of ) time series
xit and xjt :

dist
(
xit , x

j
t

)
= 1 − |CCA(xit , x

j
t−1)| + |CCA(xjt , xit−1)|

2
.

(3)

Notice that CCA(xit , x
j
t−1) is the Granger causality from

time series xjt to xit . In the case of sets of time series,
just replace xit and xjt by the set of time series Xi

t and Xj
t

[20,21]. Since absolute value of CCA ranges from zero to
one and the higher the CCA, the higher is the quantity of
information flow, it is possible to see that the higher the
CCA, the shorter the distance is. Furthermore, it is neces-
sary to point out that the average between CCA(xit , x

j
t−1)

and CCA(xjt , xit−1) is calculated because the distance must
be symmetric. The intuitive idea consists on the fact that
the higher is the CCA coefficient, the lower is the dis-
tance between the time series (or sets of time series)
independent of the direction of Granger causality.
Moreover, notice that the CCA is the Pearson cor-

relation after dimension reduction, therefore, dist(xit , x
j
t)

satisfies three out of four criteria for distances: (i) non-
negativity; (ii) identity of indiscernible; and (iii) symmetry;
and does not satisfy the (iv) triangular inequality, there-
fore, Pearson correlation is not a real metric. However, it
is commonly used as a distance measure in several gene
expression data analysis [26,27]. The main advantage with
this definition of distance is the fact that it is possible
to interpret the clustering process by a Granger causality
concept.
Another necessary concept is the idea of degree of a

time series xit (vertex vi) which can be defined as

Definition 3. Degree of xit is defined by:

degree(xit) = in-degree(xit) + out-degree(xit)
2

, (4)

where in-degree and out-degree are respectively

in-degree(xit) = |CCA(xit ,Xt−1|Xt\{Xt−1})| (5)

out-degree(xit) = |CCA(Xt , xit−1|Xt\{xit−1})|. (6)

Notice that in-degree and out-degree represent the total
information flow that “enters” and “leaves” the vertex vi,
respectively. Therefore, the degree of vertex vi contains
the total information flow passing through vertex vi.
Without loss of generality, it is possible to extend the

concept of degree of a vertex vi (time series xit) to a set of
time series (sub-network) Xu

t , where u = 1, . . . , k and k is
the number of sub-networks.

Definition 4. Degree of sub-network Xu
t is defined by:

degree(Xu
t ) = in-degree(Xu

t ) + out-degree(Xu
t )

2
, (7)

where in-degree and out-degree are respectively

in-degree(Xu
t ) = |CCA(Xu

t ,Xt−1|Xt\{Xt−1})|, (8)

out-degree(Xu
t ) = |CCA(Xt ,Xu

t−1|Xt\{Xu
t−1})|. (9)

Now, by using the definitions of distance and degrees
for time series and sets of time series in terms of Granger
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causality, it is possible to develop a spectral clustering-
based algorithm to identify sub-networks (set of time
series that are highly connected within sets and poorly
connected between sets) in the regulatory networks. The
algorithm based on spectral clustering [25] is as follows:

Input: The p time series (xit ; i = 1, . . . , p) and the
number k of sub-networks to construct.
Step 1: LetW be the (p × p) symmetric weighted
adjacency matrix where
wi,j = wj,i = 1 − dist(xit ; x

j
t), i, j = 1, . . . , p.

Step 2: Compute the non-normalized (p × p)
Laplacian matrix L as (Mohar, 1991)

L = D − W (10)

where D is the (p × p) diagonal matrix with the
degrees d1, . . . , dp (degree(xit) = di; i = 1, . . . , p) on
the diagonal.
Step 3: Compute the first k eigenvectors {e1, . . . , ek}
(corresponding to the k largest eigenvalues) of L.
Step 4: Let U ∈ �p×k be the matrix containing the
vectors {e1, . . . , ek} as columns.
Step 5: For i = 1, . . . , p, let yi ∈ �k be the vector
corresponding to the i th row of U.
Step 6: Cluster the points (yi)i=1,...,p ∈ �k with the
k-means algorithm into clusters {X1, . . . ,Xk}. For
k-means, one may select a large number of initial
values to achieve (or to be closer) the global
optimum configuration. In our simulations, we
generated 100 different initial values.
Output: Sub-networks {X1, . . . ,Xk}.

Notice that this clustering approach does not infer the
entire structure of the network.

