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Functional coefficient autoregressive models: estimation and tests
of hypotheses

Rong Chen'
Department of Statistics

Texas A&M University

SUMMARY

In this paper we study nonparametric estimation and hypothesis testing procedures for the
functional coefficient AR (FAR) models of the form X; = f1(X;—q)X;1 + ...+ fp(Xi—a) Xie—p + €1,
first proposed by Chen and Tsay (1993). As a direct generalization of the linear AR model, the
FAR model is a rich class of models that includes many successful parametric nonlinear time series
models such as the threshold AR models of Tong (1983), exponential AR models of Haggan and
Ozaki (1978) and many others. We propose a local linear estimation procedure for estimating
the coefficient functions and study its asymptotic properties. In addition, we propose two testing
procedures. The first one tests whether all the coefficient functions are constant (i.e. whether the
process is linear). The second one tests if all the coefficient functions are continuous, (i.e. if any

threshold type of nonlinearity presents in the process). Some simulation results are presented.
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1. INTRODUCTION

Nonlinear time series analysis has been one of the major areas of research in time series for
more than two decades now. Many nonlinear parametric models such as the threshold AR (TAR)
model of Tong (1983, 1990), the exponential AR (EXPAR) model of Haggan and Ozaki (1978) and
the smooth transition AR (STAR) model of Granger and Terasvirta (1993) and Terasvirta (1994)
have been proposed and successfully applied in many important real problems. Tong (1990) and
Priestley (1988) provided many foundations of parametric nonlinear time sereis analysis. A more
recent review of the subject can be found in Tjgsteim (1994).

It is noted that although in many applications background knowledge can often shed lights on
finding an appropriate model, other applications lack such knowledge and often require trial-and-
error type of model selection procedures. To overcome the subjectivity in model selection, Chen
and Tsay (1993) proposed a class of models referred to as functional coefficient (FAR) models which
assumes the form of

Xi = [i(Xi—a) Xem1 + oo+ fp(Xi—g) Xi—p + & (1)

where &, is white noise with finite variance o2 and is independent of X for all s < ¢. It is a direct
extension of the linear AR model, but allows the coefficients varying according to a threshold
variable X;_4. They suggested using nonparametric procedures to determine the functions in the
model, hence allowing ‘data to speak for themselves’ regarding the model to be used. It is noted
that many of the successful parametric nonlinear models belong to the FAR family. For example,
if the functions f;(z) in (1) are step functions f;(z) = a; + b;I(z > ¢), we have the TAR model.
When fi(z) = a; + bie_W?, the model becomes an EXPAR model. STAR and many other models
also belong to this class. Hence, nonparametric determination of the functional forms in model
(1) may provide objective guild-lines on choosing an appropriate parametric model. It also allows
researchers to develop new models that are useful in their applications by specifying a parametric
form for the coefficient functions based on the nonparametric estimates. In addition, nonparametric
estimators can also be the final solution to the problem on hand.

Nonparametric procedures have been used extensively in time series analysis. Gyorfi et al
(1989), Tjosteim (1994), Hardle, Liitkepohl and Chen (1997) and Hart (1996) have given selective
reviews on this topic. These procedures borrow many nonparametric procedures developed in
regression context into time series analysis.

In this paper, we concentrate on three aspects of the FAR models. First, in section 2, we pro-

pose a local linear estimator for estimating the coefficient functions nonparametrically. It is similar



to the running window procedure proposed by Chen and Tsay (1993), though we use Kernel weight
functions. We systematically study the asymptotic properties of the estimator. Note that this
procedure is slightly different from local polynomial curve estimation procedures of Cleveland and
Devlin (1988), Fan and Gijbels (1996) and Tsybakov (1986). Here, we are interested in estimating
the coefficient functions. Hastie and Tibshirani (1993) have proposed similar estimation procedures
in regression context for ‘varying coefficient models’, which is similar to the FAR model.

