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Functional coe�cient autoregressive models� estimation and tests

of hypotheses

Rong Chen�

Department of Statistics

Texas A�M University

Summary

In this paper we study nonparametric estimation and hypothesis testing procedures for the

functional coe�cient AR �FAR� models of the form Xt � f��Xt�d�Xt�� � � � �� fp�Xt�d�Xt�p � �t�

�rst proposed by Chen and Tsay ��		
�� As a direct generalization of the linear AR model� the

FAR model is a rich class of models that includes many successful parametric nonlinear time series

models such as the threshold AR models of Tong ��	�
�� exponential AR models of Haggan and

Ozaki ��	�� and many others� We propose a local linear estimation procedure for estimating

the coe�cient functions and study its asymptotic properties� In addition� we propose two testing

procedures� The �rst one tests whether all the coe�cient functions are constant �i�e� whether the

process is linear�� The second one tests if all the coe�cient functions are continuous� �i�e� if any

threshold type of nonlinearity presents in the process�� Some simulation results are presented�

Key Words�� Continuity test� Linearity test� Local linear estimation� Nonparametric estimation�

One sided kernel� Threshold Model�
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�� Introduction

Nonlinear time series analysis has been one of the major areas of research in time series for

more than two decades now� Many nonlinear parametric models such as the threshold AR �TAR�

model of Tong ��	�
� �		��� the exponential AR �EXPAR� model of Haggan and Ozaki ��	�� and

the smooth transition AR �STAR� model of Granger and Ter�asvirta ��		
� and Ter�asvirta ��		��

have been proposed and successfully applied in many important real problems� Tong ��		�� and

Priestley ��	��� provided many foundations of parametric nonlinear time sereis analysis� A more

recent review of the subject can be found in Tj�steim ��		���

It is noted that although in many applications background knowledge can often shed lights on

�nding an appropriate model� other applications lack such knowledge and often require trial�and�

error type of model selection procedures� To overcome the subjectivity in model selection� Chen

and Tsay ��		
� proposed a class of models referred to as functional coe�cient �FAR� models which

assumes the form of

Xt � f��Xt�d�Xt�� � � � �� fp�Xt�d�Xt�p � �t� ���

where �t is white noise with �nite variance �� and is independent of Xs for all s � t� It is a direct

extension of the linear AR model� but allows the coe�cients varying according to a threshold

variable Xt�d� They suggested using nonparametric procedures to determine the functions in the

model� hence allowing �data to speak for themselves� regarding the model to be used� It is noted

that many of the successful parametric nonlinear models belong to the FAR family� For example�

if the functions fi�x� in ��� are step functions fi�x� � ai � biI�x � c�� we have the TAR model�

When fi�x� � ai � bie
��x� � the model becomes an EXPAR model� STAR and many other models

also belong to this class� Hence� nonparametric determination of the functional forms in model

��� may provide objective guild�lines on choosing an appropriate parametric model� It also allows

researchers to develop new models that are useful in their applications by specifying a parametric

form for the coe�cient functions based on the nonparametric estimates� In addition� nonparametric

estimators can also be the �nal solution to the problem on hand�

Nonparametric procedures have been used extensively in time series analysis� Gy�or� et al

��	�	�� Tj�steim ��		��� H�ardle� L�utkepohl and Chen ��		� and Hart ��		�� have given selective

reviews on this topic� These procedures borrow many nonparametric procedures developed in

regression context into time series analysis�

In this paper� we concentrate on three aspects of the FAR models� First� in section �� we pro�

pose a local linear estimator for estimating the coe�cient functions nonparametrically� It is similar

�



to the running window procedure proposed by Chen and Tsay ��		
�� though we use Kernel weight

functions� We systematically study the asymptotic properties of the estimator� Note that this

procedure is slightly di�erent from local polynomial curve estimation procedures of Cleveland and

Devlin ��	���� Fan and Gijbels ��		�� and Tsybakov ��	���� Here� we are interested in estimating

the coe�cient functions� Hastie and Tibshirani ��		
� have proposed similar estimation procedures

in regression context for �varying coe�cient models�� which is similar to the FAR model�

Second� in section 
� we develop a procedure to test if the coe�cient functions are constant

functions� It is basically a linearity test since when all the coe�cient functions are constant� the FAR

model becomes a linear AR model� There are many linearity tests available in the literature� For

example� Keenan ��	���� Tsay ��	��� and Luukkonen� Saikkonen and Ter�asvirta ��	��� proposed

di�erent forms of Lagrange multiplier type of tests� Chan and Tong ��	��� and Tsay ��	�	�

considered testing threshold type of nonlinearity� Nonparametrically� Hjellvik and Tj�stheim ��		��

�		�� and Hjellvik� Yao and Tj�stheim ��		� developed linearity tests by comparing nonparametric

and linear estimates of E�Xt j Xt�k�� Here we attack this problem within the FAR model framework�

Third� in section �� we develop yet another testing procedure� to detect if there are any dis�

continuous points in the coe�cient functions� This is of interest due to the fact that all threshold

type of models have jump points in the coe�cient functions� Since the class of threshold models is

one of the most important and widely used classes of nonlinear time series models� it is certainly

important to be able to detect if there is any threshold type of nonlinearity when one uses FAR

models as a tool for model selection� The test is also of interest when the nonparametric estimate

is treated as a �nal solution of the problem� Most of the nonparametric estimators are designed to

estimate continuous functions� They are not consistent at discontinuous points� In �nite samples�

they tend to have large bias in the neighborhood of the discontinuous points� Hence it is important

to detect the existence of jump points� in order to select suitable nonparametric estimators� The

proposed testing procedure is based on nonparametric estimation of the coe�cient functions with

one�sided kernels and the fact that at a discontinuous point� estimates with left�side kernels and

right�side kernels are signi�cantly di�erent while at continuous points they are not�

�� Nonparametric estimation of the FAR model

We begin this section by mentioning that� for d � p� we may also include an intercept coe�cient

function in model ���� resulting in

Xt � f��Xt�d� � f��Xt�d�Xt�� � � � �� fp�Xt�d�Xt�p � �t�






However� when d � p� such a term will create ambiguity� In what follows� we will only consider

model ��� without the f� term�

We propose the following local linear estimator to estimate the functions f�x� � �f��x�� � � � � fp�x��
�

nonparametrically� Let

bf�x� � argmin
�

nX
t����

�Xt �X
�

t��
�Kh�Xt�d � x�� ���

where Xt � �Xt��� � � � �Xt�p�
� and Kh�u� � h��K�u�h� where K is a kernel function� h is the

bandwidth and � � maxfd� pg� It is easily seen that

�f�x� � �X �WxX���X �WxY �

where X � �X��� � � � � �Xn�
�� Y � �X���� � � � �Xn�

� and Wx is a diagonal matrix with the diagonal

elements being Kh�Xt�d � x� for t � �� �� � � � � n�

The asymptotic properties of the above estimator can be summarized in the following theorem�

The theorem concerns only the continuous points� We will study the case of discontinuous coe�cient

functions in section ��

De�ne �� �
R
u�K�u�du and K�

� �
R
K��u�du� Let pi�j�d be the joint stationary density of the

triple �Xt�i�Xt�j �Xt�d� and p�x� be the stationary marginal density of Xt�

THEOREM ��� Let x be a continuous point of the coe�cient functions f�� � � � � fp� Under as�

sumptions �A�� to �A�� in the appendix� we have

n�����f�x�� f�x�� 	�b�x��
D
�� Np��� 	

����K�
�A

���x���

where A�x� � p�x�E�X tX
�
t j Xt�d � x� and b�x� � ��A

���x�B�x� where B�x� is a vector with

i�th element being

pX
j��

Z
uv

�
�

�
f ��j �x�pi�j�d�u� v� x� � f �j�x�p

�

i�j�d�u� v� x�

�
dudv�

with f �j�x� and f ��j �x� being the 	rst and second derivative of fj�x�� respectively� and p
�

i�j�d being the

partial derivative with respect to the third argument�

The proof of the theorem is given in the appendix� We note that the asymptotic result is

similar to that of kernel estimation of a response curve� It can be easily extended to resemble that

of local polynomial estimation of a response curve using the following estimator�

�f�x� � arg� min
���

nX
t����

�Xt �X
�
t� � Y �

t��Kh�Xt�d � x��

�



withXt as de�ned before and Y t � ��Xt���x�
�� � � � � �Xt�p�x�

�� � � � � �Xt���x�
k� � � � � �Xt�p�x�

k���

It should entertain many nice properties of the local polynomial estimator� though the derivation

of the asymptotic distribution becomes more complicated and tedious� In this paper we restrict

ourselves to estimator ����

The theorem shows that the estimator has the rate of convergence of one dimensional smooth�

ing� As a consequence� estimation of the response surface E�Xt j Xt � x� will have the same

rate� hence does not su�er the curse of dimensionality as that in direct p�dimensional estima�

tion of the surface� This advantage is due to the special structure of the model� which serves as

a dimension reduction tool� Speci�cally� let x � �x�� � � � � xp�
�� The conditional mean function

m�x� � E�Xt j Xt � x� � x�f�xd� can be estimated by �m�x� � x��f�xd� and we have

Corollary ��� Under conditions of theorem 
��� we have

n���� �m�x��m�x�� 	�x�b�xd��
D
�� N��� 	����K�

�x
�A���xd�x��

Automatic bandwidth selection procedure is always one of the key ingredients in practical im�

plementation of nonparametric procedures� There are many approaches such as the cross�validation

approach of H�ardle and Vieu ��		�� and Cheng and Tong ��		�� in time series� the plug�in ap�

proach of Sheather ��	�
� �	���� Ruppert� Sheather� and Wand ��		��� Park and Marron ��		��

and many others in regression� It is somewhat di�cult to use the plug�in approach here since

the bias term involves the partial derivative of a three dimensional density� which is not easy to

estimate� Hence we suggest to use the cross�validation procedure through the response surface

estimation� Speci�cally� de�ne

cv�h� �
nX

i����

�Xi �
pX

j��

�f
��i�
h�j �Xi�d�Xi�j�

�w�Xi�d��

where �f
��i�
h�j � j � �� � � � � p is that in ��� without the t � i term in the summation and w is a weight

function with a compact support�

Consider a second order EXPAR model �
��

�EXPAR���� Xt � ���� � ���e���X
�

t�� �Xt�� � ���
� ���e���X
�

t�� �Xt�� � ����t� �
�

Figure � shows the estimation results of a simulated series from �
� with �t � N��� �� and ���

samples� using the optimal cross�validation bandwidth with the quartic kernel function K�u� �

��	
��� � u���I�juj � ��� The solid lines are the true function�
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Figure �� Function estimation of a simulated series from model �
�� The solid lines

are the true functions

Figure � shows the cross�validation curves of � series generated from the above process� We

can see that the procedure is reasonablely robust �

�� Testing linearity in FAR models

When all the coe�cient functions are constant functions� an FAR model becomes a linear AR

model� In this section we develop a testing procedure to determine if the process is linear�

Let �f�x� be that in ��� and �� � ��
�� � � � � �
p� be the Yule�Walker estimator of a linear AR�p�

model� We de�ne the following statistic to test linearity�

T �
�

n

nX
t����

d�tdtw�Xt�d�� ���

where dt � �X �WtX���f�Xt�d�� ��� with Wt being a diagonal matrix with diagonal element being

K�Xi�d � Xt�d� for i � � � �� � � � � n� The weight function w has a compact support� designed

�
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Figure �� Cross�validation curves for � simulated series from model �
�

to reduce the boundary e�ects on the test statistic� Note that traditionally one would use dt �

�f�Xt�d� � �� in ���� The use of dt in its current form is purely for the simplicity and weaker

conditions in obtaining the asymptotic distribution of T �

We have the following theorem for the asymptotic distribution of the test statistic T �

THEOREM ��� Under conditions �A��� �B�� and �B�� listed in the appendix� and the null hy�

pothesis that fj�x� � 
j for j � �� � � � � p� with all the roots of zp � 
�z
p�� � � � � � 
p � � inside the

unit circle� we have

nh���T
D
�� N�h����a�� s

�
���

where

a� � �K�
��

�E�
pX

k��

X�
t�kp�Xt�d�w�Xt�d���





and

s�o � ��
Z
K�u�K�v�K�u � z�K�v � z�dudvdz

Z
s��x�p��x�w��x�dx�

where s��x� � E��
Pp

k��Xt�k�
� j Xt�d � x��

THEOREM ��� Under the conditions �A�� to �A��� �B�� and �B�� listed in the appendix� and

the alternative hypothesis that at least one of the coe�cient functions fj�x� are not constant� then

T
D
�� N�a�� s

�
��n��

where

a� � E��f �Xt�� ��
�A�Xt�A�Xt��f �Xt�� ��w�Xt���

and

s�� � V ar��f�Xt�� ��
�A�Xt�A�Xt��f�Xt�� ��w�Xt���

where A�x� � p�x�E�X tX
�
t j Xt�d � x�� and � is the coe�cient of the best linear prediction of Xt

given Xt��� � � � �Xt�p�

The theorem shows that as nh��� T goes to zero in probability under the null hypothesis�

Hence� large value of the statistic indicates departure from linearity� It also shows that under the

null hypothesis� nh���T is asymptotic normal with �nite variance� but the mean goes to in�nity�

This type of results were observed by H�ardle and Mammen ��		
�� Hjvellik et al� ��		� in similar

problems� The proof of the theorems basically follows similar proofs in Yoshihara ��	�� and

Hjvellik et al� ��		�� First we obtain the Hoe�ding�s decomposition of the test statistic� Then a

martingale central limit theorem is used on the resulting U�statistic� The proof is tedious and is

omitted here�

Although Theorem ��� can be used to obtain asymptotic level of the test statistic� it is noted

by many researchers �e�g� Skaug and Tj�stheim �		
� Hjellvik and Tj�stheim �		�� �		�� that

in �nite samples� the asymptotic level does not perform well in most cases� Hence� for practical

purposes� we suggest to use bootstrap procedures�

Speci�cally� �rst we obtain residuals

�et � Xt �
pX

i��

��iXt�i�

where ��i� i � �� � � � � p are the Yule�Walker estimates of a linear AR�p� model �tted to the data�

Then we create bootstrap versions of the process

X�
t �

pX
i��

��iX
�
t�i � e�t �

�



� AR��� AR��� EXPAR��� TAR STAR EXPAR���

���� �� � 	� ��� 	� ��

���� � � 	� ��� 	� ��

���� � � �� 	� � ��

Table �� Percentage of rejection of the linearity test

for t � ���� � � � � n� where e�t are independently sampled from f�e���� � � � � �eng with replacement and

X�
t � Xt for t � �� � � � � �� Then a bootstrap value of test statistic T � is obtained by replacing X�

t

in the place of Xt in calculating the test statistic ���� The bootstrap null distribution can be then

obtained�

In Table � we present a small scale simulation for checking the performance of the proposed

tests� In addition to model �
�� we include �ve other models

�AR���� Xt � ���Xt�� � ��
Xt�� � �t� ���

�AR���� Xt � ���Xt�� � �t� ���

�TAR� Xt � ���� � ���I�Xt�� � ���Xt�� � ����� � ���I�Xt�� � ���Xt�� � �t� ��

�STAR� Xt � ���� � ���
��e��Xt��

�Xt�� � ���
 � ���
��e��Xt��

�Xt�� � �t� ���

�EXPAR���� Xt � ���� ���e���X
�

t�� � ����t� �	�

For each model we generated �� series of size ���� We use �� bootstrap replications to obtain the

bootstrap null distribution� For each model� we use a common bandwidth obtained by averaging �

cross�validation bandwidths of �ve simulated samples� Table � presents the percentage of rejection

of the null hypothesis under three di�erent � levels� From the table we can see that the proposed