Estimation of the number of clusters
The method presented so far describes a framework for
clustering genes (time series) using their topological prox-
imity in terms of Granger causality.
Now, the challenge consists in determining the opti-

mum number of sub-networks k. The choice of the num-
ber of sub-networks k is often difficult depending on what
the researcher is interested in. In our specific problem,
one is interested in identifying the clusters presenting
dense connectivity within a cluster and sparse connectiv-
ity between clusters.
In order to determine the most appropriate number of

clusters in this specific context, we used a variant of the
silhouette method [28].
Let us first define the cluster index s(i) in the case of

dissimilarities. Take any time series xit in the data set,
and denote by A the sub-network to which it has been
assigned. When sub-network A contains other time series
apart from xit , then we can compute: a(i) = dist(xit ,A),

which is the average dissimilarity of xit to A. Let us now
consider any sub-networkCwhich is different fromA and
compute: dist(xit ,C) which is the dissimilarity of xit to C.
After computing dist(xit ,C) for all sub-networks C �= A,
we set the smallest of those numbers and denote it by
b(i) = minC�=Adist(xit ,C). The sub-network B for which
this minimum value is attained (that is, dist(xit ,B) = b(i))
we call the neighbor sub-network, or cluster of xit . The
neighbor cluster would be the second-best cluster for time
series xit . In other words, if xit could not belong to sub-
network A, the best sub-network to belong to would be B.
Therefore, b(i) is very useful to know the best alternative
cluster for the time series in the network. Note that the
construction of b(i) depends on the availability of other
sub-networks apart from A, thus it is necessary to assume
that there is more than one sub-network k within a given
network [28].
After calculating a(i) and b(i), the cluster index s(i) can

be obtained by combining them as follows:

s(i) = b(i) − a(i)
max(a(i), b(i))

. (11)

Indeed, from the above definition we easily see that
−1 ≤ s(i) ≤ 1 for each time series xit . Therefore, there are
at least three cases to be analyzed, namely, when s(i) ≈ 1
or s(i) ≈ 0 or s(i) ≈ −1. For cluster index s(i) to be close
to one we require a(i) 	 b(i). As a(i) is a measure of how
dissimilar i is to its own sub-network, a small value means
it is well matched. Furthermore, a large b(i) implies that i
is badly matched to its neighboring sub-network. Thus, a
cluster index s(i) close to onemeans that the gene is appro-
priately clustered. If s(i) is close to negative one, then by
the same logic we see that xit would be more appropriate if
it was clustered in its neighboring sub-network. A cluster
index s(i) near zero means that the gene is on the border
of two sub-networks. In other words, the cluster index s(i)
can be interpreted as the fitness of the time series xit to the
assigned sub-network.
The average cluster index s(i) of a sub-network is a

measure of how tightly grouped all the genes in the sub-
network are. Thus, the average cluster index s(i) of the
entire dataset is a measure of how appropriately the genes
have been clustered in a topological point of view and in
terms of Granger causality.

Estimation of the number of clusters in biological data
In order to estimate the most appropriate number of
sub-networks present in the data set, we estimate the
average cluster index s of the entire dataset for each
number of clusters k. When the number of identified
sub-networks is equal or lower than the adequate num-
ber of sub-networks, the cluster index values are very
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Figure 2 (a) The representation of network with four clusters; (b) The network obtained by applying the proposedmethod with four
clusters (k=4); (c) The representation of the network when the number of clusters is set to five; (d) The network obtained by applying the
proposedmethod with five clusters (k=5). The solid edges represent Granger causality. Notice that the structure of the “true” network ((a) and
(c)) is not observed and it can only be estimated.

similar. However, when the number of identified sub-
networks becomes higher than the adequate number of
sub-networks, the cluster index value s decreases abruptly.
This is due to the fact that one of the highly connected
sub-networks is split into two new sub-networks. Notice
that these two new sub-networks present high connec-
tivity between them because they are in fact, only one
sub-network. In order to illustrate this event, see Figure 2
for an example. In Figure 2a, genes in cluster 1 are highly
interconnected. Now, suppose that one wants to increase
the number of clusters by splitting cluster 1 into two
clusters namely clusters 1 and 5 (Figure 2c). Notice that
clusters 1 and 5 are highly connected between them. If
the number of clusters is higher than the adequate num-
ber of clusters (four, in our case), the value s decreases
substantially, since the Granger causality between clusters
increases and the within cluster decreases. The breakpoint
where the value s decreases abruptly can be used to deter-
mine the adequate number of sub-networks. In fact, this
can be visually identified by analyzing the breakpoint at
the plot similarly to the standard elbow method used in k-
means. However, if one wants to determine the breakpoint
in an objective manner, this can be done by adjusting two
linear regressions, one with the first q dots and another
with the remaining dots, thus identifying the breakpoint

(the value q) that minimizes the sum of squared errors
(Figure 3).