Second, in section 3, we develop a procedure to test if the coefficient functions are constant
functions. It is basically a linearity test since when all the coefficient functions are constant, the FAR
model becomes a linear AR model. There are many linearity tests available in the literature. For
example. Keenan (1985), Tsay (1986) and Luukkonen, Saikkonen and Terisvirta (1988) proposed
different forms of Lagrange multiplier type of tests. Chan and Tong (1986) and Tsay (1989)
considered testing threshold type of nonlinearity. Nonparametrically, Hjellvik and Tjgstheim (1995,
1996) and Hjellvik, Yao and Tjostheim (1997) developed linearity tests by comparing nonparametric
and linear estimates of E[X; | X;_x|. Here we attack this problem within the FAR model framework.

Third, in section 4, we develop yet another testing procedure, to detect if there are any dis-
continuous points in the coefficient functions. This is of interest due to the fact that all threshold
type of models have jump points in the coefficient functions. Since the class of threshold models is
one of the most important and widely used classes of nonlinear time series models, it is certainly
important to be able to detect if there is any threshold type of nonlinearity when one uses FAR
models as a tool for model selection. The test is also of interest when the nonparametric estimate
is treated as a final solution of the problem. Most of the nonparametric estimators are designed to
estimate continuous functions. They are not consistent at discontinuous points. In finite samples,
they tend to have large bias in the neighborhood of the discontinuous points. Hence it is important
to detect the existence of jump points, in order to select suitable nonparametric estimators. The
proposed testing procedure is based on nonparametric estimation of the coefficient functions with
one-sided kernels and the fact that at a discontinuous point, estimates with left-side kernels and

right-side kernels are significantly different while at continuous points they are not.
2. NONPARAMETRIC ESTIMATION OF THE FAR MODEL

We begin this section by mentioning that, for d > p, we may also include an intercept coefficient

function in model (1), resulting in

X = fo(Xi—a) + i(Xi—a) Xom1 + o+ fp(X—a) Xo—p + &4



However, when d < p, such a term will create ambiguity. In what follows, we will only consider
model (1) without the fy term.
We propose the following local linear estimator to estimate the functions f(z) = (f1(z),..., fp(z))’
nonparametrically. Let
~ n ’
f(z) =argmin 3 (X; — X;B8)*Ky(Xi—q — 2), (2)
t=0+1
where X; = (Xy—1,--+, Xt—p) and Kj(u) = h 1K (u/h) where K is a kernel function, h is the
bandwidth and £ = max{d, p}. It is easily seen that

flz) = (X'W,X) ' X'W,Y,

where X = [X o1 :---: X)), Y = (Xp41,- -+, Xp) and W, is a diagonal matrix with the diagonal
elements being Kp(X; g —z) fort =0+1,...,n.

The asymptotic properties of the above estimator can be summarized in the following theorem.
The theorem concerns only the continuous points. We will study the case of discontinuous coefficient
functions in section 4.

Define pp = [u?K (u)du and K5 = [ K%(u)du. Let p; j 4 be the joint stationary density of the
triple (X;—;, X;—;, X;_4) and p(z) be the stationary marginal density of X;.

THEOREM 0.1 Let x be a continuous point of the coefficient functions fi,...,f,. Under as-
sumptions (A1) to (A8) in the appendiz, we have

n?/5(f(z) — f(z) — B2b(z)) 2> N,(0,6 10 KA (2)),

where A(z) = p(z)E[X X} | X;_q = x] and b(z) = ps A~ (2)B(x) where B(z) is a vector with

i-th element being
2 1 n / !
Z / uv {Ef] (x)pi,j,d(u’ v, {L') + f](x)pz,],d(u’ v, {L')} dudv,
j=1

with f]'(x) and f]”($) being the first and second derivative of f;(x), respectively, and p;,j_d being the

partial derivative with respect to the third argument.