testing procedure works reasonablely well�

�� Testing threshold type of discontinuity

First we de�ne local linear estimates of the coe�cient functions using one�sided kernels� Let

f��x� � lim���� f�x� � and f��x� � lim���� f�x� �� De�ne

�f
�
�x� � argmin

�

nX
t����

�Xt �X
�
t��

�K�
h �Xt�d � x��

	



and

�f
�
�x� � argmin

�

nX
t����

�Xt �X
�
t��

�K�

h �Xt�d � x��

where K�
h �u� � �Kh�u�I�u � �� and K�

h �u� � �Kh�u�I�u � �� where K is a symmetric kernel

function with bounded support and
R
K�u�du � �� Let ��� �

R
uK��u�du� ��� �

R
uK��u�du�

We have the following theorem�

THEOREM ��� Under conditions �A�� to �A�� and �C�� and �C�� listed in the appendix� we

have

�i� �f
�
�x� and �f

�
�x� are asymptotically uncorrelated�

�ii�

n��	��f
�
�x�� f��x�� 	b��x��

D
�� N��� 	����K�

�A
���x���

and

n��	��f
�
�x�� f��x�� 	b��x��

D
�� N��� 	����K�

�A
���x���

where A�x� � p�x�E�X tX
�
t j Xt�d � x� and b��x� � A���x�B��x�� b��x� � A���x�B��x�� with

B��x� and B��x� being vectors with i�th element being

���

pX
j��

f
����
j �x�E�Xt�iXt�j j Xt�d � x� and ���

pX
j��

f
����
j �x�E�Xt�iXt�j j Xt�d � x��

respectively� where f
����
j and f

����
j are the left and right derivatives of the function fj at point x�

The proof of the theorem is similar to that of Theorem ���� A brief discussion is given in the

appendix� Note that the convergence rate is lower than that of the two sided estimator� Similar

results were obtained by Cline and Hart ��		�� for density estimation�

In Figure 
 we present the estimated coe�cient functions using one�sided and two�sided kernels

from a simulated TAR��� series of ��� The sample size used is ���� Again� the quartic kernel is

used� with bandwidth h � ��� for one�sided kernels and h � ��� for the two�sided kernel� We can

see that� away from the discontinuous point �x � ��� both one�sided and two�sided estimates work

well� Note that� in the TAR case� away from the discontinuous point� the functions are constant�

hence there is no bias in those estimates� Thus there are not much di�erences between one�sided

and two�sided estimates� Around the discontinuous point� �f
�
is consistent right of the point� �f

�

is consistent left of the point and the two�sided estimate is not consistent� In Figure � we plotted

�f�� �x� �
�f�� �x� and �f�� �x� �

�f�� �x�� We can see that around the discontinuity point x � �� the

��



di�erences between the two estimated functions are the largest� Hence� we suggest to use the

following statistic to test threshold type of nonlinearity�

T � sup
x�D

max
j�������p

j �f�j �x�� �f�j �x�j

where D is a compact interval of interest� Since one�sided kernels have severe boundary e�ects� in

our simulation studies we choose D be the interval between �� and �� percentile of the data range�

for samples of size of ����
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Figure 
� Function estimates using two�sided� left and right sided kernels from a

simulated series of model ��� The solid lines are the true functions�

THEOREM ��� Under conditions �A�� to �A�� �C�� to �C��and the null hypothesis that the

functions are all continuous� we have

T �� � in probability�
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Figure �� The di�erence of function estimates using left and right side kernels from a

simulated series of model ��

�

and if there is a discontinuity point in D� then

T �� max
j�������p

sup
x�D

jf�j �x�� f�j �x�j � � in probability�

The above theorem shows that under the null hypothesis the test statistic goes to zero in

probability� Hence a large value of the statistic indicates tendency of departing form the null� If

the null hypothesis is rejected� the function maxj�������p j �f
�
j �x�� �f�j �x�j can be used to estimate the

location of the threshold�

The asymptotic distribution of the test statistic is very di�cult to obtain and may not be

useful in practice� as the case in section 
� So again we use bootstrap approaches� However� there

are several di�culties� Note that� in order to construct bootstrapped version of the data under

the null hypothesis �that the functions are continuous in the interval of consideration�� we must