Network construction
The network connecting clusters is constructed fol-
lowing procedures previously described [20,21]. Briefly,
after Classification ExpectationMaximization (CEM) [29]
Principal Component Analysis (PCA) is used to remove
redundancy and to extract the eigen-time series from
each cluster. PCA allows us to keep only the most sig-
nificant components leading to variability in the dataset,
thus reducing the number of variables for subsequent
processing. In this study, we retained only components
accounting for more than 5% of the temporal variance in
each cluster [22]. The eigen-time series are then clustered
as described in the section Functional clustering and the
network can be inferred by applying the method proposed
by [20,21].
The Granger causality between cluster is identified by:

CCA(Xi
t ,X

j
t−1|Xt\{Xj

t−1}) = ρ̂ for all i, j = 1, . . . , k (12)

where ρ̂ is the sample canonical correlation between the
sets Xi

t and Xj
t−1 partialized by all information contained

in Xt minus the set Xj
t−1.



Fujita et al. BMC Systems Biology 2012, 6:137 Page 6 of 12
http://www.biomedcentral.com/1752-0509/6/137

Number of sub-networks 

C
lu

st
er

 in
de

x 
va

lu
e 

1 2 3 4 5 6 

of sub-networks 

Figure 3 The optimum number of sub-networks is indicated by
the breakpoint in the graph. The breakpoint appears when the
number of sub-networks is greater than the adequate number of
sub-networks. The breakpoint selection criterion is based on two
linear regressions that best fit the data.

Then, test
H0 : CCA(Xi

t ,X
j
t−1|Xt\{Xj

t−1}) = ρ̂ = 0 (Granger non-
causality)
H1 : CCA(Xi

t ,X
j
t−1|Xt\{Xj

t−1}) = ρ̂ �= 0 (Granger
causality) where H0 and H1 are the null and alternative
hypothesis, respectively.

Simulations
Four sets of Monte Carlo simulations were carried
out in order to evaluate the proposed approach under
controlled conditions. The first scenario represents four
sub-networks without Granger causality between them
(Figure 4a). The second scenario consists of four sub-
networks constituting a cyclic graph (Figure 4b). The third
scenario presents a feedback loop between sub-networks
A and B (Figure 4c). The fourth scenario is composed of a
network with one sub-network (sub-network D) that only
receives Granger causality and one sub-network (sub-
network A) that only sends Granger causality (Figure 4d).
Since biological data usually possess several highly corre-
lated genes (genes which hold the same information from
a statistical stand point), we constructed 10 highly corre-
lated time series for each xit , i = 1, . . . , 20. In other words,
x1t is represented by 10 time series with correlation of 0.6
between them, x2t is represented by 10 time series with
correlation of 0.6 between them and so on. Therefore,
instead of 20 time series, each scenario is in fact composed
of 200 time series.
For each scenario, time series lengths varied: 50, 75,

1000 and 200 time points. The number of repetitions
for each scenario is 1,000. The synthetic gene expres-
sion time series data in sub-networks A, B, C and D
were generated by the following equations described
below.

A 

B 

C 

D 

A B 

C D 

A B C 

D 

A 

B 

C D 

(a)    (b)

(c) (d)