The proof of the theorem is given in the appendix. We note that the asymptotic result is
similar to that of kernel estimation of a response curve. It can be easily extended to resemble that
of local polynomial estimation of a response curve using the following estimator:

F(z) = arggmin 3" (X; — X}B = Yiy)Kn(Xi_q — ),
B =it



with X as defined beforeand Yy = (X;1—2)2,...,(X¢ p—12)%,..., (X 1—2)k, ... (Xp p—2)F)".
It should entertain many nice properties of the local polynomial estimator, though the derivation
of the asymptotic distribution becomes more complicated and tedious. In this paper we restrict
ourselves to estimator (2).

The theorem shows that the estimator has the rate of convergence of one dimensional smooth-
ing. As a consequence, estimation of the response surface E[X; | X; = ] will have the same
rate, hence does not suffer the curse of dimensionality as that in direct p-dimensional estima-
tion of the surface. This advantage is due to the special structure of the model, which serves as
a dimension reduction tool. Specifically, let * = (z1,...,z,)". The conditional mean function

m(z) = E[X, | X; = 2] = @' f(4) can be estimated by m(z) = @' f(z4) and we have
Corollary 0.1 Under conditions of theorem 0.1, we have
n?%(m(z) — m(z) — B22'b(z4)) — N(0, 87 02 K2z' A~ (z4)x).

Automatic bandwidth selection procedure is always one of the key ingredients in practical im-
plementation of nonparametric procedures. There are many approaches such as the cross-validation
approach of Hirdle and Vieu (1992) and Cheng and Tong (1992) in time series, the plug-in ap-
proach of Sheather (1983, 1986), Ruppert, Sheather, and Wand (1995), Park and Marron (1990)
and many others in regression. It is somewhat difficult to use the plug-in approach here since
the bias term involves the partial derivative of a three dimensional density, which is not easy to
estimate. Hence we suggest to use the cross-validation procedure through the response surface

estimation. Specifically, define
3 ~ A
cwh) = Y (Xi=Y fp;” (Xica)Xij)’w(Xi—a),
i=0+1 j=1

where f,&}i),j =1,...,p is that in (2) without the ¢ = i term in the summation and w is a weight
function with a compact support.

Consider a second order EXPAR model (3),
(EXPAR(2)) X; = (0.5—1.1e7%X1)X, | + (0.3 — 0.5e7%0%71) X, 5 + 0.2¢,. (3)

Figure 1 shows the estimation results of a simulated series from (3) with ¢, ~ N(0,1) and 400
samples, using the optimal cross-validation bandwidth with the quartic kernel function K(u) =

0.9375(1 — u?)2I(Ju| < 1). The solid lines are the true function.
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Figure 1: Function estimation of a simulated series from model (3). The solid lines

are the true functions

Figure 2 shows the cross-validation curves of 5 series generated from the above process. We

can see that the procedure is reasonablely robust .
3. TESTING LINEARITY IN FAR MODELS

When all the coefficient functions are constant functions, an FAR model becomes a linear AR
model. In this section we develop a testing procedure to determine if the process is linear.

Let f(z) be that in (2) and 8 = (0, --- ,0p) be the Yule-Walker estimator of a linear AR(p)

model. We define the following statistic to test linearity:
1 n
T=="Y didw(X;q), (4)
t=C+1

where d; = (X'W, X)(f(X;_4) — 0) with W, being a diagonal matrix with diagonal element being
K(X; g— X3 4) fori =4+ 1,...,n. The weight function w has a compact support, designed
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Figure 2: Cross-validation curves for 5 simulated series from model (3)

to reduce the boundary effects on the test statistic. Note that traditionally one would use d;
F(Xi—a) — 6 in (4).