��



estimate the coe�cient functions nonparametrically �e�g� using two sided kernels as in section ���

However� it is a local estimator hence cannot be used outside the data range� In addition� it su�ers

the boundary e�ects� So if ones tries to construct a bootstrap version of the time series using

X�
t �
Pp

i��
�fi�X

�
t�d�X

�
t�i� ��t where �

�
t is sampled from the residuals �et � Xt�

Pp
i��

�fi�Xt�d�Xt�i�

not only the residual distribution is not correct �due to the boundary e�ects�� but also the generated

threshold variable X�
t�d may be out of the range of reliable estimate of fi� In order to overcome

these two di�culties� we convert the problem to a regression setting� Speci�cally� we �x the original

design matrix using the original data and bootstrap only the response� This is slightly di�erent from

our time series setting� but under strong mixing condition� the e�ect will be minimal� In addition�

to reduce the boundary e�ect� we only bootstrap the observation with Xt�d within �� and 	�

percentile of the data range� For data outside the range� we always use the original observation�

We also only resample from the residuals obtained within the same region�

We performed a small scale simulation to check the performance of the proposed testing

method� In addition to models ���� �
�� ��� and ��� we also tried the following four models�

�STAR��� Xt � �����
���

� � eXt��

�Xt�� � ���
 �
���

� � eXt��

�Xt�� � �t� ����

�TAR��� Xt � ����� ���I�Xt�� � ���Xt�� � ����� � ���I�Xt�� � ���Xt�� � �t� ����

�Tsin� Xt � ��� �I�Xt�� � ��� cos�����Xt���Xt�� �

������ � I�Xt�� � ��� cos��xt���xt�� � ����t ����

�Tsin��� Xt � ����� I�Xt�� � ��� cos�����Xt���Xt�� �

������ � ���I�Xt�� � ��� cos��Xt���Xt�� � ����t ��
�

Table � shows the percentage of rejections of the null hypothesis that the coe�cient functions are

continuous� in �� simulated samples� each of sample size ���� The di�erences between TAR and

TAR��� Tsin and Tsin�� are the jump size� We can see that� with smaller jump size� �TAR� and

Tsin���� the power of the test is samller� as expected�

Appendix

First we list all the necessary assumptions�

�A�� The process is geometrically ergodic� A set of su�cient ergodic conditions for the FAR model

can be found in Chen and Tsay ��		
� and Cline and Pu ��		���

�




� AR��� EXPAR��� STAR STAR�� TAR TAR�� TSIN TSIN��

���� �� � � � 	� 
� �� ��

���� � � � � 	� �� 
� 
�

���� � � � � �� �� �� ��

Table �� Percentage of rejections of the continuity test

�A�� The kernel functionK is a positive� compactly supported bounded function� with
R
K�u�du �

� and
R
uK�u�du � �� And jK�x���K�x��j � cjx� � x�j for all x� and x� in its support�

�A
� The density of the stationary distribution exists and is bounded�

�A�� The matrix A�y� � p�y�E�X tX
�
t j Xt�d � y� is of full rank� A�y� and A���y� is bounded

element�wise in a neighborhood of x�

�A�� Let pi�j�d be the joint density of �Xt�i�Xt�j �Xt�d�� We assume pi�j�d has Holder continuous

�rst partial derivative with respect to the third argument�

�A�� The second derivative of the coe�cient functions exists and are Holder continuous�

�A� The term Z
uv

�
�

�
f ��j �y�pi�j�d�u� v� y� � f �j�y�p

�
i�j�d�u� v� y�

�
dudv

is bounded in a neighborhood of x for all � � i� j � p�

�A�� h � 	n����� 	 � ��

�B�� The joint density of distinct elements of fXt� �Xt� �Xt� � Xt� � Xt� �Xt� �Xt� �Xt� �Xt�g is contin�

uous and bounded by a constant independent of ti� i � �� � � � � 	�

�B�� As n��� then h� � and nh������������� log n���

�C�� f
����
j and f

����
j exist and Holder continuous in �x� x� � and �x� � x�� respectively�

�C�� h � 	n���	� for 	 � ��

�C
� The matrix A�y� � p�y�E�X tX
�
t j Xt�d � y� is of full rank� A�y� and A���y� is bounded

uniformly in a compact intereval D if interest�

��



�C�� f
����
j and f

����
j exist and Holder continuous in D�

We need the following lemmas�

Lemma ��� �Liptser and Shirjaev ����
� Corollary ��� Denote Fk be a ��	eld� Let for every

n � �� the sequence ��nk�Fk� be a square integrable martingale di�erence� i�e�

E��nk j Fk��� � �� E���nk� ��� � � k � n�

and let
Pn

i��E���nk� � �� for any n � n� � �� The conditions

nX
k��

E���nk j Fk���
P
�� �� as n���

nX
k��

E���nkI�j�nkj � � j Fk���
p
�� �� as n���

for � � � are necessary and su�cient for convergence

nX
k��

�nk
D
�� N��� ���

Lemma ��� Let p be the stationary density of Xt� Under conditions �A�� �geometric ergodic� we

have

n��
nX

t����

Xt�iXt�jKh�Xt�d � x��E�Xt�iXt�j j Xt�d � x�p�x� � op����

and

n��
nX

t����

E�Xt�iXt�jKh�Xt�d � x���E�Xt�iXt�j j Xt�d � x�p�x� � o����

Proof� By an ergodic theorem� we have

n��
nX

t����

Xt�iXt�jKh�Xt�d � x��E�Xt�iXt�jKh�Xt�d � x�� � op����

Let pi�j�d be the joint density of �Xt�i� Xt�j � Xt�d�� We have

E�Xt�iXt�jKh�Xt�d � x�� �

Z
uvK�w�pi�j�d�u� v� x� hw�dudvdw

�

Z
uvpi�j�d�u� v� x�dudvdw�� � o����

� p�x�E�Xt�iXt�j j Xt�d � x��� � o�����

Proof of Theorem ���� Let n� � n� �� Let � � ��t��� � � � � �n�
�� Then

�f�x�� f�x� � �X �WxX���X �Wx�Y � ��Xf�x�� � �X �WxX���X �Wx� � I� � I�� say�

��



First we work with �n����X �WxX � The �i� j��th element of �n����X �WX is

�

n�

nX
t����

Xt�iXt�jKh�Xt�d � x� � p�x�E�Xt�iXt�j j Xt�d � x��� � op�����

by Lemma ���� Hence �n����X �WxX � A�x��� � op����� where A�x� � p�x�E�X tX
�

t j Xt�d � x��

Second� the i�th element of �n����X �Wx�Y � ��Xf�x�� is

�

n�

nX
t����

Xt�iKh�Xt�d � x�
pX

j��

ffj�Xt�d�� fj�x�gXt�j

�
pX

j��

�

n�

nX
t����

Xt�iXt�jKh�Xt�d � x�ffj�Xt�d�� fj�x�g

�
pX

j��

Z
uvK�w�ffj�x� hw� � fj�x�gpi�j�d�u� v� x � hw�dudvdw�� � op����

� ��h
�

pX
j��

Z
uv

�
�

�
f ���x�pi�j�d�u� v� x� � f ��x�p

�

i�j�d�u� v� x�

�
dudv�� � op����

� ��h
�Bi�x��� � op���� say�

The second equality is the result of the ergodic theorem� Let B�x� � �B��x�� � � � � Bp�x��
�� then