Figure 4 (a) Four independent sub-networks without Granger causality between them; (b) Four sub-networks in a cyclic graph; (c)
Feedback loop between sub-networks A and B; (d) A network between sub-networks, where sub-networks A only sends Granger
causality and D only receives Granger Causality.
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Simulation 1:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xA1,t = βxA1,t−1 − βxA4,t−1 + βxA3,t−1 + ε1,t

xA2,t = βxA1,t−1 − βxA3,t−1 + βxA4,t−1 + ε2,t

xA3,t = βxA1,t−1 − βxA5,t−1 + ε3,t

xA4,t = βxA3,t−1 − βxA5,t−1 + ε4,t

xA5,t = βxA2,t−1 − βxA3,t−1 + βxA4,t−1 + ε5,t

xB6,t = βxB9,t−1 − βxB7,t−1 + ε6,t

xB7,t = βxB10,t−1 − βxB7,t−1 + ε7,t

xB8,t = βxB10,t−1 − βxB6,t−1 + βxB7,t−1 + ε8,t

xB9,t = βxB7,t−1 − βxB8,t−1 + βxB9,t−1 − βxB6,t−1 + ε9,t

xB10,t = βxB10,t−1 − βxB6,t−1 + βxB9,t−1 + ε10,t

xC11,t = βxC12,t−1 − βxC15,t−1 + ε11,t

xC12,t = βxC14,t−1 − βxC13,t−1 + ε12,t

xC13,t = βxC14,t−1 − βxC11,t−1 + ε13,t

xC14,t = βxC13,t−1 − βxC11,t−1 + ε14,t

xC15,t = βxC15,t−1 − βxC12,t−1 + βxC13,t−1 − βxC14,t−1 + ε15,t

xD16,t = βxD19,t−1 − βxD20,t−1 + βxD17,t−1 − βxD18,t−1 + ε16,t

xD17,t = βxD20,t−1 − βxD17,t−1 + βxD18,t−1 + ε17,t

xD18,t = βxD20,t−1 − βxD18,t−1 + ε18,t

xD19,t = βxD17,t−1 − βxD18,t−1 + ε19,t

xD20,t = βxD20,t−1 − βxD19,t−1 + ε20,t

Simulation 2:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xA1,t = βxA1,t−1 − βxA4,t−1 + βxA3,t−1 + ε1,t

xA2,t = βxA1,t−1 − βxA3,t−1 + βxA4,t−1 + ε2,t

xA3,t = βxA1,t−1 − βxA5,t−1 + γ xD19,t−1 + ε3,t

xA4,t = βxA3,t−1 − βxA5,t−1 + ε4,t

xA5,t = βxA2,t−1 − βxA3,t−1 + βxA4,t−1 + ε5,t

xB6,t = βxB9,t−1 − βxB7,t−1 + γ xA3,t−1 + ε6,t

xB7,t = βxB10,t−1 − βxB7,t−1 + ε7,t

xB8,t = βxB10,t−1 − βxB6,t−1 + βxB7,t−1 + ε8,t

xB9,t = βxB7,t−1 − βxB8,t−1 + βxB9,t−1 − βxB6,t−1 + ε9,t

xB10,t = βxB10,t−1 − βxB6,t−1 + βxB9,t−1 + ε10,t

xC11,t = βxC12,t−1 − βxC15,t−1 + ε11,t

xC12,t = βxC14,t−1 − βxC13,t−1 + ε12,t

xC13,t = βxC14,t−1 − βxC11,t−1 + ε13,t

xC14,t = βxC13,t−1 − βxC11,t−1 + γ xB10,t−1 + ε14,t

xC15,t = βxC15,t−1 − βxC12,t−1 + βxC13,t−1 − βxC14,t−1 + ε15,t

xD16,t = βxD19,t−1 − βxD20,t−1 + βxD17,t−1 − βxD18,t−1 + ε16,t

xD17,t = βxD20,t−1 − βxD17,t−1 + βxD18,t−1 + ε17,t

xD18,t = βxD20,t−1 − βxD18,t−1 + ε18,t

xD19,t = βxD17,t−1 − βxD18,t−1 + ε19,t

xD20,t = βxD20,t−1 − βxD19,t−1 + γ xC15,t−1 + ε20,t

Simulation 3:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xA1,t = βxA1,t−1 − βxA4,t−1 + βxA3,t−1 + ε1,t