The use of d; in its current form is purely for the simplicity and weaker
conditions in obtaining the asymptotic distribution of 7'

We have the following theorem for the asymptotic distribution of the test statistic 7'
THEOREM 0.2 Under conditions (A2), (B1) and (B2) listed in the appendiz, and the null hy-
pothesis that fj(z) = 0; for j =1,...,p, with all the roots of 2P — 612P~! —
unit circle, we have

— 0, = 0 inside the
where

nht?T 2, N(h™ay, s2)

p
ag = 2K30°E[> | X} 1p(Xi—a)w(Xi—q)],
k=1



and
s2 = 04/K(U)K(U)K(u —2)K (v — z)dudvdz/s4($)p2($)w2 (z)dz,
where s*(z) = E[(C0_ Xi—k)? | Xi—q = ).

THEOREM 0.3 Under the conditions (A1) to (A4), (B1) and (B2) listed in the appendiz, and

the alternative hypothesis that at least one of the coefficient functions f;(z) are not constant, then
D
T — N(ay,s%/n),

where
a1 = E[(f(Xt) — 0) A(Xt) A(X:) (f (Xz) — 0)w(X3)],
and
st = Var[(£f(X;) — 0)' A(X) A(Xy)(F(Xy) — 0)w(Xy)],
where A(x) = p(z)E[X X} | X;_q = x], and 0 is the coefficient of the best linear prediction of X;
given Xp1,..., Xt_p.

The theorem shows that as nh — oo, T' goes to zero in probability under the null hypothesis.
Hence, large value of the statistic indicates departure from linearity. It also shows that under the
null hypothesis, nh!'/2T is asymptotic normal with finite variance, but the mean goes to infinity.
This type of results were observed by Hérdle and Mammen (1993), Hjvellik et al. (1997) in similar
problems. The proof of the theorems basically follows similar proofs in Yoshihara (1976) and
Hjvellik et al. (1997). First we obtain the Hoeffding’s decomposition of the test statistic. Then a
martingale central limit theorem is used on the resulting U-statistic. The proof is tedious and is
omitted here.

Although Theorem 0.2 can be used to obtain asymptotic level of the test statistic, it is noted
by many researchers (e.g. Skaug and Tjgstheim 1993, Hjellvik and Tjgstheim 1995, 1996) that
in finite samples, the asymptotic level does not perform well in most cases. Hence, for practical
purposes, we suggest to use bootstrap procedures.

Specifically, first we obtain residuals
p ~
& =Xi— Y iXii,
i=1

where qgi, i = 1,...,p are the Yule-Walker estimates of a linear AR(p) model fitted to the data.

Then we create bootstrap versions of the process

p
X; = Z ¢1X;—Z + 6:7
=1



o | AR(2) AR(1) | EXPAR(2) TAR STAR EXPAR(1)

0.10 10 4 96 100 94 40
0.05 8 4 94 100 90 24
0.01 2 2 84 90 74 10

Table 1: Percentage of rejection of the linearity test

fort =¢+1,...,n, where e} are independently sampled from {ésy1,...,é,} with replacement and
X =X, fort=1,...,¢. Then a bootstrap value of test statistic 7 is obtained by replacing X;
in the place of X; in calculating the test statistic (4). The bootstrap null distribution can be then
obtained.

In Table 1 we present a small scale simulation for checking the performance of the proposed

tests. In addition to model (3), we include five other models

(AR(2 5

(AR(1

) X; = 0.6X,_1 — 0.3X,_5 + &4, (5)
) (6)
(TAR) X, = (0.4 — LOI(X;_1 > 0))Xy_1 + (—0.8 + LOI(X;_y > ) Xyo+ 2. (7)
) (8)
) (9)

)
) Xt = 0.5Xt71 + ¢, 6

(STAR X; = (0.5 — TH)Xt 1+ (0.3 — _7&“)& 2 + &, 8

(EXPAR(1) X, = 0.5 — 1.1e75%1 40.2¢, 9

For each model we generated 50 series of size 400. We use 50 bootstrap replications to obtain the
bootstrap null distribution. For each model, we use a common bandwidth obtained by averaging 5
cross-validation bandwidths of five simulated samples. Table 1 presents the percentage of rejection
of the null hypothesis under three different « levels. From the table we can see that the proposed

testing procedure works reasonablely well.
4. TESTING THRESHOLD TYPE OF DISCONTINUITY