I� � ��h
�A���x�B�x��� � op�����

Now we work with I�� The i�th element of �n����X �Wx� is ei � �n����
Pn

t����Xt�iKh�Xt�d�

x��t� We show that ei is asymptotically normal by checking all the conditions of Lemma ���� First�

since �t is independent of Xs for all s � t� we have E�ei� � �� Standard calculation yields

s�i � V ar��i� �
�

n��
��

nX
t����

E�X�
t�iK

�
h�Xt�d � x�� �

�

n�h
��K�

�E�X�
t�i j Xt�d � x�p�x��� � o�����

where pi�d is the joint density of Xt�i and Xt�d� De�ne

�t �
�

n�
Xt�iKh�Xt�d � x�

si
�t�

Note that �t actually depends on i� For brevity� we here work with a �xed i and suppress the index

i on �� Let F t be the ���eld generated by �X�� � � � � Xt�� Since �t is independent of Xs for all s � t�

we have

E��t j F t��� � ��

E���t � � E

�
X�

t�iK
�
h�Xt�d � x�

n��s�i
��t

�
���

��



nX
t����

E���t � �

Pn
t����E�X

�
t�iK

�
h�Xt�d � x���t �

n��s�i
� ��

nX
t����

E���t j F t��� �

Pn
t����X

�
t�iK

�
h�Xt�d � x���

n��s�i
� � as n���

Finally� for any � � �� we want to show

nX
t����

E���t I�j�tj � �� j F t��� �
nX

t����

X�
t�iK

�
h�Xt�d � x�E���t I�j�tj � �� j F t���

n��s�i �x�
� o����

For some constant C� and C� we have

E���t I�j�tj � ��� � fE���t �E�I�j�tj � ���g���

� C�

�
P

�
j�tj �

n�si�

jXt�ijKh�Xt�d � x�

�����
� C�

�jXt�ijKh�Xt�d � x�

n�si�
�

Hence� ������
nX

t����

E���t I�j�tj � �� j F t���

������ � C

Pn
t���� jXt�ij

	K	
h�Xt�d � x��

n	s	i �
� op����

Then by Lemma ���� we have

�

si

	
 �

n�

nX
t����

Xt�iKh�Xt�d � x��t

�� D
�� N��� ���

Also note that

�

n��
E

	
� nX
t����

Xt�iKh�Xt�d � x��t

�A� nX
t����

Xt�jKh�Xt�d � x��t

�A��
�

�

nh�
��K�

�E�Xt�iXt�j j Xt�d � x�p�x��� � o�����

By a Crame�Wold device� it is easy to show that

�n�h�

�
�

n�
X �W�

�
D
�� Np��� �

�K�
�A�x���

Hence

�n�h�I�
D
�� Np��� �

�K�
�A

���x���

Let h � 	n����� the theorem follows�

Proof of Theorem ���� The proof is essentially the same as that of Theorem ��� with slightly

di�erences in the bias calculation since
R
uK��u�du � ��� �� �� The asymptotic uncorrelation of

�



�f
�
�x� and �f

�
�x� is due to the fact that the covariance of the i�th element of �n����X �W�

x � and

the j�th element of �n����X �W�
x � is

�

n��

nX
t�����

nX
t�����

E�Xt��iXt��jK
�
h �Xt��d � x�K�

h �Xt��d � x��t��t� ��

Note that for t� � t�� �t� is independent of the rest of the terms� Since E��t�� � �� all the terms

with t� �� t� are zero� On the other hand� for t� � t�� K
�
h �Xt��d � x�K�

h �Xt��d � x� � � by

de�nition� Hence �f��x� and �f��x� are asymptotic uncorrelated�

Proof of Theorem ���� With the result of theorem ���� it is easy to show� by construction of

�nite open intervals� that for a compact interval�

sup
x�D

j �f�j �x�� f�j �x�j �� � in prob� and sup
x�D

j �f�j �x�� f�j �x�j �� � in prob�

for all j � �� � � � � p� Hence�����supx�D
j �f�j �x�� �f�j �x�j � sup

x�D
jf�j �x�� f�j �x�j

����� � sup
x�D

j �f�j �x�� f�j �x�j� sup
x�D

j �f�j �x�� f�j �x�j

�� � in prob�

Hence�

sup
x�D

j �f�j �x�� �f�j �x�j �� sup
x�D

jf�j �x�� f�j �x�j in prob�

The theorem follows�
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