xA2,t = βxA1,t−1 − βxA3,t−1 + βxA4,t−1 + ε2,t

xA3,t = βxA1,t−1 − βxA5,t−1 + γ xB6,t−1 + ε3,t

xA4,t = βxA3,t−1 − βxA5,t−1 + ε4,t

xA5,t = βxA2,t−1 − βxA3,t−1 + βxA4,t−1 + ε5,t

xB6,t = βxB9,t−1 − βxB7,t−1 + ε6,t

xB7,t = βxB10,t−1 − βxB7,t−1 + γ xA3,t−1 + ε7,t

xB8,t = βxB10,t−1 − βxB6,t−1 + βxB7,t−1 + ε8,t

xB9,t = βxB7,t−1 − βxB8,t−1 + βxB9,t−1 − βxB6,t−1 + ε9,t

xB10,t = βxB10,t−1 − βxB6,t−1 + βxB9,t−1 + ε10,t

xC11,t = βxC12,t−1 − βxC15,t−1 + ε11,t

xC12,t = βxC14,t−1 − βxC13,t−1 + ε12,t

xC13,t = βxC14,t−1 − βxC11,t−1 + ε13,t

xC14,t = βxC13,t−1 − βxC11,t−1 + γ xB10,t−1 + ε14,t

xC15,t = βxC15,t−1 − βxC12,t−1 + βxC13,t−1 − βxC14,t−1 + ε15,t

xD16,t = βxD19,t−1 − βxD20,t−1 + βxD17,t−1 − βxD18,t−1 + ε16,t

xD17,t = βxD20,t−1 − βxD17,t−1 + βxD18,t−1 + ε17,t

xD18,t = βxD20,t−1 − βxD18,t−1 + ε18,t

xD19,t = βxD17,t−1 − βxD18,t−1 + ε19,t

xD20,t = βxD20,t−1 − βxD19,t−1 + γ xC15,t−1 + ε20,t

Simulation 4:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xA1,t = βxA1,t−1 − βxA4,t−1 + βxA3,t−1 + ε1,t

xA2,t = βxA1,t−1 − βxA3,t−1 + βxA4,t−1 + ε2,t

xA3,t = βxA1,t−1 − βxA5,t−1 + ε3,t

xA4,t = βxA3,t−1 − βxA5,t−1 + ε4,t

xA5,t = βxA2,t−1 − βxA3,t−1 + βxA4,t−1 + ε5,t

xB6,t = βxB9,t−1 − βxB7,t−1 + ε6,t

xB7,t = βxB10,t−1 − βxB7,t−1 + γ xA3,t−1 + ε7,t

xB8,t = βxB10,t−1 − βxB6,t−1 + βxB7,t−1 + ε8,t

xB9,t = βxB7,t−1 − βxB8,t−1 + βxB9,t−1 − βxB6,t−1 + ε9,t

xB10,t = βxB10,t−1 − βxB6,t−1 + βxB9,t−1 + ε10,t

xC11,t = βxC12,t−1 − βxC15,t−1 + ε11,t

xC12,t = βxC14,t−1 − βxC13,t−1 + ε12,t

xC13,t = βxC14,t−1 − βxC11,t−1 + γ xB8,t−1 + ε13,t

xC14,t = βxC13,t−1 − βxC11,t−1 + γA
5,t−1 + ε14,t

xC15,t = βxC15,t−1 − βxC12,t−1 + βxC13,t−1 − βxC14,t−1 + ε15,t

xD16,t = βxD19,t−1 − βxD20,t−1 + βxD17,t−1 − βxD18,t−1 + ε16,t

xD17,t = βxD20,t−1 − βxD17,t−1 + βxD18,t−1 + ε17,t

xD18,t = βxD20,t−1 − βxD18,t−1 + ε18,t

xD19,t = βxD17,t−1 − βxD18,t−1 + ε19,t

xD20,t = βxD20,t−1 − βxD19,t−1 + γ xC15,t−1 + ε20,t
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where β = 0.6, γ = 0.3, εi,t ∼ N(0,�) with

� = I(20×20) ⊗ � (13)

and

� =

⎛
⎜⎜⎜⎜⎝

1 0.6 . . . 0.6

0.6 1
. . .

...
...

. . . . . . 0.6
0.6 . . . 0.6 1

⎞
⎟⎟⎟⎟⎠

(10×10)

(14)

for i = 1, . . . , 20.

Actual biological data
In order to illustrate an application of the proposed
approach, a dataset collected by [30] was used. The work
presents whole genome gene expression data during the
cell division cycle of a human cancer cell line (HeLa) char-
acterized using cDNA microarrays. The dataset contains
three complete cell cycles of ∼16 hours each, with a total
of 48 time points distributed at intervals of one hour. The
full dataset is available at: http://genome-www.stanford.
edu/Human-CellCycle/HeLa/.
In order to evaluate our proposed approach, we chose

to analyze the same gene set examined in Figure 5 of [10],
which comprised a set of 50 genes.