First we define local linear estimates of the coefficient functions using one-sided kernels. Let

F(z) =lims_oy f(z +6) and £ (z) = lims_,o_ f(z + §). Define

~

+ L -
f (z) =argmin > (X, - X|B8)°K;[ (X;_4 — z),
t=0+1



and

f (@) =argmin 3 (X, - X|B)° K, (X—a — ),

t=0+1
where K, (u) = 2K, (u)I(u > 0) and K, (u) = 2K (u)I(u < 0) where K is a symmetric kernel
function with bounded support and [ K (u)du = 1. Let pf = [uK T (u)du, p] = [uK ™ (u)du.

We have the following theorem:

THEOREM 0.4 Under conditions (A1) to (A4) and (C1) and (C2) listed in the appendiz, we
have
(1) f+(x) and f (z) are asymptotically uncorrelated.
(ii)
n!A(F (@) — £ (@) = BbF (@) > N(0,57' " K3 AT (a)),

and

A —

n'B(F (@) — £ (z) = Bb™(2)) = N(0,87' 0" K347 (x)),

where A(z) = p(z)E[X; X} | X;_q = 2] and b"(z) = A~ (z)B*(z), b~ (z) = A~ (2) B~ (z), with

B*(z) and B~ (z) being vectors with i-th element being
— () —~ )
YV @EX i X | Xeca=a] and pr Y f) (@) B[X i X | Ximg = 7,
7=1 7=1

respectively, where f],-(ﬂ and f],-(_) are the left and right derivatives of the function f; at point x.

The proof of the theorem is similar to that of Theorem 0.1. A brief discussion is given in the
appendix. Note that the convergence rate is lower than that of the two sided estimator. Similar
results were obtained by Cline and Hart (1991) for density estimation.

In Figure 3 we present the estimated coefficient functions using one-sided and two-sided kernels
from a simulated TAR(2) series of (7). The sample size used is 400. Again, the quartic kernel is
used, with bandwidth A = 1.5 for one-sided kernels and A = 0.75 for the two-sided kernel. We can
see that, away from the discontinuous point (z = 0), both one-sided and two-sided estimates work
well. Note that, in the TAR case, away from the discontinuous point, the functions are constant,
hence there is no bias in those estimates. Thus there are not much differences between one-sided
and two-sided estimates. Around the discontinuous point, }'+ is consistent right of the point, }' -
is consistent left of the point and the two-sided estimate is not consistent. In Figure 4 we plotted

ff(:z:) — ff (z) and f;(m) — f;(:z:) We can see that around the discontinuity point z = 0, the

10



Hence, we suggest to use the

differences between the two estimated functions are the largest.
following statistic to test threshold type of nonlinearity:

T =sup max |f(z) - f; (z)|
z€D 7=1,...,p
where D is a compact interval of interest. Since one-sided kernels have severe boundary effects, in

our simulation studies we choose D be the interval between 20 and 80 percentile of the data range,

f2

for samples of size of 400.
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Figure 3: Function estimates using two-sided, left and right sided kernels from a

simulated series of model (7). The solid lines are the true functions.

THEOREM 0.5 Under conditions (A1) to (A3), (C1) to (C4)and the null hypothesis that the

functions are all continuous, we have

T — 0 in probability,

11
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Figure 4: The difference of function estimates using left and right side kernels from a

simulated series of model (7)

and if there is a discontinuity point in D, then

T — max sup |f]+(:£) — f; (@)| >0 in probability.
]:1,...,pm€D

The above theorem shows that under the null hypothesis the test statistic goes to zero in
probability. Hence a large value of the statistic indicates tendency of departing form the null. If
the null hypothesis is rejected, the function max;—; ., |f;'($) - fAj_ (x)| can be used to estimate the
location of the threshold.