Results
Simulated data
In order to study the properties of the proposed func-
tional clustering method and to check its consistency, we
performed four simulations with distinct network charac-
teristics in terms of structure and Granger causality.
Table 1 describes the frequency that each number of

clusters was identified as optimal in each simulation and
time series length. Notice that the accuracy of the method
in identifying the correct number of clusters clearly con-
verges to 100% as the time series length increases (the

108642
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Figure 5 The optimum number of sub-networks in the actual
biological data is indicated by the breakpoint in the graph (the
optimum number in this case is three).

correct number of clusters is four for all the scenarios).
The same result was obtained with varying numbers of
sub-networks or when Granger causality within clusters
increased, demonstrating the consistency of the method.
Moreover, both the cluster indices value and the respec-
tive standard deviation for each simulation and time series
length are described. The average cluster index value
was calculated by using the value at the breakpoint as
described in Figure 3 in 1,000 repetitions. By analyzing
Table 1, it is possible to verify that the longer the time
series length, the smaller are the standard deviations and
the greater is the silhouette width demonstrating that the
method is consistent.
Table 2 describes the average of the frequency (in per-

centage) the time series were correctly clustered for each
scenario and each time series length given the correct
number of clusters. It is important to point out that the
number of correctly classified time series increases as the
time series length increases.
Table 3 represents the frequency (in percentage) each

edge of the simulated network was identified when the
estimated number of clusters were correctly identified as
four. The correctly identified edges are in bold. Since the
p-value threshold was set to 0.05, it is expected to iden-
tify ≈ 5% of false positive edges where there is indeed
no Granger causality. In fact, where there is no Granger
causality, the rate of false positives was controlled to
5%, and where there is Granger causality, the number of
identified edges is clearly higher than where there is no
Granger causality.

Biological data
By applying the method described in section Functional
clustering to the biological dataset, the optimum num-
ber of sub-networks was identified as three. Notice in
Figure 5 that there is a clear breakpoint when the number
of clusters is three.
Once clusters were obtained, the cluster-cluster net-

work (Figure 6) was modeled by applying the method
described in [20,21]. Two of the depicted clusters, clusters
one and two, provide interesting material for biological
interpretation. Genes belonging to cluster two highlight
expected interconnections in cell cycle regulation. For
instance, aberrant activation of signal transcription fac-
tors NF-κB or STAT3, and alterations in p53 status, have
each been reported to affect cell survival individually.
The presence of the three genes in the same cluster is
in agreement with a recent study which examined the
hypothesis that alterations in a signal network involv-
ing NF-κB, STAT3 and p53 could modulate expression
of proapoptotic BAX and antiapoptotic BCL-XL proteins,
promoting cell survival [31]. The authors show that over-
expression of p53 together with inhibition of NF-κB or
STAT3 induced greater increase in the BAX/BCL-XL ratio

http://genome-www.stanford.edu/Human-CellCycle/HeLa/
http://genome-www.stanford.edu/Human-CellCycle/HeLa/
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Table 1 Frequency of the selected number of clusters for each scenario and time series length

Time series length/Number of clusters 1 2 3 4 5 6 silhouette width

Scenario 1

50 0 0 48 700 252 0 0.502 (0.098)

75 0 0 1 785 214 0 0.582 (0.054)

100 0 0 3 805 192 0 0.610 (0.042)

200 0 0 4 825 171 0 0.641 (0.034)

Scenario 2

50 0 0 65 713 222 0 0.479 (0.112)

75 0 0 28 760 212 0 0.555 (0.071)

100 0 0 9 834 157 0 0.587 (0.050)

200 0 0 3 883 114 0 0.621 (0.029)

Scenario 3

50 0 0 63 666 271 0 0.461 (0.123)

75 0 0 18 784 198 0 0.552 (0.078)

100 0 0 8 851 141 0 0.586 (0.050)

200 0 0 6 883 111 0 0.618 (0.031)

Scenario 4

50 0 0 53 686 261 0 0.465 (0.110)

75 0 0 17 786 197 0 0.551 (0.075)

100 0 0 11 815 174 0 0.581 (0.055)

200 0 0 6 887 107 0 0.619 (0.033)

In bold are the correct number of clusters. Between brackets is one standard deviation for the silhouette width calculated in the breakpoint. For each scenario and
each time series length, the number of repetitions was set to 1,000.

than modulation of these transcription factors individu-
ally. As discussed earlier in this paper, this is a situation
in which similar patterns of gene expression are not suffi-
cient to comprehend the biological process.
In [10], a network depicting Granger interaction among

genes from this same gene dataset was presented. The
authors analyzed the network in the context of tumor
progression and identified gene-gene connections associ-
ated with NF-κB, p53, and STAT3. Here, cluster 1 groups
not only NF-κB, p53, and STAT3, but also the function-
ally associated gene BCL-XL, NF-κB regulator A20 and
targets IAP and iκBα. The presence of NF-κB and fibrob-
last growth factors (FGFs) and receptors (FGFRs) in the
same cluster is also in agreement with the previous work.
Members of the FGF family and NF-κB have been shown

Table 2 Average of the percentage of correctly clustered
time-series in 1,000 repetitions given the correct number
of clusters

Scenario/Time series length 50 75 100 200

1 78.8 96.0 98.9 99.9

2 72.9 91.2 95.8 99.2

3 71.6 90.6 95.2 99.7

4 68.9 88.7 93.7 99.1

to interact in various contexts and, despite distinct roles,
are involved in cell proliferation, migration and survival
[32,33].
Even thoughMCL-1 and P21 play important roles in cell

survival, and BAI1 is transcriptionally regulated by P53,
the analysis run here clustered them separately from P53
containing cluster. This result suggests that, in the con-
text of this dataset, their interaction is stronger with genes
such as c-JUN, also functionally related to cell survival,
proto-oncogeneMET and tumor suppressorMASPIN, for
instance. Also worth noticing is the interaction of this
cluster with the two members of cluster 3: FGF5 and FOP.
Like the other members of FGF family grouped in clus-
ter 2, FGF5 is involved in cell survival activities, while
FOP was originally discovered as a fusion partner with
FGFR1 in oncoproteins that give raise to stem cell myelo-
proliferative disorders. It would be interesting to identify
specific details regarding the intensity and direction of the
information flow within this cluster for a clearer under-
standing of their relationship in the context of cell cycle
progression.

Discussions
Fujita et al. [20,21] suggested both a concept of Granger
causality for sets of time series and a method for its



Fujita et al. BMC Systems Biology 2012, 6:137 Page 10 of 12
http://www.biomedcentral.com/1752-0509/6/137

Table 3 Percentage of edges with time series length equals to 50/75/100/200 when the estimated number of clusters
were correctly identified as four