The asymptotic distribution of the test statistic is very difficult to obtain and may not be
useful in practice, as the case in section 3. So again we use bootstrap approaches. However, there
are several difficulties. Note that, in order to construct bootstrapped version of the data under

the null hypothesis (that the functions are continuous in the interval of consideration), we must

12



estimate the coefficient functions nonparametrically (e.g. using two sided kernels as in section 2.)
However, it is a local estimator hence cannot be used outside the data range. In addition, it suffers
the boundary effects. So if ones tries to construct a bootstrap version of the time series using
X; =Y, fi(X; ) X; ; +ef where ¢} is sampled from the residuals & = X; — Y0, f;(X;_a) X i,
not only the residual distribution is not correct (due to the boundary effects), but also the generated
threshold variable X; ; may be out of the range of reliable estimate of f;. In order to overcome
these two difficulties, we convert the problem to a regression setting. Specifically, we fix the original
design matrix using the original data and bootstrap only the response. This is slightly different from
our time series setting, but under strong mixing condition, the effect will be minimal. In addition,
to reduce the boundary effect, we only bootstrap the observation with X; ; within 10 and 90
percentile of the data range. For data outside the range, we always use the original observation.
We also only resample from the residuals obtained within the same region.

We performed a small scale simulation to check the performance of the proposed testing

method. In addition to models (5), (3), (8) and (7), we also tried the following four models.

1.1 0.5
71 i oXi1 )thl + (03 — 1—|—67Xt—1)Xt72 + &¢, (]_0)

(TAR-2) X;= (0.4 —0.5I(X;—1 > 0)) X1 + (—0.8 +0.5I(X;_1 > 0)Xj—o + 4. (11)

(STAR-2) X;= (0.5—

(Tsin) Xy = (1 —2I(X;—1 >0))cos(0.5mX;_1)X¢—1 +
+(=0.54+ I(Xy—1 > 0)) cos(nmzi—1)xi—2 + 0.2¢4 (12)

(Tsin-2) X; = (0.5 —I(X;—1 >0))cos(0.5mX;_1) X1 +
+(—=0.240.4I(X;—1 > 0)) cos(mXy—1)X;—2 + 0.2¢, (13)

Table 2 shows the percentage of rejections of the null hypothesis that the coefficient functions are
continuous, in 50 simulated samples, each of sample size 400. The differences between TAR and
TAR-2, Tsin and Tsin-2 are the jump size. We can see that, with smaller jump size, (TAR2 and

Tsin-2), the power of the test is samller, as expected.
APPENDIX

First we list all the necessary assumptions:

(A1) The process is geometrically ergodic. A set of sufficient ergodic conditions for the FAR model
can be found in Chen and Tsay (1993) and Cline and Pu (1995).

13



o« | AR(2) EXPAR(2) STAR STAR-2 | TAR TAR-2 TSIN TSIN-2

0.10 14 6 6 2 96 30 48 40
0.05 6 2 4 2 92 24 38 34
0.01 2 0 2 0 84 12 22 18

Table 2: Percentage of rejections of the continuity test

(A2) The kernel function K is a positive, compactly supported bounded function, with [ K (u)du =
land [uK(u)du =0. And |K(z1) — K(z2)| < c|z1 — x2| for all z; and x5 in its support.

(A3) The density of the stationary distribution exists and is bounded.

(A4) The matrix A(y) = p(y)E[X X} | X;_q = y] is of full rank. A(y) and A~'(y) is bounded

element-wise in a neighborhood of x.

(A5) Let p; j.q be the joint density of (X;_;, X;—;, X;—4). We assume p; ; 4 has Holder continuous

first partial derivative with respect to the third argument.
(A6) The second derivative of the coefficient functions exists and are Holder continuous.

(A7) The term
1
/uv {5 L W)pigalu,v,y) + F ()i a(u, v, y)} dudv

is bounded in a neighborhood of z for all 1 <4, 57 < p.
(A8) h = pn~1/>, 3> 0.

(B1) The joint density of distinct elements of { Xy, , X+, , Xtg, Xty Xtgy Xtgr Xt7, Xtg, Xt} 18 contin-

uous and bounded by a constant independent of ¢;, s =1,...,9.
(B2) As n — oo, then h — 0 and nh(2+49)/(14+9) /1ogn — oo,
(C1) f],-(ﬂ and f;-(_) exist and Holder continuous in (z,z + ¢) and (z — 4, x), respectively.
(C2) h = pn~"/3 for 3> 0.

(C3) The matrix A(y) = p(y)E[X X} | X;_4 = y] is of full rank. A(y) and A~'(y) is bounded

uniformly in a compact intereval D if interest.
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(C4) f],-(ﬂ and f;-(f) exist and Holder continuous in D.

We need the following lemmas.

Lemma 0.1 (Liptser and Shirjaev (1980) Corollary 6). Denote Fy be a o-field. Let for every

n > 0, the sequence (i, Fr) be a square integrable martingale difference, i.e.
E(nnk | Fr-1) =0, E(ng) <oo, 1<k<m,
and let Y1 E(n2,) =1, for any n > ng > 0. The conditions

n
S E(ml | Fr1) L1, as n— oo
k=1

n
ZE(UTQLkI(|77nk| > €| Fr-1) LN 0, as n— oo,
k=1

for € > 0 are necessary and sufficient for convergence
n
D
Z Mnk — N(Oa 1)
k=1

Lemma 0.2 Let p be the stationary density of Xy. Under conditions (A1) (geometric ergodic) we
have

n
nt > X X jKn(Xi—q — 2) — E[Xi—iXe—j | Xi—q = z]p(z) = 0p(1),
t=0+1

and

n
n ' > BIX i X jKn(Xi—qg — 2)] — B[Xi—iXi—j | Xi—q = 2]p(z) = o(1).
t=0+1

Proof: By an ergodic theorem, we have

n
n' > XXy Ky (Xy—g — w) — E[X—i Xy jKn(Xi—q — x)] = 0p(1).
t=0+1

Let p; j 4 be the joint density of (X;_;, X;_;, X;_4). We have
EXi i X jKp(Xi—q—12)] = /uvK(w)pm,d(u, v, & + hw)dudvdw

= /uvpi,j7d(u,v,$)dudvdw(1 +0(1))
= p({L‘)E[Xt_iXt_j | thd = {L'](l + 0(1))

Proof of Theorem 0.1: Let n* =n —£. Let € = (g441,...,&,). Then
fz) = f(z) = (X'W,X) ' X'W,[Y —e — Xf(2)] + (X' W, X) ' X' Woe =1, + I, say.
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First we work with (n*)"!X'W,X. The (i, 5)-th element of (n*)"!X'W X is

1 n
. > X i Xy jKy(Xi—q — 2) = p(2) E[Xi—i Xy—j | X4 = z](1 + 0,(1)),
t=C+1
by Lemma 0.2. Hence (n*) 1 X'W,X = A(z)(1 + 0,(1)), where A(z) = p(2)E[X X, | X;_4 = z].
Second, the i-th element of (n*) ' X'W,(Y —e — X f(x)) is

1

n*

p
Z X th Xi_ d—$ Z{f] Xt d (IE)}th]

t=0+1 j=1

p
L S™ X0 X0 K (X — o (X ) — f(0)}

-y L

j=1"" t=p+1

I
.M%

/uvK(w){fj (z + hw) — fi(x)}pija(u, v,z + hw)dudvdw(l + oy(1))
1

j
— pah? 2 [ {3 @it 2) 5 7@ a2 1+ 0,0)
= y2h2 Bi(z)(1 +o0p(1)) say.
The second equality is the result of the ergodic theorem. Let B(z) = (Bi(z),...,By(z))’, then
= u2h® A7} (2) B(2)(1 + 0p(1)).