from/to A B C D

Scenario 1

A 100/100/100/100 6.7/6.3/5.2/5.4 8.9/6.0/5.0/5.3 4.8/5.7/5.4/4.5

B 6.9/7.1/5.5/6.8 99.9/100/100/100 7.8/6.2/6.3/4.6 5.6/6.9/4.9/5.6

C 7.6/5.9/6.5/5.6 6.9/7.7/4.7/5.1 100/100/100/100 4.9/5.4/5.7/5.8

D 6.2/5.3/5.1/4.7 5.3/5.2/5.3/5.7 7.0/5.2/5.2/5.6 100/100/100/100

Scenario 2

A 100/100/100/100 28.9/59.8/80.4/99.7 8.0/6.4/6.8/5.2 6.4/6.6/5.0/5.0

B 5.4/5.3/5.5/4.6 100/100/100/100 29.6/60.9/82.1/99.9 6.4/6.3/5.7/5.7

C 7.5/5.4/6.7/4.5 8.8/6.6/6.6/6.3 100/100/100/100 23.0/50.4/71.2/99.1

D 17.6/35.5/51.2/95.4 6.5/4.2/3.4/5.0 12.5/10.4/7.5/5.0 100/100/100/100

Scenario 3

A 100/100/100/100 29.6/61.9/82.1/100 7.8/7.3/4.5/5.0 7.4/6.8/4.6/5.2

B 28.5/53.0/78.0/99.9 100/100/100/100 31.8/61.1/82.9/99.9 7.0/7.1/6.2/4.7

C 8.4/6.9/6.4/5.6 7.6/7.8/7.3/5.2 99.9/100/100/100 25.5/46.8/70.6/99.3

D 6.8/5.6/5.8/5.0 5.5/4.5/5.7/4.3 13.9/8.2/6.1/5.4 100/100/100/100

Scenario 4

A 100/100/100/100 25.1/52.6/75.8/99.6 22.9/41.8/59.5/96.0 6.8/5.8/5.2/4.7

B 6.7/5.9/5.7/5.9 100/100/100/100 28.6/58.4/81.9/100 7.9/6.0/6.1/5.2

C 9.3/8.8/6.1/6.2 8.8/6.2/6.3/4.5 100/100/100/100 26.5/53.2/75.4/99.2

D 5.4/5.8/5.1/4.7 5.8/5.0/4.2/5.2 14.9/11.9/7.9/5.4 100/100/100/100

The rows and columns represent the clusters A, B, C, and D. The rate of false positives was controlled to 5% (p-value < 0.05). The edges which actually exists in the
network are shown in bold.

identification with a statistical test to control the rate of
false positives. Although this method is useful for the
identification of Granger causality between sets of time
series in Bioinformatics and Neuroscience [22], the appli-
cation was limited to pre-defined clusters, i.e., the time
series composing each cluster needed to be previously
known. We developed an objective method to define clus-
ters based on the intuitive concept that a gene cluster
should interact more intensely in terms of Granger causal-
ity within itself than with neighboring clusters.
Krishna et al. [34] proposed a Granger causality cluster-

ing method based on the structure of a pair-wise network.
Their method consists in identifying pairwise Granger
causality between gene expression time series and then,
by applying the method proposed by Bader and Hogue
(2003), to detect dense regions in the network. The dif-
ference between their approach and ours is that they take
into account the number of edges, and the density of the
network which is given by the number of estimated edges
divided by the total number of possible edges. The pres-
ence of an edge is determined by the p-value’s threshold.
Notice that depending on the threshold, the results can
change. In our framework, we take into account the weight
of Granger causality between sets of time series in order

to identify how close two sets are. Consequently, it is pos-
sible to obtain a notion of distance between two clusters
based on Granger causality, i.e., a continuous measure
(distance in terms of Granger causality) instead of a dis-
crete measure (presence or absence of an edge). Moreover,
by using the concept of Granger causality between sets of
time series proposed by [20], the concept of density of a
network can be easily defined in terms of Granger causal-
ity instead of a density based on the number of edges as
proposed by [34].
A disadvantage of our method is that it cannot be

applied for very large datasets. The larger is the number of
time series (genes), or the higher the order of the autore-
gressive process to be analyzed, the higher the chance
to generate non-invertible covariance matrices in the cal-
culation of distance (definition 2) and degree (definition
4) between clusters. We believe that this drawback can
be overcome through sparse canonical correlation analy-
sis [35], recently proposed in the literature. However, this
topic deserves further studies before it can be used in both
clustering and identification of Granger causality between
sets of time series, since penalized methods relying on
L1 penalization [35] or kernel [36] may present biased
estimators.
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Figure 6 The network obtained with three (k=3) sub-networks. Solid arrows are significant Granger causality with p-value < 0.05 and dashed
arrow is significant Granger causality with p-value < 0.10. The circles represent the clusters.

We only analyzed the autoregressive process of order
one because gene expression time series data, possibly due
to experimental limitations, are typically not large. How-
ever, if one is interested in analyzing greater orders, one
minus the maximum canonical correlation analysis value
among all the tested autoregressive orders can be used as
the distance measure between two time series.
The clustering algorithm used here is based on the well-

known spectral clustering. Although results were satisfac-
tory, other graph clustering methods may be used. The
normalized cuts algorithm proposed by [37], for instance,
presents better results in non Gaussian data sets.
Finally, which biological process underlie time series

datasets correlation, remains a difficult question to be
answered. Studies suggest that correlated genes may
belong to common pathways or present the same bio-
logical function. However, it is also known that methods
based exclusively on correlation cannot reconstruct entire
gene networks. Further studies in the field of systems
biologymight be able to answer this question in the future.

Conclusions
We propose a time series clustering approach based on
Granger causality and a method to determine the num-
ber of clusters that best fit the data. This method consists
of (1) the definition of degree and distance, usually used
in graph theory but now generalized for time series data
analysis in terms of Granger causality; (2) a clustering
algorithm based on spectral clustering and (3) a criterion
to determine the number of clusters. We demonstrate, by

simulations, that our approach is consistent evenwhen the
number of genes is greater than the time series’ length.
We believe that this approach can be useful to under-

stand how gene expression time series relate to each other,
and therefore help in the functional interpretation of data.
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