Now we work with I5. The i-th element of (n*) ' X'Wyeise; = (n*) ' Y7, Xi—i Kn(Xi—a—
x)eg. We show that e; is asymptotically normal by checking all the conditions of Lemma 0.1. First,

since ¢4 is independent of X for all s < ¢, we have E(e;) = 0. Standard calculation yields

1 - 1
s =Var(e) = 5500 3 BN (Xia = o] = Zpo Mo BXey | Xima = alp(2) (1L + o(D))
t=0+1

where p; 4 is the joint density of X; ; and X;_4. Define

1 Xy i Kp(Xy—q — )

= — €t
n S;

Note that n; actually depends on 4. For brevity, we here work with a fixed 7 and suppress the index
i on 7. Let Fy; be the o-field generated by (X7,...,X};). Since ¢; is independent of X for all s < t,

we have

En | Fiza] = 0,

Elnj] = E




- Si—e BIX? (Kj(Xy_q — 2)€f]

> Bl = =1,

t=0+1 n*2s?
- n, o XE KX, g—1x)o?
Z E[U? | Fio1] = Zizeps Xizi *2h(2 -4 =) —1 as n — oco.
t=0+1 n-es;
Finally, for any € > 0, we want to show
" "X? KA Xi_q—x)E(e21 >e€) | Fi

Z E[nff(lml > €) |Ft—1] — Z t—i h( t—d 12 (2t (|77t| ) | t—1) = o(1).
t=0+1 t—=0+1 n-=s; (7)

For some constant C; and C, we have
E[{1(m| > )] < {BEHEI(Im] > o))}/

% 1/2
< o lP (> meies—a)]
! el | X i| Kp(Xi—q — )
o, Xt il Kp(Xi—a — @)
1 .

N

<
B n*s;e
Hence,
n n 3173
St X P K} (Ximd — 2)o
S EiI(m|>e) | Fira)| < C=EH :1333h = o0, (1).
t=0+1 i€
Then by Lemma 0.1, we have
111 & D
— = > Xi_iKp(Xi—qg— z)er| — N(0,1).
Si | S

Also note that

1
—FE

n*

( zn: Xt—iKh(thd —x)gt) ( i Xt—th(thd —Z‘)&‘t)]

t=0+1 t=0+1

1
= o K3EX,-i X | Xia = alp(@)(1 + o(1)).

By a Crame-Wold device, it is easy to show that
1
(n*h) <EX'W5> 2y N, (0,0° K2 A()).
Hence
(n*h)I; =5 N,(0,02K3A™ " (z)).

Let h = n~'/%, the theorem follows.
Proof of Theorem 0.4: The proof is essentially the same as that of Theorem 0.1 with slightly

differences in the bias calculation since [uK*(u)du = puj # 0. The asymptotic uncorrelation of
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}+(x) and f (z) is due to the fact that the covariance of the i-th element of (n*)~' X'W;e and
the j-th element of (n*) "' X'W ¢ is

1
n*Z

n n
Yo Y ElXy-iXe K (X a— ) Ky (Xiya — w)erer,)-
t1=0+1to=0+1

Note that for ¢; < t9, €4, is independent of the rest of the terms. Since E(ey,) = 0, all the terms
with ¢; # to are zero. On the other hand, for t; = to, K; (X;,—q — 2)K; (X4,—a — ) = 0 by
definition. Hence f*(z) and f~(z) are asymptotic uncorrelated.

Proof of Theorem 0.5: With the result of theorem 0.4, it is easy to show, by construction of
finite open intervals, that for a compact interval,

sup |f;+(x) - ff(x)| — 0 in prob. and sup |f;_(x) — f; (z)] — 0 in prob.
zeD z€D

forall j =1,...,p. Hence

sup \f () = f ()] = sup (@) = f7 @) < sup |/ (@) = f ()] + sup |f (2) = f ()]

— 0 in prob.

Hence,

sup |f;' (z) — f; (x)| — sup | (x) — f; (z)| in prob.
zeD zeD

The theorem follows.
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